1
|
Lazarus HPS, Easwaran N. Molecular insights into PGPR fluorescent Pseudomonads complex mediated intercellular and interkingdom signal transduction mechanisms in promoting plant's immunity. Res Microbiol 2024; 175:104218. [PMID: 38879059 DOI: 10.1016/j.resmic.2024.104218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/13/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024]
Abstract
The growth-promoting and immune modulatory properties of different strains of plant growth promoting rhizobacteria (PGPR) fluorescent Pseudomonads complex (PFPC) can be explored to combat food security challenges. These PFPC prime plants through induced systemic resistance, fortify plants to overcome future pathogen-mediated vulnerability by eliciting robust systemic acquired resistance through regulation by nonexpressor of pathogenesis-related genes 1. Moreover, outer membrane vesicles released from Pseudomonas fluorescens also elicit a broad spectrum of immune responses, presenting a rapid viable alternative to whole cells. Thus, PFPC can help the host to maintain an equilibrium between growth and immunity, ultimately leads to increased crop yield.
Collapse
Affiliation(s)
| | - Nalini Easwaran
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
2
|
Timofeeva AM, Galyamova MR, Sedykh SE. How Do Plant Growth-Promoting Bacteria Use Plant Hormones to Regulate Stress Reactions? PLANTS (BASEL, SWITZERLAND) 2024; 13:2371. [PMID: 39273855 PMCID: PMC11397614 DOI: 10.3390/plants13172371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024]
Abstract
Phytohormones play a crucial role in regulating growth, productivity, and development while also aiding in the response to diverse environmental changes, encompassing both biotic and abiotic factors. Phytohormone levels in soil and plant tissues are influenced by specific soil bacteria, leading to direct effects on plant growth, development, and stress tolerance. Specific plant growth-promoting bacteria can either synthesize or degrade specific plant phytohormones. Moreover, a wide range of volatile organic compounds synthesized by plant growth-promoting bacteria have been found to influence the expression of phytohormones. Bacteria-plant interactions become more significant under conditions of abiotic stress such as saline soils, drought, and heavy metal pollution. Phytohormones function in a synergistic or antagonistic manner rather than in isolation. The study of plant growth-promoting bacteria involves a range of approaches, such as identifying singular substances or hormones, comparing mutant and non-mutant bacterial strains, screening for individual gene presence, and utilizing omics approaches for analysis. Each approach uncovers the concealed aspects concerning the effects of plant growth-promoting bacteria on plants. Publications that prioritize the comprehensive examination of the private aspects of PGPB and cultivated plant interactions are of utmost significance and crucial for advancing the practical application of microbial biofertilizers. This review explores the potential of PGPB-plant interactions in promoting sustainable agriculture. We summarize the interactions, focusing on the mechanisms through which plant growth-promoting bacteria have a beneficial effect on plant growth and development via phytohormones, with particular emphasis on detecting the synthesis of phytohormones by plant growth-promoting bacteria.
Collapse
Affiliation(s)
- Anna M Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Maria R Galyamova
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergey E Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Thompson MEH, Raizada MN. The Microbiome of Fertilization-Stage Maize Silks (Style) Encodes Genes and Expresses Traits That Potentially Promote Survival in Pollen/Style Niches and Host Reproduction. Microorganisms 2024; 12:1473. [PMID: 39065240 PMCID: PMC11278993 DOI: 10.3390/microorganisms12071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Within flowers, the style channel receives pollen and transmits male gametes inside elongating pollen tubes to ovules. The styles of maize/corn are called silks. Fertilization-stage silks possess complex microbiomes, which may partially derive from pollen. These microbiomes lack functional analysis. We hypothesize that fertilization-stage silk microbiomes promote host fertilization to ensure their own vertical transmission. We further hypothesize that these microbes encode traits to survive stresses within the silk (water/nitrogen limitation) and pollen (dehydration/aluminum) habitats. Here, bacteria cultured from fertilization-stage silks of 14 North American maize genotypes underwent genome mining and functional testing, which revealed osmoprotection, nitrogen-fixation, and aluminum-tolerance traits. Bacteria contained auxin biosynthesis genes, and testing confirmed indole compound secretion, which is relevant, since pollen delivers auxin to silks to stimulate egg cell maturation. Some isolates encoded biosynthetic/transport compounds known to regulate pollen tube guidance/growth. The isolates encoded ACC deaminase, which degrades the precursor for ethylene that otherwise accelerates silk senescence. The findings suggest that members of the microbiome of fertilization-stage silks encode adaptations to survive the stress conditions of silk/pollen and have the potential to express signaling compounds known to impact reproduction. Overall, whereas these microbial traits have traditionally been assumed to primarily promote vegetative plant growth, this study proposes they may also play selfish roles during host reproduction.
