1
|
Zhou YM, Duan L, Luo L, Guan JQ, Yang ZK, Qu JJ, Zou X. The composition and function of bacterial communities in Bombyx mori (Lepidoptera: Bombycidae) changed dramatically with infected fungi: A new potential to culture Cordyceps cicadae. INSECT MOLECULAR BIOLOGY 2024; 33:613-625. [PMID: 38709468 DOI: 10.1111/imb.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
Cordyceps cicadae (Hypocreales: Cordycipitaceae) is a renowned entomopathogenic fungus used as herbal medicine in China. However, wild C. cicadae resources have been threatened by heavy harvesting. We hypothesised that Bombyx mori L. (Lepidoptera: Bombycidae) could be a new alternative to cultivate C. cicadae due to the low cost of rearing. Bacterial communities are crucial for the formation of Cordyceps and for promoting the production of metabolites. To better understand the bacterial community structure associated with Cordyceps, three Claviciptaceae fungi were used to explore the pathogenicity of the silkworms. Here, fifth-instar silkworms were infected with C. cicadae, Cordyceps cateniannulata (Hypocreales: Cordycipitaceae) and Beauveria bassiana (Hypocreales: Cordycipitaceae). Subsequently, we applied high-throughput sequencing to explore the composition of bacterial communities in silkworms. Our results showed that all three fungi were highly pathogenic to silkworms, which suggests that silkworms have the potential to cultivate Cordyceps. After fungal infection, the diversity of bacterial communities in silkworms decreased significantly, and the abundance of Staphylococcus increased in mummified larvae, which may play a role in the death process when the host suffers infection by entomopathogenic fungi. Furthermore, there were high similarities in the bacterial community composition and function in the C. cicadae and C. cateniannulata infected samples, and the phylogenetic analysis suggested that these similarities may be related to the fungal phylogenetic relationship. Our findings reveal that infection with different entomopathogenic fungi affects the composition and function of bacterial communities in silkworms and that the bacterial species associated with Cordyceps are primarily host dependent, while fungal infection affects bacterial abundance.
Collapse
Affiliation(s)
- Ye-Ming Zhou
- Institute of Fungus Resources, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Lin Duan
- Institute of Fungus Resources, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Li Luo
- Institute of Fungus Resources, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Jing-Qiang Guan
- Institute of Fungus Resources, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Zheng-Kai Yang
- College of Tea Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Jiao-Jiao Qu
- College of Tea Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Xiao Zou
- Institute of Fungus Resources, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Zhou J, Liu J, Wang D, Ruan Y, Gong S, Gou J, Zou X. Fungal communities are more sensitive to mildew than bacterial communities during tobacco storage processes. Appl Microbiol Biotechnol 2024; 108:88. [PMID: 38194134 DOI: 10.1007/s00253-023-12882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
Mildew poses a significant threat to tobacco production; however, there is limited information on the structure of the abundant and rare microbial subcommunities in moldy tobacco leaves. In this study, we employed high-throughput sequencing technology to discern the disparities in the composition, diversity, and co-occurrence patterns of abundant and rare fungal and bacterial subcommunities between moldy and normal tobacco leaves collected from Guizhou, Shanghai, and Jilin provinces, China. Furthermore, we explored the correlation between microorganisms and metabolites by integrating the metabolic profiles of moldy and normal tobacco leaves. The results showed that the fungi are more sensitive to mildew than bacteria, and that the fungal abundant taxa exhibit greater resistance and environmental adaptability than the rare taxa. The loss of rare taxa results in irreversible changes in the diversity, richness, and composition of the fungal community. Moreover, rare fungal taxa and abundant bacterial taxa played crucial roles in maintaining the stability and functionality of the tobacco microecosystem. In moldy tobacco, however, the disappearance of rare taxa as key nodes resulted in reduced connectivity and stability within the fungal network. In addition, metabolomic analysis showed that the contents of indoles, pyridines, polyketones, phenols, and peptides were significantly enriched in the moldy tobacco leaves, while the contents of amino acids, carbohydrates, lipids, and other compounds were significantly reduced in these leaves. Most metabolites showed negative correlations with Dothideomycetes, Alphaproteobacteria, and Gammaproteobacteria, but showed positive correlations with Eurotiales and Bacilli. This study has demonstrated that abundant fungal taxa are the predominant biological agents responsible for tobacco mildew, while bacteria may indirectly contribute to this process through the production and degradation of metabolites. KEY POINTS: • Fungi exhibited greater sensitivity to mildew of tobacco leaf compared to bacteria • Rare fungal taxa underwent significant damage during the mildew process • Mildew may damage the defense system of the tobacco leaf microecosystem.
