1
|
Reinoso S, Gutiérrez MS, Reyes-Jara A, Toro M, García K, Reyes G, Argüello-Guevara W, Bohórquez-Cruz M, Sonnenholzner S, Navarrete P. Feed Regime Slightly Modifies the Bacterial but Not the Fungal Communities in the Intestinal Mucosal Microbiota of Cobia Fish ( Rachycentron canadum). Microorganisms 2023; 11:2315. [PMID: 37764158 PMCID: PMC10535204 DOI: 10.3390/microorganisms11092315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The bacterial community of the intestinal microbiota influences many host functions, and similar effects have been recently reported for the fungal community (mycobiota). Cobia is a tropical fish that has been studied for its potential in marine aquaculture. However, the study of its bacterial community has been underreported and the mycobiota has not been investigated. We analyzed the gut bacterial and fungal profile present in the intestinal mucosa of reared adult cobias fed two diets (frozen fish pieces (FFPs) and formulated feed (FF)) for 4 months by sequencing the 16S rRNA (V3-V4) and internal transcribed spacer-2 (ITS2) regions using Illumina NovaSeq 6000. No significant differences in the alpha diversity of the bacterial community were observed, which was dominated by the phyla Proteobacteria (~96%) and Firmicutes (~1%). Cobia fed FF showed higher abundance of 10 genera, mainly UCG-002 (Family Oscillospiraceae) and Faecalibacterium, compared to cobia fed FFPs, which showed higher abundance of 7 genera, mainly Methylobacterium-Methylorubrum and Cutibacterium. The inferred bacterial functions were related to metabolism, environmental information processing and cellular processes; and no differences were found between diets. In mycobiota, no differences were observed in the diversity and composition of cobia fed the two diets. The mycobiota was dominated by the phyla Ascomycota (~88%) and Basidiomycota (~11%). This is the first study to describe the gut bacterial and fungal communities in cobia reared under captive conditions and fed on different diets and to identify the genus Ascobulus as a new member of the core fish mycobiota.
Collapse
Affiliation(s)
- Samira Reinoso
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Avenida El Libano 5524, Macul, Santiago 7830490, Chile; (M.S.G.); (A.R.-J.); (M.T.)
- Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Guayaquil 090211, Ecuador; (G.R.); (W.A.-G.); (M.B.-C.); (S.S.)
| | - María Soledad Gutiérrez
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Avenida El Libano 5524, Macul, Santiago 7830490, Chile; (M.S.G.); (A.R.-J.); (M.T.)
| | - Angélica Reyes-Jara
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Avenida El Libano 5524, Macul, Santiago 7830490, Chile; (M.S.G.); (A.R.-J.); (M.T.)
- Millenium Institute Center for Genome Regulation (CRG), Santiago 8331150, Chile
| | - Magaly Toro
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Avenida El Libano 5524, Macul, Santiago 7830490, Chile; (M.S.G.); (A.R.-J.); (M.T.)
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, MD 20910, USA
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8900000, Chile;
| | - Guillermo Reyes
- Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Guayaquil 090211, Ecuador; (G.R.); (W.A.-G.); (M.B.-C.); (S.S.)
| | - Wilfrido Argüello-Guevara
- Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Guayaquil 090211, Ecuador; (G.R.); (W.A.-G.); (M.B.-C.); (S.S.)
- Facultad de Ingeniería Marítima y Ciencias del Mar, FIMCM, Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Guayaquil 090211, Ecuador
| | - Milton Bohórquez-Cruz
- Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Guayaquil 090211, Ecuador; (G.R.); (W.A.-G.); (M.B.-C.); (S.S.)
| | - Stanislaus Sonnenholzner
- Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Guayaquil 090211, Ecuador; (G.R.); (W.A.-G.); (M.B.-C.); (S.S.)