Collapse
Affiliation(s)
| | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
4
|
Hassan S, Bhadwal SS, Khan M, Sabreena, Nissa KU, Shah RA, Bhat HM, Bhat SA, Lone IM, Ganai BA. Revitalizing contaminated lands: A state-of-the-art review on the remediation of mine-tailings using phytoremediation and genomic approaches. CHEMOSPHERE 2024; 356:141889. [PMID: 38583533 DOI: 10.1016/j.chemosphere.2024.141889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
The mining industry has historically served as a critical reservoir of essential raw materials driving global economic progress. Nevertheless, the consequential by-product known as mine tailings has consistently produced a substantial footprint of environmental contamination. With annual discharges of mine tailings surpassing 10 billion tons globally, the need for effective remediation strategies is more pressing than ever as traditional physical and chemical remediation techniques are hindered by their high costs and limited efficacy. Phytoremediation utilizing plants for remediation of polluted soil has developed as a promising and eco-friendly approach to addressing mine tailings contamination. Furthermore, sequencing of genomic DNA and transcribed RNA extracted from mine tailings presents a pivotal opportunity to provide critical supporting insights for activities directed towards the reconstruction of ecosystem functions on contaminated lands. This review explores the growing prominence of phytoremediation and metagenomics as an ecologically sustainable techniques for rehabilitating mine-tailings. The present study envisages that plant species such as Solidago chilensis, Festuca arundinacea, Lolium perenne, Polygonum capitatum, Pennisetum purpureum, Maireana brevifolia, Prosopis tamarugo etc. could be utilized for the remediation of mine-tailings. Furthermore, a critical evaluation of the organic and inorganic ammendments that optimize conditions for the remediation of mine tailings is also provided. The focus of this review extends to the exploration of environmental genomics to characterize microbial communities in mining sites. By delving into the multifaceted dimensions of phytoremediation and genomics for mine tailings, this study contributes to the ongoing efforts to revitalize contaminated lands for a sustainable and environmentally friendly future.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Siloni Singh Bhadwal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Misba Khan
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Sabreena
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Khair-Ul Nissa
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Rameez Ahmad Shah
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Haneef Mohammad Bhat
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Shabir Ahmad Bhat
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Ishfaq Maqbool Lone
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
5
|
Zhuang Y, Wang H, Tan F, Wu B, Liu L, Qin H, Yang Z, He M. Rhizosphere metabolic cross-talk from plant-soil-microbe tapping into agricultural sustainability: Current advance and perspectives. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108619. [PMID: 38604013 DOI: 10.1016/j.plaphy.2024.108619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Rhizosphere interactions from plant-soil-microbiome occur dynamically all the time in the "black microzone" underground, where we can't see intuitively. Rhizosphere metabolites including root exudates and microbial metabolites act as various chemical signalings involving in rhizosphere interactions, and play vital roles on plant growth, development, disease suppression and resistance to stress conditions as well as proper soil health. Although rhizosphere metabolites are a mixture from plant roots and soil microbes, they often are discussed alone. As a rapid appearance of various omics platforms and analytical methods, it offers possibilities and opportunities for exploring rhizosphere interactions in unprecedented breadth and depth. However, our comprehensive understanding about the fine-tuning mechanisms of rhizosphere interactions mediated by these chemical compounds still remain clear. Thus, this review summarizes recent advances systemically including the features of rhizosphere metabolites and their effects on rhizosphere ecosystem, and looks forward to the future research perspectives, which contributes to facilitating better understanding of biochemical communications belowground and helping identify novel rhizosphere metabolites. We also address challenges for promoting the understanding about the roles of rhizosphere metabolites in different environmental stresses.
