1
|
Ning YN, Tian D, Zhao S, Feng JX. Regulation of genes encoding polysaccharide-degrading enzymes in Penicillium. Appl Microbiol Biotechnol 2024; 108:16. [PMID: 38170318 DOI: 10.1007/s00253-023-12892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024]
Abstract
Penicillium fungi, including Penicillium oxalicum, can secrete a range of efficient plant-polysaccharide-degrading enzymes (PPDEs) that is very useful for sustainable bioproduction, using renewable plant biomass as feedstock. However, the low efficiency and high cost of PPDE production seriously hamper the industrialization of processes based on PPDEs. In Penicillium, the expression of PPDE genes is strictly regulated by a complex regulatory system and molecular breeding to modify this system is a promising way to improve fungal PPDE yields. In this mini-review, we present an update on recent research progress concerning PPDE distribution and function, the regulatory mechanism of PPDE biosynthesis, and molecular breeding to produce PPDE-hyperproducing Penicillium strains. This review will facilitate future development of fungal PPDE production through metabolic engineering and synthetic biology, thereby promoting PPDE industrial biorefinery applications. KEY POINTS: • This mini review summarizes PPDE distribution and function in Penicillium. • It updates progress on the regulatory mechanism of PPDE biosynthesis in Penicillium. • It updates progress on breeding of PPDE-hyperproducing Penicillium strains.
Collapse
Affiliation(s)
- Yuan-Ni Ning
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Di Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China.
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
2
|
Du W, Sun C, Wu T, Li W, Dong B, Wang B, Shang S, Yang Q, Huang W, Chen S. Comparative proteomics analysis of Shiraia bambusicola revealed a variety of regulatory systems on conidiospore formation. Front Microbiol 2024; 15:1373597. [PMID: 38841055 PMCID: PMC11152172 DOI: 10.3389/fmicb.2024.1373597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Shiraia bambusicola is a typical parasitic medicinal fungus of the family Shiraiaceae. The fruiting bodies of S. bambusicola cannot be cultivated artificially, and active substances can be effectively produced via fermentation. The mechanism of conidia production is a research hotspot in the industrial utilization and growth development of S. bambusicola. This study is the first to systematically study the proteomics of conidiospore formation from S. bambusicola. Near-spherical conidia were observed and identified by internal transcribed spacer (ITS) sequence detection. A total of 2,840 proteins were identified and 1,976 proteins were quantified in the mycelia and conidia of S. bambusicola. Compared with mycelia, 445 proteins were differentially expressed in the conidia of S. bambusicola, with 165 proteins being upregulated and 280 proteins being downregulated. The Gene Ontology (GO) annotation results of differential proteomics showed that the biological process of S. bambusicola sporulation is complex. The Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analysis showed that the differential proteins were mainly involved in starch and sucrose metabolism, biosynthesis of secondary metabolites, microbial metabolism in diverse environments, and other processes. Our in-depth speculative analysis showed that proteins related to carbohydrate metabolism were differentially expressed in conidiospore formation of S. bambusicola, suggesting the involvement of saccharides. Conidiation may increase the synthesis and release of ethanol and polysaccharide proteins such as glycoside hydrolase (GH), suppress host immunity, and facilitate S. bambusicola to infect and colonize of the host. In-depth analysis of differential proteomes will help reveal the molecular mechanism underlying the conidiospore formation of S. bambusicola, which has strong theoretical and practical significance.