Collapse
Affiliation(s)
- Jiaxi Zhou
- Department of Ecology / Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
- Postdoctoral Research Workstation of China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
- China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
| | - Jing Liu
- Guizhou Tobacco Company Zunyi Branch, Zunyi, China
| | - Dongfei Wang
- China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
| | - Yibin Ruan
- China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
| | - Shuang Gong
- China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
| | - Jianyu Gou
- Guizhou Tobacco Company Zunyi Branch, Zunyi, China
| | - Xiao Zou
- Department of Ecology / Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China.
| |
Collapse
|
3
|
Cao J, Wang Z, Jiang Y, Zhou H, Liang Q, Guo X, Wen Y, Yang H. Headspace-SERS assay for early mildewing tobacco leaves. Talanta 2024; 280:126681. [PMID: 39142128 DOI: 10.1016/j.talanta.2024.126681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Mildewed tobacco leaves seriously impact on cigarette product quality and pose a health risk to person. However, early moldy tobacco leaves are hardly found by naked eyes in the workshop. In this work, we self-assemble AuAg nanoalloys on silicon wafers to construct Si/AuAg chips. The headspace-surface enhanced Raman scattering (SERS) protocol is developed to monitor volatile 1,2-dichloro-3-methoxybenzene (2,3-DCA) and 2,4,6-trichloroanisole (2,4,6-TCA) released from postharvest tobacco. Consequently, the visualization of the SERS peak at 1592 cm-1 assigned to ν(CC) after headspace collection for 10 min and the SERS intensity ratio of 1054 and 1035 cm-1 from 2,3-DCA and 2,4,6-TCA less than 0.5 could be used as indicators to predict early moldy tobacco. Additionally, with headspace collection time prolonging to 2 h, a SERS band at 682 cm-1 due to ν(CCl) of 2,4,6-TCA occurs, confirming the mildew of leaves. The headspace-SERS protocol paves a path for rapid and on-site inspection of the quality of tobacco leaves and cigarettes during storage with a portable Raman system.
Collapse
Affiliation(s)
- Jiaying Cao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhiguo Wang
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, Hunan, 410007, China
| | - Yuning Jiang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Huimin Zhou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qiuju Liang
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, Hunan, 410007, China
| | - Xiaoyu Guo
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ying Wen
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
4
|
Fu K, Song X, Cui Y, Zhou Q, Yin Y, Zhang J, Zhou H, Su Y. Analyzing the quality differences between healthy and moldy cigar tobacco leaves during the air-curing process through fungal communities and physicochemical components. Front Microbiol 2024; 15:1399777. [PMID: 38887717 PMCID: PMC11180791 DOI: 10.3389/fmicb.2024.1399777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction The air-curing process of cigar tobacco, as a key step in enhancing the quality of cigars, is often susceptible to contamination by mold spores, which severely constrains the quality of cigar tobacco. Methods This study employed high-throughput Illumina sequencing technology and a continuous flow analysis system to analyze the differences between the microbial communities and physicochemical components of moldy and healthy cigar tobacco leaves. Furthermore, correlation analysis was performed to reveal the impact of mold on the quality of cigar tobacco. Results The differences between the microbial flora and physicochemical compositions of moldy (MC) and healthy (HC) tobacco leaves were analyzed, revealing significant disparities between the two groups. Aspergillus spp. represented the dominant mold in MC, with nine out of twelve isolated molds showing higher quantities on MC than on HC. Mold contamination notably decreased the total nitrogen (TN), total phosphorus (TP), total alkaloids (TA), starch, protein, and flavor constituents while increasing the total fatty acid esters (TFAA), which was accompanied by a shift towards weakly acidic pH in the leaves. Fungal community analysis indicated a significant reduction in the fungal operational taxonomic unit (OUT) numbers and diversity indices in MC, contrasting with the bacterial trends. Aspergillus exhibited significantly higher relative abundance in MC, with LEfSe analysis pinpointing it as the primary driver of differentiation. Furthermore, significant negative correlations were observed between Aspergillus and TP, starch, TA, and protein, while a significant positive association was evident with TFAA. Network analysis underscored the pivotal role of Aspergillus as the species influencing disparities between HC and MC, with its abundance serving as a critical determinant during the air-curing process. Discussion This study elucidated substantial quality distinctions between MC and HC during air-curing, with Aspergillus emerging as the key species contributing to leaf mold.
