1
|
Uehara A, Maekawa M, Sakamoto Y, Nakagawa K. Agglutination of Escherichia coli, Clostridium perfringens, and Salmonella enterica through competitive exclusion using potassium chloride with gum arabic. Int Microbiol 2024:10.1007/s10123-024-00625-4. [PMID: 39738815 DOI: 10.1007/s10123-024-00625-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
Bacterial infections causing necrotic enteritis and diarrhea pose a considerable economic loss to the animal industry. Using mannose oligosaccharides as competitive exclusion agents is an alternative method to antibiotic growth promoters; however, these materials are rapidly metabolized by gut microbiota, posing a challenge in sustaining their efficacy. The aim of this study was to identify an agglutination material that is effective against pathogens. Polysaccharides and salts were assessed using agglutination assays, microscopy, and zeta potential analysis. Gum arabic (GA) demonstrated strong agglutination against Escherichia coli and Salmonella enterica. Potassium chloride altered the cell form of Clostridium perfringens from rod-like to coccoid. When combined with GA, KCl effectively agglutinated all three bacterial species tested. Zeta potential analysis showed that agglutination resulted from bacteria, GA, and KCl interactions. Among various salts mixed with GA, KCl was found to strongly agglutinate C. perfringens upon its change into the coccoid form. Moreover, this combination has been shown to agglutinate mixtures of pathogens, such as C. perfringens and S. enterica. Thus, a combination of GA and KCl offers a potential solution to combat the pathogens associated with necrotic enteritis and diarrhea in animals.
Collapse
Affiliation(s)
- Akinori Uehara
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-Cho, Kawasaki-Ku, Kawasaki City, Kanagawa Prefecture, 210-8681, Japan.
| | - Mayumi Maekawa
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-Cho, Kawasaki-Ku, Kawasaki City, Kanagawa Prefecture, 210-8681, Japan
| | - Yasuteru Sakamoto
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-Cho, Kawasaki-Ku, Kawasaki City, Kanagawa Prefecture, 210-8681, Japan
| | - Kazuki Nakagawa
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-Cho, Kawasaki-Ku, Kawasaki City, Kanagawa Prefecture, 210-8681, Japan
| |
Collapse
|
2
|
Gan H, Lin Q, Xiao Y, Tian Q, Deng C, Xie R, Li H, Ouyang J, Huang X, Shan Y, Chen F. Effects of Fructus Aurantii Extract on Growth Performance, Nutrient Apparent Digestibility, Serum Parameters, and Fecal Microbiota in Finishing Pigs. Animals (Basel) 2024; 14:3646. [PMID: 39765550 PMCID: PMC11672857 DOI: 10.3390/ani14243646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/30/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
This study investigated the effects of Fructus Aurantii extract (FAE) on growth performance, nutrient apparent digestibility, serum parameters, fecal microbial composition, and short-chain fatty acids (SCFAs) in finishing pigs. In total, 75 Duroc × Landrace × Yorkshire pigs (equally divided by sex), with an initial body weight of 79.49 ± 4.27 kg, were randomly assigned to three treatment groups. The pigs were fed either a basic diet (CON) or a basal diet supplemented with 500 mg/kg of FAE (FAE500) and 1000 mg/kg of FAE (FAE1000). The FAE1000 group exhibited a significantly higher final body weight (FBW) (p < 0.05), and the average daily feed intake (ADFI) showed an increasing tendency in the FAE500 and FAE1000 groups (p = 0.056) compared to the CON group. Additionally, the inclusion of FAE resulted in the significantly higher apparent digestibility of crude ash (Ash), gross energy (GE), and crude protein (CP) (p < 0.05), with a tendency to the increased digestibility of dry matter (DM) (p = 0.053). Dietary FAE supplementation led to elevated serum levels of reduced glutathione (GSH) and decreased levels of serum L-lactic dehydrogenase (LDH), along with a tendency to increase serum glucose (GLU) levels (p = 0.084). The FAE500 group demonstrated higher serum concentrations of motilin (MTL) and gastrin (GAS) (p < 0.05), and a tendency for reduced serum glucagon-like peptide-1 (GLP-1) level (p = 0.055) compared to the CON group. Furthermore, alpha diversity analysis revealed that the FAE500 group significantly increased the Chao 1 and Observed_species indexes (p < 0.05). Similarly, beta diversity analysis indicated that FAE feeding altered the fecal microbial structure (p = 0.083). Notably, compared with the control group, CF231, Pediococcus, and Mogibacterium displayed higher relative abundance in the feces of the FAE500 group, whereas Tenericutes showed a reduction in relative abundance (p < 0.05). Additionally, the relative abundance of Tenericute was negatively correlated with the digestibility of DM, GE, Ash, and CP (p < 0.05). Serum MTL and GAS levels correlated positively with the Coprococcus, Dorea, Pediococcus, and Mogibacterium relative abundances (p < 0.05). Collectively, dietary FAE supplementation could enhance growth performance by boosting beneficial bacteria in feces, stimulating gastrointestinal hormone secretion, and improving nutrient digestibility.
Collapse
Affiliation(s)
- Haiqing Gan
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (H.G.)
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Yecheng Xiao
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (H.G.)
| | - Qiyu Tian
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chao Deng
- Hunan Biological Electromechanical Vocational Technical College, Changsha 410127, China
| | - Renjie Xie
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Hongkun Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jiajie Ouyang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yang Shan
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (H.G.)
| | - Fengming Chen
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (H.G.)
