1
|
Wang M, Chen L, Zhang Z, Wang Q. Recent advances in genome mining and synthetic biology for discovery and biosynthesis of natural products. Crit Rev Biotechnol 2025; 45:236-256. [PMID: 39134459 DOI: 10.1080/07388551.2024.2383754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/28/2023] [Accepted: 07/13/2024] [Indexed: 12/17/2024]
Abstract
Natural products have long served as critical raw materials in chemical and pharmaceutical manufacturing, primarily which can provide superior scaffolds or intermediates for drug discovery and development. Over the last century, natural products have contributed to more than a third of therapeutic drug production. However, traditional methods of producing drugs from natural products have become less efficient and more expensive over the past few decades. The combined utilization of genome mining and synthetic biology based on genome sequencing, bioinformatics tools, big data analytics, genetic engineering, metabolic engineering, and systems biology promises to counter this trend. Here, we reviewed recent (2020-2023) examples of genome mining and synthetic biology used to resolve challenges in the production of natural products, such as less variety, poor efficiency, and low yield. Additionally, the emerging efficient tools, design principles, and building strategies of synthetic biology and its application prospects in NPs synthesis have also been discussed.
Collapse
Affiliation(s)
- Mingpeng Wang
- School of Life Sciences, Qufu Normal University, Qufu, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Lei Chen
- School of Life Sciences, Qufu Normal University, Qufu, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of WY, Laramie, Laramie, WY, USA
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
2
|
Zhang Y, Feng L, Hemu X, Tan NH, Wang Z. OSMAC Strategy: A promising way to explore microbial cyclic peptides. Eur J Med Chem 2024; 268:116175. [PMID: 38377824 DOI: 10.1016/j.ejmech.2024.116175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Microbial secondary metabolites are pivotal for the development of novel drugs. However, conventional culture techniques, have left a vast array of unexpressed biosynthetic gene clusters (BGCs) in microorganisms, hindering the discovery of metabolites with distinct structural features and diverse biological functions. To address this limitation, several innovative strategies have been emerged. The "One Strain Many Compounds" (OSMAC) strategy, which involves altering microbial culture conditions, has proven to be particularly effective in mining numerous novel secondary metabolites for the past few years. Among these, microbial cyclic peptides stand out. These peptides often comprise rare amino acids, unique chemical structures, and remarkable biological function. With the advancement of the OSMAC strategy, a plethora of new cyclic peptides have been identified from diverse microbial genera. This work reviews the progress in mining novel compounds using the OSMAC strategy and the applications of this strategy in discovering 284 microbial cyclic peptides from 63 endophytic strains, aiming to offer insights for the further explorations into novel active cyclic peptides.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xinya Hemu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ning-Hua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zhe Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
3
|
Luo C, Chen M, Luo K, Yin X, Onchari MM, Wang X, Zhang J, Zhong H, Tian B. Genome Sequencing and Genetic Engineering Reveal the Contribution of Bacitracin Produced by Bacillus paralicheniformis CPL618 to Anti-Staphylococcus aureus Activity. Curr Microbiol 2023; 80:135. [PMID: 36913050 DOI: 10.1007/s00284-023-03196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/19/2023] [Indexed: 03/14/2023]
Abstract
Staphylococcus aureus is one of the important pathogens causing human diseases, especially its treatment has great challenges due to its resistance to methicillin and vancomycin. The Bacillus strains are known to be major sources of second metabolites that can function as drugs. Therefore, it is of great value to excavate metabolites with good inhibitory activity against S. aureus from Bacillus strains. In this study, a strain Bacillus paralicheniformis CPL618 with good antagonistic activity against S. aureus was isolated and genome analysis showed that the size was 4,447,938 bp and contained four gene clusters fen, bac, dhb, and lch which are potentially responsible for four cyclic peptides fengycin, bacitracin, bacillibactin, and lichenysin biosynthesis, respectively. These gene clusters were knockout by homologous recombination. The bacteriostatic experiment results showed that the antibacterial activity of ∆bac decreased 72.3% while Δfen, Δdhb, and ΔlchA did not significantly changed as that of wild type. Interestingly, the maximum bacitracin yield was up to 92 U/mL in the LB medium, which was extremely unusual in wild type strains. To further improve the production of bacitracin, transcription regulators abrB and lrp were knocked out, the bacitracin produced by ΔabrB, Δlrp, and ΔabrB + lrp was 124 U/mL, 112 U/mL, and 160 U/ml, respectively. Although no new anti-S. aureus compounds was found by using genome mining in this study, the molecular mechanisms of high yield of bacitracin and anti-S. aureus in B. paralicheniformis CPL618 were clarified. Moreover, B. paralicheniformis CPL618 was further genetically engineered for industrial production of bacitracin.