Collapse
Affiliation(s)
- Kejian Fu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Xueru Song
- Yunnan Tobacco Company Yuxi City Corporation, Yuxi, China
| | - Yonghe Cui
- Yunnan Tobacco Company Yuxi City Corporation, Yuxi, China
| | - Qi Zhou
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Yuming Yin
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Jilai Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Hongyin Zhou
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Youbo Su
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
5
|
Zhang M, Guo D, Wang H, Wu G, Shi Y, Zhou J, Zhao E, Zheng T, Li X. Analyzing microbial community and volatile compound profiles in the fermentation of cigar tobacco leaves. Appl Microbiol Biotechnol 2024; 108:243. [PMID: 38421433 PMCID: PMC10904427 DOI: 10.1007/s00253-024-13043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 01/28/2024] [Indexed: 03/02/2024]
Abstract
Variations in industrial fermentation techniques have a significant impact on the fermentation of cigar tobacco leaves (CTLs), consequently influencing the aromatic attributes of the resulting cigars. The entire fermentation process of CTLs can be categorized into three distinct phases: phase 1 (CTLs prior to moisture regain), phase 2 (CTLs post-moisture regain and pile fermentation), and phase 3 (CTLs after fermentation and drying). These phases were determined based on the dynamic changes in microbial community diversity. During phase 2, there was a rapid increase in moisture and total acid content, which facilitated the proliferation of Aerococcus, a bacterial genus capable of utilizing reducing sugars, malic acid, and citric acid present in tobacco leaves. In contrast, fungal microorganisms exhibited a relatively stable response to changes in moisture and total acid, with Aspergillus, Alternaria, and Cladosporium being the dominant fungal groups throughout the fermentation stages. Bacterial genera were found to be more closely associated with variations in volatile compounds during fermentation compared to fungal microorganisms. This association ultimately resulted in higher levels of aroma components in CTLs, thereby improving the overall quality of the cigars. These findings reinforce the significance of industrial fermentation in shaping CTL quality and provide valuable insights for future efforts in the artificial regulation of secondary fermentation in CTLs. KEY POINTS: • Industrial fermentation processes impact CTLs microbial communities. • Moisture and total acid content influence microbial community succession in fermentation. • Bacterial microorganisms strongly influence CTLs' aldehyde and ketone flavors over fungi.
Collapse
Affiliation(s)
- Mingzhu Zhang
- Key Laboratory for Agricultural Products Processing, School of Food and Biological Engineering, Hefei University of Technology, Danxia Road 485#, Hefei, 230601, Anhui, China
| | - Dongfeng Guo
- Anhui China Tobacco Anhui Industry Co., Ltd., Huangshan Road 606#, Hefei, 230088, Anhui, China.
| | - Haiqing Wang
- Key Laboratory for Agricultural Products Processing, School of Food and Biological Engineering, Hefei University of Technology, Danxia Road 485#, Hefei, 230601, Anhui, China
| | - Guanglong Wu
- Key Laboratory for Agricultural Products Processing, School of Food and Biological Engineering, Hefei University of Technology, Danxia Road 485#, Hefei, 230601, Anhui, China
| | - Yaqi Shi
- Anhui China Tobacco Anhui Industry Co., Ltd., Huangshan Road 606#, Hefei, 230088, Anhui, China
| | - Jinlong Zhou
- Anhui China Tobacco Anhui Industry Co., Ltd., Huangshan Road 606#, Hefei, 230088, Anhui, China
| | - Eryong Zhao
- Key Laboratory for Agricultural Products Processing, School of Food and Biological Engineering, Hefei University of Technology, Danxia Road 485#, Hefei, 230601, Anhui, China
| | - Tianfei Zheng
- Key Laboratory for Agricultural Products Processing, School of Food and Biological Engineering, Hefei University of Technology, Danxia Road 485#, Hefei, 230601, Anhui, China
- Anhui China Tobacco Anhui Industry Co., Ltd., Huangshan Road 606#, Hefei, 230088, Anhui, China
| | - Xingjiang Li
- Key Laboratory for Agricultural Products Processing, School of Food and Biological Engineering, Hefei University of Technology, Danxia Road 485#, Hefei, 230601, Anhui, China.