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| |
Collapse
|
3
|
Chen QY, Hu QY, Jiang WD, Wu P, Liu Y, Ren HM, Jin XW, Feng L, Zhou XQ. Exploring the Potential of Isalo Scorpion Cytotoxic Peptide in Enhancing Gill Barrier Function and Immunity in Grass Carp ( Ctenopharyngodon idella) Infected with Flavobacterium columnare. AQUACULTURE NUTRITION 2024; 2024:8059770. [PMID: 39555537 PMCID: PMC11300071 DOI: 10.1155/2024/8059770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/06/2024] [Accepted: 06/14/2024] [Indexed: 11/19/2024]
Abstract
The objective of this research was to investigate how dietary antimicrobial peptides (AMP), namely, Isalo scorpion cytotoxic peptide (IsCT), affect the gill physical barrier function and immune function of grass carp challenged with Flavobacterium columnare (F. columnare). Five hundred forty grass carp were randomly allocated to six groups and fed to varying levels of IsCT in the diet (0, 0.6, 1.2, 1.8, 2.4, and 3.0 mg/kg diet) for a duration of 60 days. Afterward, the grass carps faced a challenge from F. columnare. The results revealed that the use of optimal IsCT dramatically mitigated gill damage in grass carp that were infected with F. columnare. Additionally, IsCT exhibited a notable enhancement in gill antioxidant capabilities, as evidenced by a significant reduction in ROS, MDA, and PC levels, an elevation in antioxidant enzyme activities, and an upregulation of antioxidant-related genes and Nrf2 mRNA levels. Conversely, the expression of Keap1a and Keap1b mRNA was decreased. Besides, IsCT exhibited its capability to inhibit apoptosis via downregulating the mRNA levels of caspase-2, caspase-3, caspase-7, caspase-8, caspase-9, Apaf1, Fasl, Bax, and JNK while concurrently increasing the mRNA levels of Bcl-2, Mcl-1, and IAP in fish gills. Additionally, IsCT promoted the integrity of tight junction barrier by increasing the gene expression of claudin-b, claudin-c, claudin-3c, ZO-1, ZO-2b, occludin, and JAM while suppressing MLCK signaling. Additionally, optimal dietary IsCT improved antibacterial ability, as evidenced by heightened LZ, ACP activities, and elevated levels of C3, C4, and IgM. Additionally, there was an upregulation in β-defensin-1, LEAP-2A, LEAP-2B, hepcidin, and mucin-2 mRNA expression in the gills. Simultaneously, the inclusion of optimal dietary IsCT in the diet resulted in improved gill immunity barriers through the reduction of proinflammatory cytokine mRNA levels and the increase in the expression of anti-inflammatory cytokine mRNA levels. This was partly facilitated by the IκBa/NF-κB p65 signaling pathway and TOR/S6K1 signaling pathways in the gills of grass carp. Therefore, supplementing the diet with IsCT has potential advantages in enhancing gill health by improved physical barriers and immunity in grass carp. Based on LZ activity and against lipid peroxidation, optimum IsCT concentrations in on-growing grass carp (136.88 ± 0.72 g) were found to be 1.68 and 1.54 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Qiu-Yan Chen
- The Animal Nutrition InstituteSichuan Agricultural University, Chengdu 611130, China
| | - Qi-Yu Hu
- The Animal Nutrition InstituteSichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- The Animal Nutrition InstituteSichuan Agricultural University, Chengdu 611130, China
- University Key Laboratory of Sichuan Province of Fish Nutrition and Safety ProductionSichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant NutritionMinistry of Education, Chengdu 611130, China
| | - Pei Wu
- The Animal Nutrition InstituteSichuan Agricultural University, Chengdu 611130, China
- University Key Laboratory of Sichuan Province of Fish Nutrition and Safety ProductionSichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant NutritionMinistry of Education, Chengdu 611130, China
| | - Yang Liu
- The Animal Nutrition InstituteSichuan Agricultural University, Chengdu 611130, China
- University Key Laboratory of Sichuan Province of Fish Nutrition and Safety ProductionSichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant NutritionMinistry of Education, Chengdu 611130, China
| | - Hong-Mei Ren
- The Animal Nutrition InstituteSichuan Agricultural University, Chengdu 611130, China
- University Key Laboratory of Sichuan Province of Fish Nutrition and Safety ProductionSichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant NutritionMinistry of Education, Chengdu 611130, China
| | - Xiao-Wan Jin
- The Animal Nutrition InstituteSichuan Agricultural University, Chengdu 611130, China
- University Key Laboratory of Sichuan Province of Fish Nutrition and Safety ProductionSichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant NutritionMinistry of Education, Chengdu 611130, China
| | - Lin Feng
- The Animal Nutrition InstituteSichuan Agricultural University, Chengdu 611130, China
- University Key Laboratory of Sichuan Province of Fish Nutrition and Safety ProductionSichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance NutritionMinistry of EducationMinistry of Agriculture and Rural AffairsKey Laboratory of Sichuan Province, Sichuan 611130, China
| | - Xiao-Qiu Zhou
- The Animal Nutrition InstituteSichuan Agricultural University, Chengdu 611130, China
- University Key Laboratory of Sichuan Province of Fish Nutrition and Safety ProductionSichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance NutritionMinistry of EducationMinistry of Agriculture and Rural AffairsKey Laboratory of Sichuan Province, Sichuan 611130, China
| |
Collapse
|
4
|
Resende LM, de Oliveira Mello É, Zeraik AE, Oliveira APBF, Souza TAM, Taveira GB, Moreira FF, Seabra SH, Ferreira AT, Perales J, de Oliveira Carvalho A, Rodrigues R, Gomes VM. Defensin-like peptides from Capsicum chinense induce increased ROS, loss of mitochondrial functionality, and reduced growth of the fungus Colletotrichum scovillei. PEST MANAGEMENT SCIENCE 2024; 80:3567-3577. [PMID: 38459870 DOI: 10.1002/ps.8061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/09/2024] [Indexed: 03/11/2024]
Abstract