Collapse
Affiliation(s)
- Wen Du
- School of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, China
- Binzhou Key Laboratory of Chemical Drug R&D and Quality Control, Binzhou, China
| | - Chunlong Sun
- School of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, China
- Binzhou Key Laboratory of Chemical Drug R&D and Quality Control, Binzhou, China
| | - Tao Wu
- School of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, China
| | - Wang Li
- School of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, China
- Binzhou Key Laboratory of Chemical Drug R&D and Quality Control, Binzhou, China
| | - Bin Dong
- School of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, China
| | - Baogui Wang
- School of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, China
| | - Shuai Shang
- School of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, China
| | - Qian Yang
- School of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, China
| | - Wenwen Huang
- School of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, China
- Binzhou Key Laboratory of Chemical Drug R&D and Quality Control, Binzhou, China
| | - Shaopeng Chen
- School of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, China
- Binzhou Key Laboratory of Chemical Drug R&D and Quality Control, Binzhou, China
| |
Collapse
|
3
|
Li J, Wang Y, Yang K, Wang X, Wang Y, Zhang H, Huang H, Su X, Yao B, Luo H, Qin X. Development of an efficient protein expression system in the thermophilic fungus Myceliophthora thermophila. Microb Cell Fact 2023; 22:236. [PMID: 37974259 PMCID: PMC10652509 DOI: 10.1186/s12934-023-02245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Thermophilic fungus Myceliophthora thermophila has been widely used in industrial applications due to its ability to produce various enzymes. However, the lack of an efficient protein expression system has limited its biotechnological applications. RESULTS In this study, using a laccase gene reporting system, we developed an efficient protein expression system in M. thermophila through the selection of strong constitutive promoters, 5'UTRs and signal peptides. The expression of the laccase was confirmed by enzyme activity assays. The results showed that the Mtpdc promoter (Ppdc) was able to drive high-level expression of the target protein in M. thermophila. Manipulation of the 5'UTR also has significant effects on protein expression and secretion. The best 5'UTR (NCA-7d) was identified. The transformant containing the laccase gene under the Mtpdc promoter, NCA-7d 5'UTR and its own signal peptide with the highest laccase activity (1708 U/L) was obtained. In addition, the expression system was stable and could be used for the production of various proteins, including homologous proteins like MtCbh-1, MtGh5-1, MtLPMO9B, and MtEpl1, as well as a glucoamylase from Trichoderma reesei. CONCLUSIONS An efficient protein expression system was established in M. thermophila for the production of various proteins. This study provides a valuable tool for protein production in M. thermophila and expands its potential for biotechnological applications.
Collapse
Affiliation(s)
- Jinyang Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Yidi Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Kun Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Honglian Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China.
| | - Xing Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China.
| |
Collapse
|
4
|
Zhu Z, Zhang M, Liu D, Liu D, Sun T, Yang Y, Dong J, Zhai H, Sun W, Liu Q, Tian C. Development of the thermophilic fungus Myceliophthora thermophila into glucoamylase hyperproduction system via the metabolic engineering using improved AsCas12a variants. Microb Cell Fact 2023; 22:150. [PMID: 37568174 PMCID: PMC10416393 DOI: 10.1186/s12934-023-02149-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/13/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Glucoamylase is an important enzyme for starch saccharification in the food and biofuel industries and mainly produced from mesophilic fungi such as Aspergillus and Rhizopus species. Enzymes produced from thermophilic fungi can save the fermentation energy and reduce costs as compared to the fermentation system using mesophiles. Thermophilic fungus Myceliophthora thermophila is industrially deployed fungus to produce enzymes and biobased chemicals from biomass during optimal growth at 45 °C. This study aimed to construct the M. thermophila platform for glucoamylase hyper-production by broadening genomic targeting range of the AsCas12a variants, identifying key candidate genes and strain engineering. RESULTS In this study, to increase the genome targeting range, we upgraded the CRISPR-Cas12a-mediated technique by engineering two AsCas12a variants carrying the mutations S542R/K607R and S542R/K548V/N552R. Using the engineered AsCas12a variants, we deleted identified key factors involved in the glucoamylase expression and secretion in M. thermophila, including Mtstk-12, Mtap3m, Mtdsc-1 and Mtsah-2. Deletion of four targets led to more than 1.87- and 1.85-fold higher levels of secretion and glucoamylases activity compared to wild-type strain MtWT. Transcript level of the major amylolytic genes showed significantly increased in deletion mutants. The glucoamylase hyper-production strain MtGM12 was generated from our previously strain MtYM6 via genetically engineering these targets Mtstk-12, Mtap3m, Mtdsc-1 and Mtsah-2 and overexpressing Mtamy1 and Mtpga3. Total secreted protein and activities of amylolytic enzymes in the MtGM12 were about 35.6-fold and 51.9‒55.5-fold higher than in MtWT. Transcriptional profiling analyses revealed that the amylolytic gene expression levels were significantly up-regulated in the MtGM12 than in MtWT. More interestingly, the MtGM12 showed predominantly short and highly bulging hyphae with proliferation of rough ER and abundant mitochondria, secretion vesicles and vacuoles when culturing on starch. CONCLUSIONS Our results showed that these AsCas12a variants worked well for gene deletions in M. thermophila. We successfully constructed the glucoamylase hyper-production strain of M. thermophila by the rational redesigning and engineering the transcriptional regulatory and secretion pathway. This targeted engineering strategy will be very helpful to improve industrial fungal strains and promote the morphology engineering for enhanced enzyme production.