Collapse
Affiliation(s)
- Yong Zhuang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China.
| | - Hao Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - Furong Tan
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - Bo Wu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - Linpei Liu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - Han Qin
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - ZhiJuan Yang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - Mingxiong He
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China.
| |
Collapse
|
6
|
Kumawat KC, Sharma P, Sirari A, Sharma B, Kumawat G, Nair RM, H B, Kunal. Co-existence of halo-tolerant Pseudomonas fluorescens and Enterococcus hirae with multifunctional growth promoting traits to ameliorate salinity stress in Vigna radiata. CHEMOSPHERE 2024; 349:140953. [PMID: 38128739 DOI: 10.1016/j.chemosphere.2023.140953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Soil salinization has become a prominent obstacle in diverse arid and semi-arid region damaging agricultural productivity globally. From this perspective, present investigation was aimed to compare the potential compatible consortium of bio-inoculants for improving Plant Growth Promoting (PGP) attributes, anti-oxidative enzymes, grain yield and profitability of Vigna radiata in saline soil conditions. A total of 101 rhizobacterium isolated from salt affected regions of Punjab, India were screened for their ability to induce salt tolerance, multifunctional PGP traits and antagonistic activities. The 16S rRNA sequencing identified the strains LSMR-29 and LSMRS-7 as Pseudomonas flourescens and Enterococcus hirae, respectively. In-vitro compatible halo-tolerant dual inoculant (LSMR-29 + LSMRS-7) as bio-inoculants mitigated salt stress in Vigna radiata (spring mungbean) seedling with improved seed germination, biomass and salt tolerance index together with the presence of nifH, acds, pqq and ipdc gene under salinity stress as compared to single inoculants. Further, the potential of single and dual bio-inoculants were also exploited for PGP attributes in pot and field experiments. Results indicated that a significant improvement in chlorophyll content (2.03 fold), nodulation (1.24 fold), nodule biomass (1.23 fold) and leghemoglobin content (1.13 fold) with dual inoculant of LSMR-29 + LSMRS-7 over the LSMR-29 alone. The concentrations of macro & micronutrients, proline, soil enzyme activities i.e. soil dehydrogenase, acid & alkaline phosphatases and antioxidant enzymes such as superoxide dismutase, catalase and peroxidase also found to be high for LSMR-29 + LSMRS-7 as compared to un-inoculated control. The high grain yield thereby leading to Benefit: Cost (B: C) ratio at field scale was indicative of the commercial use bio-inoculants under salt affected Vigna radiata (spring mungbean) to improvement of productivity and soil health. The current finding reveals a co-inoculation of halo-tolerating Pseudomonas fluorescens and Enterococcus hirae containing ACC deaminase could prove to be novel approach for inducing salt tolerance and improving productivity of Vigna radiata (spring mungbean).
Collapse
Affiliation(s)
- Kailash Chand Kumawat
- Department of Microbiology, Punjab Agricultural University, Ludhiana, 141001, Punjab, India; Department of Industrial Microbiology, Jacob Institute of Biotechnology and Bio-engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India.