In the present study, we identified and characterized two defensin-like peptides in an antifungal fraction obtained from Capsicum chinense pepper fruits and inhibited the growth of Colletotrichum scovillei, which causes anthracnose. AMPs were extracted from the pericarp of C. chinense peppers and subjected to ion exchange, molecular exclusion, and reversed-phase in a high-performance liquid chromatography system. We investigated the endogenous increase in reactive oxygen species (ROS), the loss of mitochondrial functioning, and the ultrastructure of hyphae. The peptides obtained from the G3 fraction through molecular exclusion chromatography were subsequently fractionated using reverse-phase chromatography, resulting in the isolation of fractions F1, F2, F3, F4, and F5. The F1-Fraction suppressed C. scovillei growth by 90, 70.4, and 44% at 100, 50, and 25 μg mL-1, respectively. At 24 h, the IC50 and minimum inhibitory concentration were 21.5 μg mL-1 and 200 μg mL-1, respectively. We found an increase in ROS, which may have resulted in an oxidative burst, loss of mitochondrial functioning, and cytoplasm retraction, as well as an increase in autophagic vacuoles. MS/MS analysis of the F1-Fraction indicated the presence of two defensin-like proteins, and we were able to identify the expression of three defensin sequences in our C. chinense fruit extract. The F1-Fraction was also found to inhibit the activity of insect α-amylases. In summary, the F1-Fraction of C. chinense exhibits antifungal activity against a major pepper pathogen that causes anthracnose. These defensin-like compounds are promising prospects for further research into antifungal and insecticide biotechnology applications. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Larissa Maximano Resende
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Érica de Oliveira Mello
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Ana Eliza Zeraik
- Laboratório de Química e Função de Proteinas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Arielle Pinheiro Bessiati Fava Oliveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Thaynã Amanda Melo Souza
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Gabriel Bonan Taveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Felipe Figueiroa Moreira
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Sérgio Henrique Seabra
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | | | - Jonas Perales
- Laboratório de Toxinologia, Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Rosana Rodrigues
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| |
Collapse
|
5
|
Liang Q, Liu Z, Liang Z, Zhu C, Li D, Kong Q, Mou H. Development strategies and application of antimicrobial peptides as future alternatives to in-feed antibiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172150. [PMID: 38580107 DOI: 10.1016/j.scitotenv.2024.172150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
The use of in-feed antibiotics has been widely restricted due to the significant environmental pollution and food safety concerns they have caused. Antimicrobial peptides (AMPs) have attracted widespread attention as potential future alternatives to in-feed antibiotics owing to their demonstrated antimicrobial activity and environment friendly characteristics. However, the challenges of weak bioactivity, immature stability, and low production yields of natural AMPs impede practical application in the feed industry. To address these problems, efforts have been made to develop strategies for approaching the AMPs with enhanced properties. Herein, we summarize approaches to improving the properties of AMPs as potential alternatives to in-feed antibiotics, mainly including optimization of structural parameters, sequence modification, selection of microbial hosts, fusion expression, and industrially fermentation control. Additionally, the potential for application of AMPs in animal husbandry is discussed. This comprehensive review lays a strong theoretical foundation for the development of in-feed AMPs to achieve the public health globally.
Collapse
Affiliation(s)
- Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zhemin Liu
- Fundamental Science R&D Center of Vazyme Biotech Co. Ltd., Nanjing 210000, China
| | - Ziyu Liang
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
6
|
Abbas W, Bi R, Hussain MD, Tajdar A, Guo F, Guo Y, Wang Z. Antibiotic Cocktail Effects on Intestinal Microbial Community, Barrier Function, and Immune Function in Early Broiler Chickens. Antibiotics (Basel) 2024; 13:413. [PMID: 38786141 PMCID: PMC11117290 DOI: 10.3390/antibiotics13050413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
This study investigated the effects of an antibiotic cocktail on intestinal microbial composition, mechanical barrier structure, and immune functions in early broilers. One-day-old healthy male broiler chicks were treated with a broad-spectrum antibiotic cocktail (ABX; neomycin, ampicillin, metronidazole, vancomycin, and kanamycin, 0.5 g/L each) or not in drinking water for 7 and 14 days, respectively. Sequencing of 16S rRNA revealed that ABX treatment significantly reduced relative Firmicutes, unclassified Lachnospiraceae, unclassified Oscillospiraceae, Ruminococcus torques, and unclassified Ruminococcaceae abundance in the cecum and relative Firmicutes, Lactobacillus and Baccillus abundance in the ileum, but significantly increased richness (Chao and ACE indices) and relative Enterococcus abundance in the ileum and cecum along with relatively enriched Bacteroidetes, Proteobacteria, Cyanobacteria, and Enterococcus levels in the ileum following ABX treatment for 14 days. ABX treatment for 14 days also significantly decreased intestinal weight and length, along with villus height (VH) and crypt depth (CD) of the small intestine, and remarkably increased serum LPS, TNF-α, IFN-γ, and IgG levels, as well as intestinal mucosa DAO and MPO activity. Moreover, prolonged use of ABX significantly downregulated occludin, ZO-1, and mucin 2 gene expression, along with goblet cell numbers in the ileum. Additionally, chickens given ABX for 14 days had lower acetic acid, butyric acid, and isobutyric acid content in the cecum than the chickens treated with ABX for 7 days and untreated chickens. Spearman correlation analysis found that those decreased potential beneficial bacteria were positively correlated with gut health-related indices, while those increased potential pathogenic strains were positively correlated with gut inflammation and gut injury-related parameters. Taken together, prolonged ABX application increased antibiotic-resistant species abundance, induced gut microbiota dysbiosis, delayed intestinal morphological development, disrupted intestinal barrier function, and perturbed immune response in early chickens. This study provides a reliable lower-bacteria chicken model for further investigation of the function of certain beneficial bacteria in the gut by fecal microbiota transplantation into germ-free or antibiotic-treated chickens.