- Facultad de Ingeniería Marítima y Ciencias del Mar, FIMCM, Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Guayaquil 090211, Ecuador
| | - Paola Navarrete
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Avenida El Libano 5524, Macul, Santiago 7830490, Chile; (M.S.G.); (A.R.-J.); (M.T.)
| |
Collapse
|
2
|
Jia PP, Yang YF, Junaid M, Jia HJ, Li WG, Pei DS. Bacteriophage-based techniques for elucidating the function of zebrafish gut microbiota. Appl Microbiol Biotechnol 2023; 107:2039-2059. [PMID: 36847856 DOI: 10.1007/s00253-023-12439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 03/01/2023]
Abstract
Bacteriophages (or phages) are unique viruses that can specifically infect bacteria. Since their discovery by Twort and d'Herelle, phages with bacterial specificity have played important roles in microbial regulation. The intestinal microbiota and host health are intimately linked with nutrient, metabolism, development, and immunity aspects. However, the mechanism of interactions between the composition of the microbiota and their functions in maintaining host health still needs to be further explored. To address the lack of methodology and functions of intestinal microbiota in the host, we first proposed that, with the regulations of special intestinal microbiota and applications of germ-free (GF) zebrafish model, phages would be used to infect and reduce/eliminate the defined gut bacteria in the conventionally raised (CR) zebrafish and compared with the GF zebrafish colonized with defined bacterial strains. Thus, this review highlighted the background and roles of phages and their functional characteristics, and we also summarized the phage-specific infection of target microorganisms, methods to improve the phage specificity, and their regulation within the zebrafish model and gut microbial functional study. Moreover, the primary protocol of phage therapy to control the intestinal microbiota in zebrafish models from larvae to adults was recommended including phage screening from natural sources, identification of host ranges, and experimental design in the animal. A well understanding of the interaction and mechanism between phages and gut bacteria in the host can potentially provide powerful strategies or techniques for preventing bacteria-related human diseases by precisely regulating in vitro and in vivo, which will provide novel insights for phages' application and combined research in the future. KEY POINTS: • Zebrafish models for clarifying the microbial and phages' functions were discussed • Phages infect host bacteria with exquisite specificity and efficacy • Phages can reduce/eliminate the defined gut bacteria to clarify their function.
Collapse
Affiliation(s)
- Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Yi-Fan Yang
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region On Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Huang-Jie Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Wei-Guo Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Novel Virulent Bacteriophage ΦSG005, Which Infects Streptococcus gordonii, Forms a Distinct Clade among Streptococcus Viruses. Viruses 2021; 13:v13101964. [PMID: 34696394 PMCID: PMC8537203 DOI: 10.3390/v13101964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022] Open
Abstract
Bacteriophages are viruses that specifically infect bacteria and are classified as either virulent phages or temperate phages. Despite virulent phages being promising antimicrobial agents due to their bactericidal effects, the implementation of phage therapy depends on the availability of virulent phages against target bacteria. Notably, virulent phages of Streptococcus gordonii, which resides in the oral cavity and is an opportunistic pathogen that can cause periodontitis and endocarditis have previously never been found. We thus attempted to isolate virulent phages against S. gordonii. In the present study, we report for the first time a virulent bacteriophage against S. gordonii, ΦSG005, discovered from drainage water. ΦSG005 is composed of a short, non-contractile tail and a long head, revealing Podoviridae characteristics via electron microscopic analysis. In turbidity reduction assays, ΦSG005 showed efficient bactericidal effects on S. gordonii. Whole-genome sequencing showed that the virus has a DNA genome of 16,127 bp with 21 coding sequences. We identified no prophage-related elements such as integrase in the ΦSG005 genome, demonstrating that the virus is a virulent phage. Phylogenetic analysis indicated that ΦSG005 forms a distinct clade among the streptococcus viruses and is positioned next to streptococcus virus C1. Molecular characterization revealed the presence of an anti-CRISPR (Acr) IIA5-like protein in the ΦSG005 genome. These findings facilitate our understanding of streptococcus viruses and advance the development of phage therapy against S. gordonii infection.
Collapse
|