| | - Poonam Sharma
- Department of Plant Breeding & Genetics, Punjab Agricultural University, Ludhiana, 141001, Punjab, India
| | - Asmita Sirari
- Department of Plant Breeding & Genetics, Punjab Agricultural University, Ludhiana, 141001, Punjab, India
| | - Barkha Sharma
- Department of Microbiology, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, 263153, India
| | - Gayatri Kumawat
- Livestock Feed Resource Management and Technology Centre, Rajasthan University of Veterinary and Animal Sciences, Bikaner, 334001, India
| | - R M Nair
- World Vegetable Center, South Asia, ICRISAT Campus, Greater Hyderabad, Telangana, India
| | - Bindumadhava H
- World Vegetable Center, South Asia, ICRISAT Campus, Greater Hyderabad, Telangana, India
| | - Kunal
- Department of Microbiology, Faculty of Allied Health Sciences, SGT University, Budhera, Gurugram, 122505, Haryana, India
| |
Collapse
|
7
|
Irshad MK, Zhu S, Javed W, Lee JC, Mahmood A, Lee SS, Jianying S, Albasher G, Ali A. Risk assessment of toxic and hazardous metals in paddy agroecosystem by biochar-for bio-membrane applications. CHEMOSPHERE 2023; 340:139719. [PMID: 37549746 DOI: 10.1016/j.chemosphere.2023.139719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Toxic and carcinogenic metal (loid)s, such arsenic (As) and cadmium (Cd), found in contaminated paddy soils pose a serious danger to environmental sustainability. Their geochemical activities are complex, making it difficult to manage their contamination. Rice grown in Cd and As-polluted soils ends up in people's bellies, where it can cause cancer, anemia, and the deadly itai sickness. Solving this issue calls for research into eco-friendly and cost-effective remediation technology to lower rice's As and Cd levels. This research delves deeply into the origins of As and Cd in paddy soils, as well as their mobility, bioavailability, and uptake mechanisms by rice plants. It also examines the current methods and reactors used to lower As and Cd contamination in rice. Iron-modified biochar (Fe-BC) is a promising technology for reducing As and Cd toxicity in rice, improving soil health, and boosting rice's nutritional value. Biochar's physiochemical characteristics are enhanced by the addition of iron, making it a potent adsorbent for As and Cd ions. In conclusion, Fe-BC's biomembrane properties make them an attractive option for remediating As- and Cd-contaminated paddy soils. More efficient mitigation measures, including the use of biomembrane technology, can be developed when sustainable agriculture practices are combined with these technologies.
Collapse
Affiliation(s)
- Muhammad Kashif Irshad
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan; Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Sihang Zhu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing, China; Agricultural Management Institute, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wasim Javed
- Punjab Bioenergy Institute, University of Agriculture Faisalabad, Pakistan
| | - Jong Cheol Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Abid Mahmood
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea.
| | - Shang Jianying
- Department of Soil and Water Sciences China Agricultural University, Beijing, China.
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Atif Ali
- Department of plant breeding and genetics, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
8
|
Yuan Y, Shi Y, Liu Z, Fan Y, Liu M, Ningjing M, Li Y. Promotional Properties of ACC Deaminase-Producing Bacterial Strain DY1-3 and Its Enhancement of Maize Resistance to Salt and Drought Stresses. Microorganisms 2023; 11:2654. [PMID: 38004666 PMCID: PMC10673606 DOI: 10.3390/microorganisms11112654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Salt stress and drought stress can decrease the growth and productivity of agricultural crops. Plant growth-promoting bacteria (PGPB) may protect and promote plant growth at abiotic stress. The aim of this study was to search for bacterial strains that can help crops resist rises in drought and salt stresses, to improve crop seed resistance under drought and salt stresses, and to investigate the effect of bacterial strains that can help crop resist external stresses under different stress conditions. Pseudomonas DY1-3, a strain from the soil under the glacier moss community of Tien Shan No. 1, was selected to investigate its growth-promoting effects. Previous studies have shown that this strain is capable of producing ACC (1-aminocyclopropane-1-carboxylic acid) deaminase. In this experiment, multifunctional biochemical