Collapse
Affiliation(s)
- Waseem Abbas
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100093, China; (W.A.); (R.B.); (F.G.); (Y.G.)
| | - Ruichen Bi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100093, China; (W.A.); (R.B.); (F.G.); (Y.G.)
| | - Muhammad Dilshad Hussain
- MARA-Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China;
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Alia Tajdar
- Key Laboratory of Insect Behavior and Harmless Management, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Fangshen Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100093, China; (W.A.); (R.B.); (F.G.); (Y.G.)
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100093, China; (W.A.); (R.B.); (F.G.); (Y.G.)
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100093, China; (W.A.); (R.B.); (F.G.); (Y.G.)
| |
Collapse
|
7
|
Uehara A, Maekawa M, Nakagawa K. Enhanced intestinal barrier function as the mechanism of antibiotic growth promoters in feed additives. Biosci Biotechnol Biochem 2023; 87:1381-1392. [PMID: 37704399 DOI: 10.1093/bbb/zbad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/31/2023] [Indexed: 09/15/2023]
Abstract
Antibiotic growth promoters (AGPs) are a cost-effective tool for improving livestock productivity. However, antimicrobial-resistant bacteria have emerged, and the search for alternatives to AGPs has consequently intensified. To identify these alternatives without the risk of the emergence of antimicrobial resistance, it is important to determine the mechanism of action of AGPs and, subsequently, search for compounds with similar properties. We investigated the antimicrobial and anti-inflammatory activities and intestinal barrier function of several AGPs using epithelial and immune cells. At the minimum administered dose of antibiotics, which effectively function as a growth promoter, the mechanism of action is to enhance the intestinal barrier function, but not the antimicrobial activity as determined using Dunnett's test (n = 3, P < .05). Inflammatory response was dependent on the combination of antibiotics (100 µmol/L) and immune cells. The results suggest that future studies should screen for nonantibiotic compounds that ameliorate intestinal barrier function.
Collapse
Affiliation(s)
- Akinori Uehara
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Mayumi Maekawa
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Kazuki Nakagawa
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| |
Collapse
|
8
|
Gao S, Zhang Q, Liu C, Shen H, Wang J. Effects of maggot antimicrobial peptides on growth performance, immune function, and cecal flora of yellow-feathered broilers. Front Vet Sci 2023; 10:1156964. [PMID: 37559887 PMCID: PMC10407657 DOI: 10.3389/fvets.2023.1156964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023] Open
Abstract
INTRODUCTION This study investigated the effects of maggot antimicrobial peptides on growth performance, blood parameters, immune organ index, and cecum microbial diversity in yellow broilers. METHODS The addition of 100-300 mg/kg maggots antimicrobial peptides to the corn-soybean meal basal diet was evaluated. Two hundred and forty one-day-old yellow-feathered broilers were randomly divided into four groups (60 chickens in each group): basal diet group (BC group), basal diet group + 100, 200, 300 mg/kg maggots antimicrobial peptides (MDAL group, MDAM group, and MDAH group). RESULTS The result showed that the average daily feed intake (ADFI) of the BC group, MDAM group, and MDAH group was higher than that of the MDAL group (P > 0.05), the average daily gain of MDAM group and MDAH group was significantly higher than that of BC group and MDAL group (P < 0.05), but the feed-weight ratio (F/G) was significantly lower than that of BC group (P < 0.05). The total protein (TP) content in the MDAM group and MDAH group was significantly higher than that in the BC group (P < 0.05), and the albumin (ALB) content in the MDAH group was higher than that in the BC group (P > 0.05). The contents of IgA and IgG in the MDAH group were significantly higher than those in the BC group (P < 0.05). In contrast, the content of alanine aminotransferase (ALT) in the MDAH group was significantly lower than that in the BC group (P < 0.05). The thymus and spleen indexes of the MDAH group were significantly higher than those of the BC group (P < 0.05). 16S rDNA sequencing results showed that Bacteroidota and Bacteroides were the dominant phylum and genus of cecal microorganisms at the phylum and genus levels, respectively. Cecum microorganisms are mainly involved in biological processes such as energy production and conversion, amino acid transport and metabolism, and carbohydrate transport and metabolism. DISCUSSION It was concluded that adding different doses of maggot antimicrobial peptide to the basal diet could improve yellow-feathered broilers' growth and immune performance and change the cecum flora. The appropriate dose of antimicrobial peptide addition was 300 mg/kg.