Collapse
Affiliation(s)
- Zhijian Zhu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Manyu Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Dandan Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Defei Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Tao Sun
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Yujing Yang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jiacheng Dong
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Huanhuan Zhai
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Wenliang Sun
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Qian Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Chaoguang Tian
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
5
|
Yang J, Yue HR, Pan LY, Feng JX, Zhao S, Suwannarangsee S, Chempreda V, Liu CG, Zhao XQ. Fungal strain improvement for efficient cellulase production and lignocellulosic biorefinery: Current status and future prospects. BIORESOURCE TECHNOLOGY 2023:129449. [PMID: 37406833 DOI: 10.1016/j.biortech.2023.129449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Lignocellulosic biomass (LCB) has been recognized as a valuable carbon source for the sustainable production of biofuels and value-added biochemicals. Crude enzymes produced by fungal cell factories benefit economic LCB degradation. However, high enzyme production cost remains a great challenge. Filamentous fungi have been widely used to produce cellulolytic enzymes. Metabolic engineering of fungi contributes to efficient cellulase production for LCB biorefinery. Here the latest progress in utilizing fungal cell factories for cellulase production was summarized, including developing genome engineering tools to improve the efficiency of fungal cell factories, manipulating promoters, and modulating transcription factors. Multi-omics analysis of fungi contributes to identifying novel genetic elements for enhancing cellulase production. Furthermore, the importance of translation regulation of cellulase production are emphasized. Efficient development of fungal cell factories based on integrative strain engineering would benefit the overall bioconversion efficacy of LCB for sustainable bioproduction.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hou-Ru Yue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Ya Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Surisa Suwannarangsee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Verawat Chempreda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Dissecting key residues of a C4-dicarboxylic acid transporter to accelerate malate export in Myceliophthora. Appl Microbiol Biotechnol 2023; 107:609-622. [PMID: 36542100 DOI: 10.1007/s00253-022-12336-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Efficient transporters are necessary for high concentration and purity of desired products during industrial production. In this study, we explored the mechanism of substrate transport and preference of the C4-dicarboxylic acid transporter AoMAE in the fungus Myceliophthora thermophila, and investigated the roles of 18 critical amino acid residues within this process. Among them, the residue Arg78, forming a hydrogen bond network with Arg23, Phe25, Thr74, Leu81, His82, and Glu94 to stabilize the protein conformation, is irreplaceable for the export function of AoMAE. Furthermore, varying the residue at position 100 resulted in changes to the size and shape of the substrate binding pocket, leading to alterations in transport efficiencies of both malic acid and succinic acid. We found that the mutation T100S increased malate production by 68%. Using these insights, we successfully generated an AoMAE variant with mutation T100S and deubiquitination, exhibiting an 81% increase in the selective export activity of malic acid. Simply introducing this version of AoMAE into M. thermophila wild-type strain increased production of malic acid from 1.22 to 54.88 g/L. These findings increase our understanding of the structure-function relationships of organic acid transporters and may accelerate the process of engineering dicarboxylic acid transporters with high efficiency. KEY POINTS: • This is the first systematical analysis of key residues of a malate transporter in fungi. • Protein engineering of AoMAE led to 81% increase of malate export activity. • Arg78 was essential for the normal function of AoMAE in M. thermophila. • Substitution of Thr100 affected export efficiency and substrate selectivity of AoMAE.
