Kollerov VV, Timakova TA, Shutov AA, Donova MV. Boldenone and Testosterone Production from Phytosterol via One-Pot Cascade Biotransformations.
J Fungi (Basel) 2024;
10:830. [PMID:
39728326 DOI:
10.3390/jof10120830]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Testosterone (TS) and its 1(2)-dehydrogenated derivative boldenone (BD) are widely used in medicine, veterinary science and as precursors in organic synthesis of many therapeutic steroids. Green production of these compounds is possible from androstenedione (AD) enzymatically, or from phytosterol (PS) using fermentation stages. In this study, the ascomycete Curvularia sp. VKM F-3040 was shown to convert androstadienedione (ADD, 4 and 10 g/L) to yield 97% and 78% (mol/mol) of BD, respectively. Based on its high 17β-hydroxysteroid dehydrogenase (17β-HSD) activity, a novel cascade biotransformation of PS was developed for production of TS and BD. At the first stage, the strains of Mycolicibacterium neoaurum VKM Ac-1815D or M. neoaurum VKM Ac-1816D converted PS (5 or 10 g/L) into AD or ADD (each in a concentration of 2.5 or 5 g/L), respectively. At the second stage, mycelium of the fungus under the revealed optimal conditions reduced AD or ADD with more than 90% efficiency to form TS or BD, respectively. Based on transcriptome analysis, six candidate genes that might encode 17β-HSDs in the Curvularia sp. genome were revealed. Along with 17β-HSDs, the fungus possessed inducible P450cur 7-monooxygenase, which led to the accumulation of 7α-hydroxytestosterone (7α-OH-TS) as a major product from AD (up to 83% within 24 h after mycelium addition at the second stage of cascade biotransformation). The presence of protein synthesis inhibitor cycloheximide (CHX) prevented 7α/β-hydroxylation due to inhibition of de novo synthesis of the enzyme in the fungal cells. The results demonstrate the high biotechnological potential of the Curvularia sp. strain and open up prospects for the synthesis of valuable 17β-reduced and 7-hydroxylated steroids by cascade biotransformations.
Collapse