Collapse
Affiliation(s)
- Shengjie Gao
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | | | - Caixia Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Hong Shen
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jungang Wang
- College of Agriculture, Shihezi University, Shihezi, China
| |
Collapse
|
9
|
Phuong HBT, Tran VA, Ngoc KN, Huu VN, Thu HN, Van MC, Thi HP, Hong MN, Tran HT, Xuan HL. Effect of substituting glutamine with lysine on structural and biological properties of antimicrobial peptide Polybia-MP1. Amino Acids 2023; 55:881-890. [PMID: 37300579 DOI: 10.1007/s00726-023-03276-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/05/2023] [Indexed: 06/12/2023]
Abstract
The natural antimicrobial peptide Polybia-MP1 is a promising candidate for developing new treatment therapy for infection and cancer. It showed broad-spectrum antimicrobial and anticancer activity with high safety on healthy cells. However, previous sequence modification usually resulted in at least one of two consequences: a notable increase in hemolytic activity or a considerable decrease in activity against Gram-negative bacteria and cancer cells. Herein, a new approach was applied by replacing the amino acid Glutamine at position 12 with Lysine and generating the MP1-Q12K analog. Our preliminary data suggested an enhancement in antibacterial and antifungal activity, whereas the anticancer and hemolytic activity of the two peptides were comparable. Moreover, MP1-Q12K was found to be less self-assembly than Polybia-MP1, which further supports the enhancement of antimicrobial properties. Hence, this study provides new information regarding the structure-activity relationships of Polybia-MP1 and support for the development of potent, selective antimicrobial peptides.
Collapse
Affiliation(s)
| | - Van Anh Tran
- Faculty of Pharmacy, Phenikaa University, Hanoi, 12116, Vietnam
| | | | - Viet Nguyen Huu
- Faculty of Pharmacy, Phenikaa University, Hanoi, 12116, Vietnam
| | - Hang Ngo Thu
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Mao Can Van
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Hue Pham Thi
- Bioresource Research Center, Phenikaa University, Hanoi, 12116, Vietnam
| | - Minh Nguyen Hong
- Bioresource Research Center, Phenikaa University, Hanoi, 12116, Vietnam
| | - Hiep Tuan Tran
- Faculty of Pharmacy, Phenikaa University, Hanoi, 12116, Vietnam.
| | - Huy Luong Xuan
- Faculty of Pharmacy, Phenikaa University, Hanoi, 12116, Vietnam.
- Phenikaa Institute for Advanced Study (PIAS), Phenikaa University, Hanoi, 12116, Vietnam.
| |
Collapse
|
10
|
Zheng W, Zhao Z, Yang Y, Ding L, Yao W. The synbiotic mixture of lactulose and Bacillus coagulans protects intestinal barrier dysfunction and apoptosis in weaned piglets challenged with lipopolysaccharide. J Anim Sci Biotechnol 2023; 14:80. [PMID: 37301956 DOI: 10.1186/s40104-023-00882-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/10/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Lactulose as an effective prebiotic protects intestinal mucosal injury. Bacillus coagulans is widely used in feed additives because of its ability to promote intestinal health. Our previous study suggests that the combination of lactulose and Bacillus coagulans may be a good candidate as alternative for antibiotic growth promoters. However, the in vivo effects of lactulose and Bacillus coagulans on growth and intestinal health under immune challenge in piglets remains unclear. The objective of this study is to explore the protective effects of synbiotic containing lactulose and Bacillus coagulans on the intestinal mucosal injury and barrier dysfunction under immune challenge in weaned piglets. METHODS Twenty four weaned piglets were assigned to 4 groups. Piglets in the CON-saline and LPS-LPS group were fed the basal diet, while others were fed either with chlortetracycline (CTC) or synbiotic mixture of lactulose and Bacillus coagulans for 32 d before injection of saline or lipopolysaccharide (LPS). Piglets were sacrificed 4 h after LPS injection to collect samples to determine intestinal morphology, integrity and barrier functions as well as relative genes and proteins. RESULTS Our data showed that no differences were observed in the growth performance of the four test groups. LPS injection induced higher serum diamine oxidase activities, D-lactic acid levels, and endotoxin status, lower villus height and ratio of villus height to crypt depth, greater mRNA and lower protein expression related tight junction in both jejunum and ileum. In addition, a higher apoptosis index, and protein expression of Bax and caspase-3 were also observed in the LPS challenge group. Interestingly, dietary synbiotic mixture with lactulose and Bacillus coagulans protected against LPS-induced intestinal damage, barrier dysfunction and higher apoptosis as well as CTC. CONCLUSIONS Our data suggest that dietary supplementation of synbiotic mixture with lactulose and Bacillus coagulans showed resilience to LPS-induced intestinal morphological damage, barrier dysfunction and aggressive apoptosis in piglets as well as the protective effects of CTC. These results indicate that synbiotic mixture of lactulose and Bacillus coagulans showed beneficial effects on performance and resilience to acute immune stress in weaned piglets.
