1
|
Silva SA, Duarte MS, Amaral AL, Ferreira EC, Alves MM, Mesquita DP. Monitoring the stability of aerobic granular sludge under increasing fractions of slowly biodegradable substrate using quantitative image analysis. CHEMOSPHERE 2025; 374:144233. [PMID: 39983625 DOI: 10.1016/j.chemosphere.2025.144233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/27/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
This work investigates the effects of increasing fraction of slowly biodegradable chemical oxygen demand (sbCOD) on the morphology, stability, and performance of aerobic granular sludge (AGS) used for wastewater treatment. A sequencing batch reactor (SBR) was supplied with synthetic wastewater containing acetate as readily biodegradable COD (rbCOD) and increasing concentrations of oleate as slowly biodegradable carbon source. The sbCOD fraction was gradually increased, reaching up to 50% of the total influent biodegradable COD (bCOD). Quantitative image analysis (QIA) revealed a significant shift in granule morphology and size distribution due to increasing sbCOD fractions. Larger granules (Deq >1.0 mm) become predominant due to the washout of smaller granules (Deq <1.0 mm), which evidenced deterioration in several structural parameters. In contrary, larger granules maintained stable compactness, robustness, and extent. These morphological and size distribution changes were concomitant with variations in reactor performance: total inorganic nitrogen (TIN) removal efficiency improved up to 94%, due to enhanced denitrification capacity, supported by the predominance of larger granules and increase in granules size at higher sbCOD fractions. In contrast, P-PO43- removal efficiency declined, associated with the leakage of rbCOD to the aerobic phase, filamentous growth, and deteriorated sludge settling properties. These findings highlight the complex interactions between oleate characteristics, AGS morphology, and reactor performance, emphasizing the need for optimized strategies to mitigate process instability in AGS systems treating lipid-rich wastewater, ensuring sustainable and efficient wastewater treatment in real-world applications.
Collapse
Affiliation(s)
- Sérgio A Silva
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - M Salomé Duarte
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - António L Amaral
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal; Research Centre for Natural Resources Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Bencanta, 3045 - 601, Coimbra, Portugal
| | - Eugénio C Ferreira
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - M Madalena Alves
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Daniela P Mesquita
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
2
|
Derakhshesh S, Abdollahzadeh Sharghi E, Bonakdarpour B. Enhancing the anaerobic sludge characteristics and inorganic impurities removal from synthesis wastewater through integration of electrocoagulation process with up-flow anaerobic sludge blanket reactor. Bioprocess Biosyst Eng 2025; 48:233-245. [PMID: 39585372 DOI: 10.1007/s00449-024-03104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024]
Abstract
The present study investigated effects of coupling electrocoagulation (EC) process with an anaerobic digestion bioreactor, namely up-flow anaerobic sludge blanket (UASB), for the synthetic wastewater treatment. The EC-UASB mode of operation consisted of one anode and two cathodes subjected to an intermittent electrical current (10 min ON/30 min OFF) with current density of 1.5 mA/cm2. In light of this integration, the concentration of mixed liquor suspended solids and mixed liquor volatile suspended solids within anaerobic granular sludge (AGS) increased by 20.0 ± 1.4% and 12.8 ± 0.8%, respectively. The results of sludge volume index, loosely and tightly bound extracellular polymeric substances and their constituents (protein and carbohydrate) revealed that through this integration the quality of AGS has been improved. Furthermore, results of scanning electron microscopy and Fourier-transform infrared spectroscopy showed alteration in the morphology and functional groups of AGS, respectively. Additionally, this combination has demonstrated promising results in terms of performance improvement by increasing the removal efficiency of total dissolved solids by 12.1 ± 0.3% and reducing the ionic pollution in treated wastewater. However, the integration of the EC system within the UASB resulted in energy consumption and operating cost of 1.33 kWh/m3 and 0.099 USD/m3, respectively.