| |
Collapse
|
6
|
Zhang Y, Xu Q, Yang M, Yang Y, Fu J, Miao C, Wang G, Hu L, Hu Z. Analysis of differences in tobacco leaf microbial communities after redrying in Chinese provinces and from abroad. AMB Express 2023; 13:80. [PMID: 37528261 PMCID: PMC10393934 DOI: 10.1186/s13568-023-01580-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
Microorganisms play an important role in the tobacco aging process. Before the aging process, raw tobacco leaves must be threshed and redried. In order to explore the differences of microbial community structure of threshed and redried tobacco leaves from different origins at home and abroad, 14 groups of tobacco leaves from 8 different countries were tested by high-throughput DNA sequencing and microbiology analysis. Then, through amplicon sequence variants (ASV) cluster analysis, Venn diagram and species labeling and other microbial diversity analysis, the dominant bacteria and fungi on the surface of threshed and redried tobacco leaves were obtained. The results showed that there were significant differences in the composition of tobacco bacteria and fungi after threshing and redrying from different geographical areas. The relative abundance of Microbacterium and Sphingomonas in domestic tobacco leaves was significantly higher than that of foreign tobacco leaves. The relative abundance of Pseudomonas in foreign tobacco bacterial colonies was significantly higher than that of domestic tobacco leaves. In terms of fungi, the relative abundance of Aspergillus and Alternaria in domestic tobacco leaves was significantly higher than that of foreign tobacco leaves. Septoria, Sampaiozyma, Cladosporium and Phoma account for significantly higher proportions of foreign tobacco leaves. These microorganisms may be indispensable in aging process to form different flavors of tobacco leaves. It provides an important theoretical basis for the further use of microorganisms to promote tobacco leaf aging.
Collapse
Affiliation(s)
- Yifan Zhang
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, 210000, Jiangsu, China
| | - Qiang Xu
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, 210000, Jiangsu, China
| | - Mengmeng Yang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, Henan, China
| | - Yue Yang
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, 210000, Jiangsu, China
| | - Jincun Fu
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, 210000, Jiangsu, China
| | - Chenlin Miao
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, 210000, Jiangsu, China
| | - Guiyao Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, Henan, China
| | - Liwei Hu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, Henan, China.
| | - Zongyu Hu
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, 210000, Jiangsu, China.
| |
Collapse
|
7
|
Yu B, Hu J, Yang L, Ye C, Zhu B, Li D, Jiang C, Xue F, Huang K. Screening early markers of mildew upon cigar tobacco leaves by gas chromatography–ion mobility spectrometry (GC–IMS) and partial least squares–discriminant analysis (PLS–DA). ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2180017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Banglin Yu
- Key Laboratory in Flavor & Fragrance Basic Research, Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou, China
| | - Jun Hu
- Key Laboratory in Flavor & Fragrance Basic Research, Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou, China
| | - Lin Yang
- Key Laboratory in Flavor & Fragrance Basic Research, Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou, China
| | - Changwen Ye
- Key Laboratory in Flavor & Fragrance Basic Research, Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou, China
| | - Beibei Zhu
- Technical Research Center, China Tobacco Sichuan Industrial Co., Ltd, Chengdu, China
| | - Dong Li
- Key Laboratory in Flavor & Fragrance Basic Research, Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou, China
| | - Chenxi Jiang
- Key Laboratory in Flavor & Fragrance Basic Research, Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou, China
| | - Fang Xue
- Technical Research Center, China Tobacco Sichuan Industrial Co., Ltd, Chengdu, China
| | - Kuo Huang
- Key Laboratory in Flavor & Fragrance Basic Research, Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou, China
| |
Collapse
|
8
|
Characteristics of Fungal Communities and Internal Mildew Occurrence during the Stages of Planting and Storing of Sunflower Seed in China. Microorganisms 2022; 10:microorganisms10071434. [PMID: 35889154 PMCID: PMC9318822 DOI: 10.3390/microorganisms10071434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022] Open
Abstract
Internally mildewed sunflower seeds pose a significant risk to human health. To control internal mildew, it is imperative to study its source in the main production area of China, which has been little investigated. Here, high-throughput sequencing was used to characterize the fungal and fungus-seed communities. Alpha diversity and ANOSIM analyses showed mildew did not alter the fungal compositions significantly. STAMP analysis showed that the sunflower seeds were most vulnerable to internal mildew during the field-planting stage. Alternaria was the predominant mildew-causing pathogen of sunflower seeds for consumption, which may originate from seed transmission and colonize at the seed-development stage. Finally, only a few seeds developed internal mildew with a worrisome level of Alternaria contamination in the humid field climate. NMDS analysis showed that climatic factors also played important roles in shaping microbial change during storage, with a relative humidity (RH) of 67% being the critical threshold in normal-temperature warehouses. Internal mildew never occurred below the RH threshold for the microbial community structure, which hardly changed after an average storage duration. The results indicated that a combination of field management to combat Alternaria, pretreatment with 5 KGy γ-irradiation and drying at the time of storage will minimize or prevent internal mildew. This work also provides an empirical framework for studies of mildewing in other shelled seeds.
Collapse
|