test assays were evaluated to determine their potential as PGPB and their bacterial growth-promoting properties and stress-resistant effects on maize plants were verified through seed germination experiments and pot experiments. The results showed that strain DY1-3 has good salt and drought tolerance, as well as the ability to melt phosphorus, fix nitrogen, and produce iron carriers, IAA, EPS, and other pro-biomasses. This study on the growth-promoting effects of the DY1-3 bacterial strain on maize seeds revealed that the germination rate, primary root length, germ length, number of root meristems, and vigor index of the maize seeds were increased after soaking them in bacterial solution under no-stress, drought-stress, and salt-stress environments. In the potting experiments, seedlings in the experimental group inoculated with DY1-3 showed increased stem thicknesses, primary root length, numbers of root meristems, and plant height compared to control seedlings using sterile water. In the study on the physiological properties of the plants related to resistance to stress, the SOD, POD, CAT, and chlorophyll contents of the seedlings in the experimental group, to which the DY1-3 strain was applied, were higher than those of the control group of seedlings to which the bacterial solution was not applied. The addition of the bacterial solution reduced the content of MDA in the experimental group seedlings, which indicated that DY1-3 could positively affect the promotion of maize seedlings and seeds against abiotic stress. In this study, it was concluded that strain DY1-3 is a valuable strain for application, which can produce a variety of pro-biotic substances to promote plant growth in stress-free environments or to help plants resist abiotic stresses. In addition to this, the strain itself has good salt and drought tolerance, making it an option to help crops grown in saline soils to withstand abiotic stresses, and a promising candidate for future application in agricultural biofertilizers.
Collapse
Affiliation(s)
| | | | | | - Yonghong Fan
- National Demonstration Center for Experimental Biology Education, Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830017, China (Z.L.)
| | | | | | | |
Collapse
|
9
|
Tian Q, Gong Y, Liu S, Ji M, Tang R, Kong D, Xue Z, Wang L, Hu F, Huang L, Qin S. Endophytic bacterial communities in wild rice ( Oryza officinalis) and their plant growth-promoting effects on perennial rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1184489. [PMID: 37645460 PMCID: PMC10461003 DOI: 10.3389/fpls.2023.1184489] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023]
Abstract
Endophytic bacterial microbiomes of plants contribute to the physiological health of the host and its adaptive evolution and stress tolerance. Wild rice possesses enriched endophytic bacteria diversity, which is a potential resource for sustainable agriculture. Oryza officinalis is a unique perennial wild rice species in China with rich genetic resources. However, endophytic bacterial communities of this species and their plant growth-promoting (PGP) traits remain largely unknown. In this study, endophytic bacteria in the root, stem, and leaf tissues of O. officinalis were characterized using 16S rRNA gene Illumina sequencing. Culturable bacterial endophytes were also isolated from O. officinalis tissues and characterized for their PGP traits. The microbiome analysis showed a more complex structure and powerful function of the endophytic bacterial community in roots compared with those in other tissue compartments. Each compartment had its specific endophytic bacterial biomarkers, including Desulfomonile and Ruminiclostridium for roots; Lactobacillus, Acinetobacter, Cutibacterium and Dechloromonas for stems; and Stenotrophomonas, Chryseobacterium, Achromobacter and Methylobacterium for leaves. A total of 96 endophytic bacterial strains with PGP traits of phosphate solubilization, potassium release, nitrogen fixation, 1-aminocyclopropane-1-carboxylate (ACC) deaminase secretion, and siderophore or indole-3-acetic acid (IAA) production were isolated from O. officinalis. Among them, 11 strains identified as Enterobacter mori, E. ludwigii, E. cloacae, Bacillus amyloliquefaciens, B. siamensis, Pseudomonas rhodesiae and Kosakonia oryzae were selected for inoculation of perennial rice based on their IAA production traits. These strains showed promising PGP effects on perennial rice seedlings. They promoted plants to form a strong root system, stimulate biomass accumulation, and increase chlorophyll content and nitrogen uptake, which could fulfil the ecologically sustainable cultivation model of perennial rice. These results provide insights into the bacterial endosphere of O. officinalis and its application potential in perennial rice. There is the prospect of mining beneficial endophytic bacteria from wild rice species, which could rewild the microbiome of cultivated rice varieties and promote their growth.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fengyi Hu