Collapse
Affiliation(s)
- Saeed Derakhshesh
- Chemical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | | | - Babak Bonakdarpour
- Chemical Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| |
Collapse
|
3
|
Bodle KB, Kirkland CM. Pharmaceutical impacts on aerobic granular sludge morphology and potential implications for abiotic removal. CHEMOSPHERE 2024; 350:141187. [PMID: 38211794 PMCID: PMC10843683 DOI: 10.1016/j.chemosphere.2024.141187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
The goal of this study was to investigate abiotic pharmaceutical removal and abiotic pharmaceutical effects on aerobic granular sludge morphology. For 80 days, a pharmaceutical mixture containing approximately 150 μg/L each of diclofenac, erythromycin, and gemfibrozil was fed to an aerobic granular sludge sequencing batch reactor and granule characteristics were compared with those from a control reactor. Aqueous and solid phase pharmaceutical concentrations were monitored and staining was used to assess changes in biofilm structures. Solid phase pharmaceutical concentrations were elevated over the first 12 days of dosing; however, they then dropped, indicative of desorption. The lipid content in pharmaceutical-exposed granules declined by approximately half over the dosing period, though the relative concentrations of other key biofilm components (proteins, alpha-, and beta-polysaccharides) did not change. Batch experiments were conducted to try to find an explanation for the desorption observed, but reduced solid phase pharmaceutical concentrations could not be linked with the presence of common wastewater constituents such as ammonia or phosphate. Sorption of all three compounds was modeled best by the Henry isotherm, indicating that, even at 150 μg/L, granules' sorption site coverage was incomplete. Altogether, this study demonstrates that simplified batch systems may not accurately represent the complex abiotic processes occurring in flow-through, biotic systems.
Collapse
Affiliation(s)
- Kylie B Bodle
- Department of Civil Engineering, 205 Cobleigh Hall, Montana State University, Bozeman, MT, USA; Center for Biofilm Engineering, 366 Barnard Hall, Montana State University, Bozeman, MT, USA.
| | - Catherine M Kirkland
- Department of Civil Engineering, 205 Cobleigh Hall, Montana State University, Bozeman, MT, USA; Center for Biofilm Engineering, 366 Barnard Hall, Montana State University, Bozeman, MT, USA
| |
Collapse
|
4
|
Sethi S, Gupta R, Bharshankh A, Sahu R, Biswas R. Celebrating 50 years of microbial granulation technologies: From canonical wastewater management to bio-product recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162213. [PMID: 36796691 DOI: 10.1016/j.scitotenv.2023.162213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/27/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Microbial granulation technologies (MGT) in wastewater management are widely practised for more than fifty years. MGT can be considered a fine example of human innovativeness-driven nature wherein the manmade forces applied during operational controls in the biological process of wastewater treatment drive the microbial communities to modify their biofilms into granules. Mankind, over the past half a century, has been refining the knowledge of triggering biofilm into granules with some definite success. This review captures the journey of MGT from inception to maturation providing meaningful insights into the process development of MGT-based wastewater management. The full-scale application of MGT-based wastewater management is discussed with an understanding of functional microbial interactions within the granule. The molecular mechanism of granulation through the secretion of extracellular polymeric substances (EPS) and signal molecules is also highlighted in detail. The recent research interest in the recovery of useful bioproducts from the granular EPS is also emphasized.
Collapse
Affiliation(s)
- Shradhanjali Sethi
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh 201002, India; Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Rohan Gupta
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Ankita Bharshankh
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh 201002, India; Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Rojalin Sahu
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh 201002, India; Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Rima Biswas
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh 201002, India; Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India.
| |
Collapse
|
5
|
Poelmans S, Dockx L, Seguel Suazo K, Goettert D, Dries J. Implementation of an anaerobic selector step for the densification of activated sludge treating high-salinity petrochemical wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:823-833. [PMID: 36853764 DOI: 10.2166/wst.2023.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sludge bulking is a common challenge in industrial biological wastewater treatment. Leading to difficulties such as bad sludge settling and washout, which is a problem also encountered in the petrochemical industry. Anaerobic feeding strategies can be used to induce the growth of storage-capable organisms, such as glycogen-accumulating organisms (GAO), leading to denser sludge flocs and better settling. In this study, the implementation of an anaerobic feeding strategy was investigated for high-salinity petrochemical wastewater (±35 g salts·L-1), using a sequencing batch reactor. Influent, effluent and sludge characteristics were analyzed throughout the operational period, which can be divided into three stages: I (normal operation), II (increased influent volume) and III (longer anaerobic mixing). Good effluent quality was observed during all stages with effluent chemical oxygen demand (COD) < 100 mgO2·L-1 and removal efficiencies of 95%. After 140 days, the sludge volume index decreased below 100 mL·g-1 reaching the threshold of good settling sludge. Sludge morphology clearly improved, with dense sludge flocs and less filaments being present. A maximum anaerobic dissolved oxygen carbon (DOC) uptake was achieved on day 80 with 74% during stage III. 16S rRNA amplicon sequencing showed the presence of GAOs, with increasing relative read abundance over time from 1 to 3.5%.