Collapse
Affiliation(s)
- Chuping Luo
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China.
| | - Meilin Chen
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China
| | - Kecheng Luo
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China
| | - Xiulian Yin
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Mary M Onchari
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China
| | - Xiaohua Wang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China
| | - Jinfeng Zhang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China
| | - Haijing Zhong
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China
| | - Baoxia Tian
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
4
|
Park HS, Park JH, Kim HJ, Kang SH, Choi SS, Kim ES. BAC cloning and heterologous expression of a giant biosynthetic gene cluster encoding antifungal neotetrafibricin in streptomyces rubrisoli. Front Bioeng Biotechnol 2022; 10:964765. [PMID: 36046673 PMCID: PMC9421130 DOI: 10.3389/fbioe.2022.964765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Polyene natural products including nystatin A1, amphotericin B, ECO-02301, and mediomycin belong to a large family of valuable antifungal polyketide compounds typically produced by soil actinomycetes. A previous study (Park et al., Front. Bioeng. Biotechnol., 2021, 9, 692340) isolated Streptomyces rubrisoli Inha501 with strong antifungal activity and analyzed a large-sized biosynthetic gene cluster (BGC) of a linear polyene compound named Inha-neotetrafibricin (I-NTF) using whole genome sequencing and bioinformatics. In the present study, an entire I-NTF BGC (∼167 kb) was isolated through construction and screening of Streptomyces BAC library. Overexpression of the cloned I-NTF BGC in the wild-type S. rubrisoli Inha501 and its heterologous expression in S. lividans led to 2.6-fold and 2.8-fold increase in I-NTF yields, respectively. The qRT-PCR confirmed that the transcription levels of I-NTF BGC were significantly increased in both homologous and heterologous hosts containing the BAC integration of I-NTF BGC. In addition, the I-NTF aglycone-producing strains were constructed by a target-specific deletion of glycosyltransferase gene present in I-NTF BGC. A comparison of the in vitro biological activities of I-NTF and I-NTF aglycone confirmed that the rhamnose sugar motif of I-NTF plays a critical role in both antifungal and antibacterial activities. These results suggest that the Streptomyces BAC cloning of a large-sized natural product BGC is a valuable approach for natural product titer improvement and biological activity screening of natural product in actinomycetes.
Collapse
|
5
|
Guo X, Chen F, Liu J, Shao Y, Wang X, Zhou Y. Genome Mining and Analysis of PKS Genes in Eurotium cristatum E1 Isolated from Fuzhuan Brick Tea. J Fungi (Basel) 2022; 8:193. [PMID: 35205947 PMCID: PMC8874483 DOI: 10.3390/jof8020193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/04/2022] Open
Abstract
Eurotium cristatum as the dominant fungi species of Fuzhuan brick tea in China, can produce multitudinous secondary metabolites (SMs) with various bioactivities. Polyketides are a very important class of SMs found in E. cristatum and have gained extensive attention in recent years due to their remarkable diversity of structures and multiple functions. Therefore, it is necessary to explore the polyketides produced by E. cristatum at the genomic level to enhance its application value. In this paper, 12 polyketide synthase (PKS) genes were found in the whole genome of E. cristatum E1 isolated from Fuzhuan brick tea. In addition, the qRT-PCR results further demonstrated that these genes were expressed. Moreover, metabolic analysis demonstrated E. cristatum E1 can produce a variety of polyketides, including citreorosein, emodin, physcion, isoaspergin, dihydroauroglaucin, iso-dihydroauroglaucin, aspergin, flavoglaucin and auroglaucin. Furthermore, based on genomic analysis, the putative secondary metabolites clusters for emodin and flavoglaucin were proposed. The results reported here will lay a good basis for systematically mining SMs resources of E. cristatum and broadening its application fields.
Collapse
Affiliation(s)
- Xiaoxiao Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.G.); (F.C.); (Y.S.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Fusheng Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.G.); (F.C.); (Y.S.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiao Liu
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan 430064, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.G.); (F.C.); (Y.S.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.G.); (F.C.); (Y.S.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Youxiang Zhou
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan 430064, China
| |
Collapse
|