Collapse
Affiliation(s)
- Weijiang Zheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zuyan Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yunnan Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Liren Ding
- National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Wen Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
11
|
Shi J, Lei Y, Wu J, Li Z, Zhang X, Jia L, Wang Y, Ma Y, Zhang K, Cheng Q, Zhang Z, Ma Y, Lei Z. Antimicrobial peptides act on the rumen microbiome and metabolome affecting the performance of castrated bulls. J Anim Sci Biotechnol 2023; 14:31. [PMID: 36890581 PMCID: PMC9996874 DOI: 10.1186/s40104-023-00832-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/04/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Many countries have already banned the use of antibiotics in animal husbandry, making it extremely difficult to maintain animal health in livestock breeding. In the livestock industry, there is an urgent need to develop alternatives to antibiotics which will not lead to drug resistance on prolonged use. In this study, eighteen castrated bulls were randomly divided into two groups. The control group (CK) was fed the basal diet, while the antimicrobial peptide group (AP) was fed the basal diet supplemented with 8 g of antimicrobial peptides in the basal diet for the experimental period of 270 d. They were then slaughtered to measure production performance, and the ruminal contents were isolated for metagenomic and metabolome sequencing analysis. RESULT The results showed that antimicrobial peptides could improve the daily weight, carcass weight, and net meat weight of the experimental animals. Additionally, the rumen papillae diameter and the micropapillary density in the AP were significantly greater than those in the CK. Furthermore, the determination of digestive enzymes and fermentation parameters showed that the contents of protease, xylanase, and β-glucoside in the AP were greater than those in the CK. However, lipase content in the CK was greater than that in the AP. Moreover, the content of acetate, propionate, butyrate, and valerate was found to be greater in AP than those in CK. The metagenomic analysis annotated 1993 differential microorganisms at the species level. The KEGG enrichment of these microorganisms revealed that the enrichment of drug resistance-related pathways was dramatically decreased in the AP, whereas the enrichment of immune-related pathways was significantly increased. There was also a significant reduction in the types of viruses in the AP. 187 probiotics with significant differences were found, 135 of which were higher in AP than in CK. It was also found that the antimicrobial mechanism of the antimicrobial peptides was quite specific. Seven low-abundance microorganisms (Acinetobacter_sp._Ac_1271, Aequorivita soesokkakensis, Bacillus lacisalsi, Haloferax larsenii, Lysinibacillus_sp._3DF0063, Parabacteroides_sp._2_1_7, Streptomyces_sp._So13.3) were found to regulate growth performance of the bull negatively. Metabolome analysis identified 45 differentially differential metabolites that significantly different between the CK and the AP groups. Seven upregulated metabolites (4-pyridoxic acid, Ala-Phe, 3-ureidopropionate, hippuric acid, terephthalic acid, L-alanine, uridine 5-monophosphate) improve the growth performance of the experimental animals. To detect the interactions between the rumen microbiome and metabolism, we associated the rumen microbiome with the metabolome and found that negative regulation between the above 7 microorganisms and 7 metabolites. CONCLUSIONS This study shows that antimicrobial peptides can improve the growth performance of animals while resisting viruses and harmful bacteria and are expected to become healthy alternatives to antibiotics. We demonstrated a new antimicrobial peptides pharmacological model. We demonstrated low-abundance microorganisms may play a role by regulating the content of metabolites.
Collapse
Affiliation(s)
- Jinping Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - Yu Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Jianping Wu
- Institute of Rural Development, Northwest Normal University, Lanzhou, 730070 China
| | - Zemin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - Xiao Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - Li Jia
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - Ying Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - Yue Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - Ke Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Qiang Cheng
- Jingchuan Xu Kang Food Co., Ltd., Pingliang, 744300 China
| | - Zhao Zhang
- Gansu Huarui Agriculture Co., Ltd., Zhangye, 734500 China
| | - Yannan Ma
- Institute of Rural Development, Northwest Normal University, Lanzhou, 730070 China
| | - Zhaomin Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| |
Collapse
|
12
|
Memariani H, Memariani M. Antibiofilm properties of cathelicidin LL-37: an in-depth review. World J Microbiol Biotechnol 2023; 39:99. [PMID: 36781570 DOI: 10.1007/s11274-023-03545-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/08/2023] [Indexed: 02/15/2023]
Abstract
Notwithstanding ceaseless endeavors toward developing effective antibiofilm chemotherapeutics, biofilm-associated infections continue to be one of the most perplexing challenges confronting medicine today. Endogenous host defense peptides, such as the human cathelicidin LL-37, are being propounded as promising options for treating such infectious diseases. Over the past decennium, LL-37 has duly received tremendous research attention by virtue of its broad-spectrum antimicrobial activity and immunomodulatory properties. No attempt has hitherto been made, as far as we are aware, to comprehensively review the antibiofilm effects of LL-37. Accordingly, the intent in this paper is to provide a fairly all-embracing review of the literature available on the subject. Accumulating evidence suggests that LL-37 is able to prevent biofilm establishment by different bacterial pathogens such as Acinetobacter baumannii, Aggregatibacter actinomycetemcomitans, Bacteroides fragilis, Burkholderia thailandensis, Cutibacterium acnes, Escherichia coli, Francisella tularensis, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pyogenes. Inhibition of bacterial adhesion, downregulation of biofilm-associated genes, suppression of quorum-sensing pathways, degradation of biofilm matrix, and eradication of biofilm-residing cells are the major mechanisms responsible for antibiofilm properties of LL-37. In terms of its efficacy and safety in vivo, there are still many questions to be answered. Undoubtedly, LL-37 can open up new windows of opportunity to prevent and treat obstinate biofilm-mediated infections.
Collapse
Affiliation(s)
- Hamed Memariani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mojtaba Memariani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
13
|
Dos Santos IC, Barbosa LN, Grossi GD, de Paula Ferreira LR, Ono JM, Martins LA, Alberton LR, Gonçalves DD. Presence of Staphylococcus spp. carriers of the mecA gene in the nasal cavity of piglets in the nursery phase. Res Vet Sci 2023; 155:51-55. [PMID: 36634542 DOI: 10.1016/j.rvsc.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
The presence of Staphylococcus spp. resistant to methicillin in the nasal cavity of swine has been previously reported. Considering the possible occurrence of bacterial resistance and presence of resistance genes in intensive swine breeding and the known transmissibility and dispersion potential of such genes, this study aimed to investigate the prevalence of resistance to different antibiotics and the presence of the mecA resistance gene in Staphylococcus spp. from piglets recently housed in a nursery. For this, 60 nasal swabs were collected from piglets at the time of their housing in the nursery, and then Staphylococcus spp. were isolated and identified in coagulase-positive (CoPS) and coagulase-negative (CoNS) isolates. These isolates were subjected to the disk-diffusion test to evaluate the bacterial resistance profile and then subjected to molecular identification of Staphylococcus aureus and analyses of the mecA gene through polymerase chain reaction. Of the 60 samples collected, 60 Staphylococcus spp. were isolated, of which 38 (63.33%) were classified as CoNS and 22 (36.67%) as CoPS. Of these, ten (45.45%) were identified as Staphylococcus aureus. The resistance profile of these isolates showed high resistance to different antibiotics, with 100% of the isolates resistant to chloramphenicol, clindamycin, and erythromycin, 98.33% resistant to doxycycline, 95% resistant to oxacillin, and 85% resistant to cefoxitin. Regarding the mecA gene, 27 (45%) samples were positive for the presence of this gene, and three (11.11%) were phenotypically sensitive to oxacillin and cefoxitin. This finding highlights the importance of researching the phenotypic profile of resistance to different antimicrobials and resistance genes in the different phases of pig rearing to identify the real risk of these isolates from a One Health perspective. The present study revealed the presence of samples resistant to different antibiotics in recently weaned production animal that had not been markedly exposed to antimicrobials as growth promoters or even as prophylactics. This information highlights the need for more research on the possible sharing of bacteria between sows and piglets, the environmental pressure within production environments, and the exposure of handlers during their transport, especially considering the community, hospital, and political importance of the presence of circulating resistant strains.