Collapse
Affiliation(s)
- Sven Poelmans
- Faculty of Applied Engineering, Research Group Biochemical Wastewater Valorization and Engineering (BioWAVE), University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium E-mail:
| | - Lennert Dockx
- Faculty of Applied Engineering, Research Group Biochemical Wastewater Valorization and Engineering (BioWAVE), University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium E-mail:
| | - Karina Seguel Suazo
- Faculty of Applied Engineering, Research Group Biochemical Wastewater Valorization and Engineering (BioWAVE), University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium E-mail:
| | - Dorothee Goettert
- Faculty of Applied Engineering, Research Group Biochemical Wastewater Valorization and Engineering (BioWAVE), University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium E-mail:
| | - Jan Dries
- Faculty of Applied Engineering, Research Group Biochemical Wastewater Valorization and Engineering (BioWAVE), University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium E-mail:
| |
Collapse
|
6
|
Banu JR, Kumar G, Gunasekaran M. Augmentation in polyhydroxybutyrate and biogas production from waste activated sludge through mild sonication induced thermo-fenton disintegration. BIORESOURCE TECHNOLOGY 2023; 369:128376. [PMID: 36414138 DOI: 10.1016/j.biortech.2022.128376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
In this study, an innovative approach was developed to enhance the hydrolysis through phase-separated pretreatment by removing exopolymeric substances via mild sonication followed by thermo-Fenton disintegration. The exopolymeric substances fragmentation was enhanced at the sonic specific energy input of 2.58 kJ/kg total solids. After exopolymeric substance removal, the disintegration of biomass by thermo-Fenton yield the solubilization of 29.8 % at Fe2+:H2O2 dosage and temperature of 0.009:0.036 g/g suspended solids and 80 °C as compared to thermo-Fenton alone disintegration. The polyhydroxybutyrate content of 93.1 % was accumulated by Bacillus aryabhattai at the optimum time of 42 h, while providing 70 % (v/v) pre-treated supernatant as a carbon source under nutrient-limiting condition. Moreover, the biogas generation of 0.187 L/g chemical oxygen demand was achieved using settled pretreated sludge. The pretreated sludge sample thus served as a carbon source for polyhydroxybutyrate producers as well as substrate for biogas production.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610005, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - M Gunasekaran
- Department of Physics, Anna University Regional Campus, Tirunelveli, TamilNadu 627007, India.
| |
Collapse
|
7
|
Toja Ortega S, van den Berg L, Pronk M, de Kreuk MK. Hydrolysis capacity of different sized granules in a full-scale aerobic granular sludge (AGS) reactor. WATER RESEARCH X 2022; 16:100151. [PMID: 35965888 PMCID: PMC9364025 DOI: 10.1016/j.wroa.2022.100151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
In aerobic granular sludge (AGS) reactors, granules of different sizes coexist in a single reactor. Their differences in settling behaviour cause stratification in the settled granule bed. In combination with substrate concentration gradients over the reactor height during the anaerobic plug-flow feeding regime, this can result in functional differences between granule sizes. In this study, we compared the hydrolytic activity in granules of 4 size ranges (between 0.5 and 4.8 mm diameter) collected from a full-scale AGS installation. Protease and amylase activities were quantified through fluorescent activity assays. To visualise where the hydrolytic active zones were located within the granules, the hydrolysis sites were visualized microscopically after incubating intact and sliced granules with fluorescent casein and starch. The microbial community was studied using fluorescent in situ hybridization (FISH) and sequencing. The results of these assays indicated that hydrolytic capacity was present throughout the granules, but the hydrolysis of bulk substrates was restricted to the outer 100 µm, approximately. Many of the microorganisms studied by FISH, such as polyphosphate and glycogen accumulating organisms (PAO and GAO), were abundant in the vicinity of the hydrolytically active sites. The biomass-specific hydrolysis rate depended mainly on the available granule surface area, suggesting that different sized granules are not differentiated in terms of hydrolytic capacity. Thus, the substrate concentration gradients that are present during the anaerobic feeding in AGS reactors do not seem to affect hydrolytic activity at the granule surfaces. In this paper, we discuss the possible reasons for this and reflect about the implications for AGS technology.