Collapse
|
7
|
Liu D, Liu Q, Guo W, Liu Y, Wu M, Zhang Y, Li J, Sun W, Wang X, He Q, Tian C. Development of Genetic Tools in Glucoamylase-Hyperproducing Industrial Aspergillus niger Strains. BIOLOGY 2022; 11:biology11101396. [PMID: 36290301 PMCID: PMC9599018 DOI: 10.3390/biology11101396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Glucoamylase is one of the most needed industrial enzymes in the food and biofuel industries. Aspergillus niger is a commonly used cell factory for the production of commercial glucoamylase. For decades, genetic manipulation has promoted significant progress in industrial fungi for strain engineering and in obtaining deep insights into their genetic features. However, genetic engineering is more laborious in the glucoamylase-producing industrial strains A. niger N1 and O1 because their fungal features of having few conidia (N1) or of being aconidial (O1) make them difficult to perform transformation on. In this study, we targeted A. niger N1 and O1 and successfully developed high-efficiency transformation tools. We also constructed a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 editing marker-free system using an autonomously replicating plasmid to express Cas9 protein and to guide RNA and the selectable marker. By using the genetic tools developed here, we generated nine albino deletion mutants. After three rounds of sub-culturing under nonselective conditions, the albino deletions lost the autonomously replicating plasmid. Together, the tools and optimization process above provided a good reference to manipulate the tough working industrial strain, not only for the further engineering these two glucoamylase-hyperproducing strains, but also for other industrial strains. Abstract The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes, particularly glucoamylase. Although a variety of genetic techniques have been successfully used in wild-type A. niger, the transformation of industrially used strains with few conidia (e.g., A. niger N1) or that are even aconidial (e.g., A. niger O1) remains laborious. Herein, we developed genetic tools, including the protoplast-mediated transformation and Agrobacterium tumefaciens-mediated transformation of the A. niger strains N1 and O1 using green fluorescent protein as a reporter marker. Following the optimization of various factors for protoplast release from mycelium, the protoplast-mediated transformation efficiency reached 89.3% (25/28) for N1 and 82.1% (32/39) for O1. The A. tumefaciens-mediated transformation efficiency was 98.2% (55/56) for N1 and 43.8% (28/64) for O1. We also developed a marker-free CRISPR/Cas9 genome editing system using an AMA1-based plasmid to express the Cas9 protein and sgRNA. Out of 22 transformants, 9 albA deletion mutants were constructed in the A. niger N1 background using the protoplast-mediated transformation method and the marker-free CRISPR/Cas9 system developed here. The genome editing methods improved here will accelerate the elucidation of the mechanism of glucoamylase hyperproduction in these industrial fungi and will contribute to the use of efficient targeted mutation in other industrial strains of A. niger.
Collapse
Affiliation(s)
- Dandan Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Qian Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Wenzhu Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yin Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Min Wu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yongli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Wenliang Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Xingji Wang
- Longda Biotechnology Inc., Linyi 276400, China
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Correspondence: (Q.H.); (C.T.); Tel.: +86-10-62731206 (Q.H.); +86-22-84861947 (C.T.)
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Correspondence: (Q.H.); (C.T.); Tel.: +86-10-62731206 (Q.H.); +86-22-84861947 (C.T.)
| |
Collapse
|
8
|
Evaluation of Aspergillus niger Six Constitutive Strong Promoters by Fluorescent-Auxotrophic Selection Coupled with Flow Cytometry: A Case for Citric Acid Production. J Fungi (Basel) 2022; 8:jof8060568. [PMID: 35736051 PMCID: PMC9224621 DOI: 10.3390/jof8060568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
Aspergillus niger is an important industrial workhorse for the biomanufacturing of organic acids, proteins, etc. Well-controlled genetic regulatory elements, including promoters, are vital for strain engineering, but available strong promoters for A. niger are limited. Herein, to efficiently assess promoters, we developed an accurate and intuitive fluorescent-auxotrophic selection workflow based on mCherry, pyrG, CRISPR/Cas9 system, and flow cytometry. With this workflow, we characterized six endogenous constitutive promoters in A. niger. The endogenous glyceraldehyde-3-phosphate dehydrogenase promoter PgpdAg showed a 2.28-fold increase in promoter activity compared with the most frequently used strong promoter PgpdAd from A. nidulans. Six predicted conserved motifs, including the gpdA-box, were verified to be essential for the PgpdAg activity. To demonstrate its application, the promoter PgpdAg was used for enhancing the expression of citrate exporter cexA in a citric acid-producing isolate D353.8. Compared with the cexA controlled by PgpdAd, the transcription level of the cexA gene driven by PgpdAg increased by 2.19-fold, which is consistent with the promoter activity assessment. Moreover, following cexA overexpression, several genes involved in carbohydrate transport and metabolism were synergically upregulated, resulting in up to a 2.48-fold increase in citric acid titer compared with that of the parent strain. This study provides an intuitive workflow to speed up the quantitative evaluation of A. niger promoters and strong constitutive promoters for fungal cell factory construction and strain engineering.
Collapse
|