Collapse
Affiliation(s)
- Isabela Carvalho Dos Santos
- Bolsista PROSUP/CAPES - Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil
| | - Lidiane Nunes Barbosa
- Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil
| | - Giovana Dantas Grossi
- Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil
| | | | - Jacqueline Midori Ono
- Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil
| | - Lisiane Almeida Martins
- Faculdade de Ensino Superior Santa Bárbara (FAESB), Rua Onze de Agosto, 2900, Jardim Lucila, 18277-000 Tatuí, SP, Brazil
| | - Luiz Rômulo Alberton
- Propig soluções Ltda, Estrada Linha Andreis - Cerro Azul, SN, Zona Rural - Bom Sucesso do Sul, PR, Brazil
| | - Daniela Dib Gonçalves
- Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil.
| |
Collapse
|
14
|
Wu D, Fu L, Wen W, Dong N. The dual antimicrobial and immunomodulatory roles of host defense peptides and their applications in animal production. J Anim Sci Biotechnol 2022; 13:141. [PMID: 36474280 PMCID: PMC9724304 DOI: 10.1186/s40104-022-00796-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022] Open
Abstract
Host defense peptides (HDPs) are small molecules with broad-spectrum antimicrobial activities against infectious bacteria, viruses, and fungi. Increasing evidence suggests that HDPs can also indirectly protect hosts by modulating their immune responses. Due to these dual roles, HDPs have been considered one of the most promising antibiotic substitutes to improve growth performance, intestinal health, and immunity in farm animals. This review describes the antimicrobial and immunomodulatory roles of host defense peptides and their recent applications in animal production.
Collapse
Affiliation(s)
- Di Wu
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Linglong Fu
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Weizhang Wen
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Na Dong
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
15
|
Zhu C, Yao J, Zhu M, Zhu C, Yuan L, Li Z, Cai D, Chen S, Hu P, Liu HY. A meta-analysis of Lactobacillus-based probiotics for growth performance and intestinal morphology in piglets. Front Vet Sci 2022; 9:1045965. [PMID: 36425121 PMCID: PMC9679148 DOI: 10.3389/fvets.2022.1045965] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2023] Open
Abstract
Antibiotics are widely used as growth promoters (AGPs) in livestock production to improve animal performance and health. However, pig producers today face the prohibition of in-feed antimicrobials and have to find safe and effective alternatives. Lactobacillus species are active microorganisms that convey multiple beneficial effects to the host and are one of the most promising AGPs replacements. Here, we aim to comprehensively assess the effects of Lactobacillus spp. supplementation on growth performance and intestinal morphology (villus height [VH], crypt depth [CD], and the V/C ratio) of piglets. Among the 196 identified studies, 20 met the criteria and were included in the meta-analysis. The effects of Lactobacillus-based probiotics supplementation on growth performance and intestinal morphology were analyzed using a random-effects model. And the publication bias was evaluated by funnel plots. Our results revealed that Lactobacillus spp. supplementation significantly improved the growth performance, including average daily feed intake (ADFI), average daily gain (ADG), and the gain-to-feed ratio (G/F) in piglets (P < 0.05). Meanwhile, Lactobacillus spp. remarkably increased VH and the V/C ratio (P < 0.05) in the small intestine, including the duodenum, jejunum, and ileum, which might contribute to an improved digestive capacity of these animals. In conclusion, our findings provide concrete evidence of the growth-promoting effects of Lactobacillus spp. supplementation in piglets and a better understanding of the potential of Lactobacillus-based probiotics as AGPs alternatives in pig production.
Collapse
Affiliation(s)
- Cuipeng Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiacheng Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Miaonan Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chuyang Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Long Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhaojian Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, China
| |
Collapse
|
16
|
Hoelscher MP, Forner J, Calderone S, Krämer C, Taylor Z, Loiacono FV, Agrawal S, Karcher D, Moratti F, Kroop X, Bock R. Expression strategies for the efficient synthesis of antimicrobial peptides in plastids. Nat Commun 2022; 13:5856. [PMID: 36195597 PMCID: PMC9532397 DOI: 10.1038/s41467-022-33516-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial peptides (AMPs) kill microbes or inhibit their growth and are promising next-generation antibiotics. Harnessing their full potential as antimicrobial agents will require methods for cost-effective large-scale production and purification. Here, we explore the possibility to exploit the high protein synthesis capacity of the chloroplast to produce AMPs in plants. Generating a large series of 29 sets of transplastomic tobacco plants expressing nine different AMPs as fusion proteins, we show that high-level constitutive AMP expression results in deleterious plant phenotypes. However, by utilizing inducible expression and fusions to the cleavable carrier protein SUMO, the cytotoxic effects of AMPs and fused AMPs are alleviated and plants with wild-type-like phenotypes are obtained. Importantly, purified AMP fusion proteins display antimicrobial activity independently of proteolytic removal of the carrier. Our work provides expression strategies for the synthesis of toxic polypeptides in chloroplasts, and establishes transplastomic plants as efficient production platform for antimicrobial peptides.