Collapse
Key Words
- AGS, aerobic granular sludge
- AS, activated sludge
- Activity staining
- Aerobic granular sludge
- Biomass segregation
- COD, chemical oxygen demand
- EBPR, enhanced biological phosphorus removal
- EPS, extracellular polymeric substances
- FISH, fluorescence in situ hybridization
- GAO, glycogen-accumulating organism
- Hydrolysis
- PAO, polyphosphate-accumulating organism
- Polymeric substrates
- SBR, sequencing batch reactor
- SND, simultaneous nitrification-denitrification
- SRT, solids retention time
- TSS, total suspended solids
- VFA, volatile fatty acid
- VSS, volatile suspended solids
- WWTP, wastewater treatment plant
- Wastewater treatment
Collapse
Affiliation(s)
- Sara Toja Ortega
- Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, Delft 2628CN, the Netherlands
| | - Lenno van den Berg
- Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, Delft 2628CN, the Netherlands
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ 2629, the Netherlands
- Royal HaskoningDHV, Laan 1914 35, Amersfoort, AL 3800, the Netherlands
| | - Merle K. de Kreuk
- Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, Delft 2628CN, the Netherlands
| |
Collapse
|
8
|
van Dijk EJH, Haaksman VA, van Loosdrecht MCM, Pronk M. On the mechanisms for aerobic granulation - model based evaluation. WATER RESEARCH 2022; 216:118365. [PMID: 35413626 DOI: 10.1016/j.watres.2022.118365] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
In this study a mathematical framework was developed to describe aerobic granulation based on 6 main mechanisms: microbial selection, selective wasting, maximizing transport of substrate into the biofilm, selective feeding, substrate type and breakage. A numerical model was developed using four main components; a 1D convection/dispersion model to describe the flow dynamics in a reactor, a reaction/diffusion model describing the essential conversions for granule growth, a setting model to track granules during settling and feeding, and a population model containing up to 100,000 clusters of granules to model the stochastic behaviour of the granulation process. With this approach the model can explain the dynamics of the granulation process observed in practice. This includes the presence of a lag phase and a granulation phase. Selective feeding was identified as an important mechanism that was not yet reported in literature. When aerobic granules are grown from activated sludge flocs, a lag phase occurs, in which not many granules are formed, followed by a granulation phase in which granules rapidly appear. The ratio of granule forming to non-granule forming substrate together with the feast/famine ratio determine if the transition from the lag phase to the granulation phase is successful. The efficiency of selective wasting and selective feeding both determine the rate of this transition. Brake-up of large granules into smaller well settling particles was shown to be an important source for new granules. The granulation process was found to be the combined result from all 6 mechanisms and if conditions for either one are not optimal, other mechanisms can, to some extent, compensate. This model provides a theoretical framework to analyse the different relevant mechanisms for aerobic granular sludge formation and can form the basis for a comprehensive model that includes detailed nutrient removal aspects.
Collapse
Affiliation(s)
- Edward J H van Dijk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands; Royal HaskoningDHV, Laan1914 35, Amersfoort 3800 AL, the Netherlands.
| | - Viktor A Haaksman
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands; Royal HaskoningDHV, Laan1914 35, Amersfoort 3800 AL, the Netherlands
| |
Collapse
|
9
|
Effect of an Increased Particulate COD Load on the Aerobic Granular Sludge Process: A Full Scale Study. Processes (Basel) 2021. [DOI: 10.3390/pr9081472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
High concentrations of particulate COD (pCOD) in the influent of aerobic granular sludge (AGS) systems are often associated to small granule diameter and a large fraction of flocculent sludge. At high particulate concentrations even granule stability and process performance might be compromised. However, pilot- or full-scale studies focusing on the effect of real wastewater particulates on AGS are scarce. This study describes a 3-month period of increased particulate loading at a municipal AGS wastewater treatment plant. The pCOD concentration of the influent increased from 0.5 g COD/L to 1.3 g COD/L, by adding an untreated slaughterhouse wastewater source to the influent. Sludge concentration, waste sludge production and COD and nutrient removal performance were monitored. Furthermore, to investigate how the sludge acclimatises to a higher influent particulate content, lipase and protease hydrolytic activities were studied, as well as the microbial community composition of the sludge. The composition of the granule bed and nutrient removal efficiency did not change considerably by the increased pCOD. Interestingly, the biomass-specific hydrolytic activities of the sludge did not increase during the test period either. However, already during normal operation the aerobic granules and flocs exhibited a hydrolytic potential that exceeded the influent concentrations of proteins and lipids. Microbial community analysis also revealed a high proportion of putative hydrolysing and fermenting organisms in the sludge, both during normal operation and during the test period. The results of this study highlight the robustness of the full-scale AGS process, which can bear a substantial increase in the influent pCOD concentration during an extended period.
Collapse
|