Collapse
Affiliation(s)
- Matthijs P Hoelscher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
- Utrecht University, Pharmaceutical sciences, Pharmaceutics, Universiteitsweg 99, 3584 CG, Utrecht, Netherlands
| | - Joachim Forner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Silvia Calderone
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Carolin Krämer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Zachary Taylor
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - F Vanessa Loiacono
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Shreya Agrawal
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
- Neoplants, 630 Rue Noetzlin Bâtiment, 91190, Gif-sur-Yvette, France
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Fabio Moratti
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Xenia Kroop
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany.
| |
Collapse
|
17
|
Liang Q, Cao L, Zhu C, Kong Q, Sun H, Zhang F, Mou H, Liu Z. Characterization of Recombinant Antimicrobial Peptide BMGlv2 Heterologously Expressed in Trichoderma reesei. Int J Mol Sci 2022; 23:ijms231810291. [PMID: 36142214 PMCID: PMC9499586 DOI: 10.3390/ijms231810291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) serve as alternative candidates for antibiotics and have attracted the attention of a wide range of industries for various purposes, including the prevention and treatment of piglet diarrhea in the swine industry. Escherichia coli, Salmonella, and Clostridium perfringens are the most common pathogens causing piglet diarrhea. In this study, the antimicrobial peptide gloverin2 (BMGlv2), derived from Bombyx mandarina, was explored to determine the efficient prevention effect on bacterial piglet diarrhea. BMGlv2 was heterologously expressed in Trichoderma reesei Tu6, and its antimicrobial properties against the three bacteria were characterized. The results showed that the minimum inhibitory concentrations of the peptide against E. coli ATCC 25922, S. derby ATCC 13076, and C. perfringens CVCC 2032 were 43.75, 43.75, and 21.86 μg/mL, respectively. The antimicrobial activity of BMGlv2 was not severely affected by high temperature, salt ions, and digestive enzymes. It had low hemolytic activity against rabbit red blood cells, indicating its safety for use as a feed additive. Furthermore, the measurements of the leakage of bacterial cell contents and scanning electron microscopy of C. perfringens CVCC 2032 indicated that BMGlv2 exerted antimicrobial activity by destroying the cell membrane. Overall, this study showed the heterologous expression of the antimicrobial peptide BMGlv2 in T. reesei and verified its antimicrobial properties against three common pathogenic bacteria associated with piglet diarrhea, which can provide a reference for the applications of AMPs as an alternative product in industrial agriculture.
Collapse
|
18
|
Atta AH, Atta SA, Nasr SM, Mouneir SM. Current perspective on veterinary drug and chemical residues in food of animal origin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15282-15302. [PMID: 34981398 DOI: 10.1007/s11356-021-18239-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The marked increase in the demand for animal protein of high quality necessitates protecting animals from infectious diseases. This requires increasing the use of veterinary therapeutics. The overuse and misuse of veterinary products can cause a risk to human health either as short-term or long-term health problems. However, the biggest problem is the emergence of resistant strains of bacteria or parasites. This is in addition to economic losses due to the discarding of polluted milk or condemnation of affected carcasses. This paper discusses three key points: possible sources of drug and chemical residues, human health problems, and the possible method of control and prevention of veterinary drug residues in animal products.
Collapse
Affiliation(s)
- Attia H Atta
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Shimaa A Atta
- Immunology Department, Theodor Bilharz Research Institute, Giza, 12411, Egypt
| | - Soad M Nasr
- Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza, 12622, Egypt
| | - Samar M Mouneir
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
19
|
Tian T, Xie W, Liu L, Fan S, Zhang H, Qin Z, Yang C. Industrial application of antimicrobial peptides based on their biological activity and structure-activity relationship. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34955061 DOI: 10.1080/10408398.2021.2019673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Last several years, a rapid increase in drug resistance to traditional antibiotics has driven the emergence and development of antimicrobial peptides (AMPs). AMPs have also gained considerable attention from scientists due to their high potency in combatting infectious pathogens. A subset of analogues and their derivatives with specific targets have been successfully designed based on natural peptide patterns. In this review, scientific knowledge on the mechanisms of action related to biological activity and structure-activity relationship (SAR) of AMPs are summarized, and the biological applications in several important fields are critically discussed. SAR shows that the positive charge, secondary structure, special amino acid residues, hydrophobicity, and helicity of AMPs are closely related to their biological activities. The combination of nanotechnology, bioinformatics, and genetic engineering can accelerate to achieve the application of AMPs as effective, safe, economical, and nonresistant antimicrobial agents in medicine, the food and feed industries, and agriculture in coming years. Given the intense interest in AMPs, further investigations are needed in the future to evaluate the specific structure and function that make their use favorable in several industries. This review may provide a comprehensive reference for future studies on chemical modifications, mechanistic exploration, and applications of AMPs.
Collapse
Affiliation(s)
- Tiantian Tian
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Wansheng Xie
- Hainan Center for Drug and Medical Device Evaluation and Service, Hainan Provincial Drug Administration, Haikou, Hainan, China
| | - Luxuan Liu
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Siting Fan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Chao Yang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China.,State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied research in Medicine and Health, University of Science and Technology, Taipa, Macao, China
| |
Collapse
|