- Key Laboratory of Biology and Germplasm Innovation of Perennial Rice From Ministry of Agriculture and Rural Affairs, School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Liyu Huang
- Key Laboratory of Biology and Germplasm Innovation of Perennial Rice From Ministry of Agriculture and Rural Affairs, School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Shiwen Qin
- Key Laboratory of Biology and Germplasm Innovation of Perennial Rice From Ministry of Agriculture and Rural Affairs, School of Agriculture, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
10
|
Warsi ZI, Khatoon K, Singh P, Rahman LU. Enhancing drought resistance in Pogostemon cablin (Blanco) Benth. through overexpression of ACC deaminase gene using thin cell layer regeneration system. FRONTIERS IN PLANT SCIENCE 2023; 14:1238838. [PMID: 37636084 PMCID: PMC10452012 DOI: 10.3389/fpls.2023.1238838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023]
Abstract
Pogostemon cablin cultivation faces massive constraints because of its susceptability to drought stress that reduces patchouli propagation and oil yield. The present study has achieved an efficient and rapid direct regeneration system for the transgenic production of P. cablin using Agrobacterium-mediated genetic transformation. To establish an efficient regeneration protocol for fast in-vitro multiplication of patchouli plants, leaf, petiole, and transverse thin cell layer (tTCL) explants were used and inoculated on an MS medium supplemented with different combinations of phytohormones. A comparative study showed a maximum regeneration frequency of 93.30 ± 0.56% per explant was obtained from leaf segments on optimal MS medium fortified with 0.2mg/L BAP and 0.1mg/L NAA. Leaf and petiole explants took 25-35 days to regenerate while tTCL section showed regeneration in just 15-20 days on the same medium. Subsequently, productive genetic transformation protocol OD600 0.6, AS 200µM, 30mg/L kanamycin, and infection time 5 min. was standardized and best-suited explants were infected at optimum conditions from the Agrobacterium tumefaciens (LBA 4404) strain harboring ACC deaminase to generate transgenic P. cablin Benth. (CIM-Samarth) plants. The investigation suggested that the optimized protocol provides a maximum transformation frequency of 42 ± 1.9% in 15-20 days from tTCL. The transgenic plants were shifted to the greenhouse with a 52.0 ± 0.8% survival frequency. A molecular docking study confirmed significant binding affinity of ligand ACC with ACC deaminase at the catalytic site, and ligand interactions showed four H-bonds at the binding pocket with amino acids Cys-196, Val-198, Thr-199, and Gly-200 that validate gene relative expression in transgenic plants. Among all transgenic acclimatized greenhouse-grown patchouli plants, line PT4 showed improved drought resistance under severe water stress as its RWC was 71.7 ± 2.3% to 75.7 ± 2.1% which is greater than the RWC of the control plant, 58.30 ± 0.21%. Analysis of the other physiological indicators, H2O2, chlorophyll content, and ROS result support drought resistance ability. Our study concluded that the first report on P. cablin, tTCL direct regeneration, and standardized transformation protocol created a new opportunity for genetic manipulation to achieve drought-resistant patchouli plants for cultivation in all seasons at the commercial level.
Collapse
Affiliation(s)
| | | | | | - Laiq Ur Rahman
- Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial Research (CSIR), Lucknow, India
| |
Collapse
|
11
|
Ma K, Hu X, Nambu K, Ueda D, Ichimaru N, Fujino M, Li XK. Coral calcium carried hydrogen ameliorates the severity of non-alcoholic steatohepatitis induced by a choline deficient high carbohydrate fat-free diet in elderly rats. Sci Rep 2023; 13:11646. [PMID: 37468618 DOI: 10.1038/s41598-023-38856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023] Open
Abstract
Hydrogen has been reported to act as an antioxidant, anti-apoptosis and anti-inflammatory agent. Coral calcium carried hydrogen (G2-SUISO) is a safer and more convenient form of hydrogen agent than others. The mechanism underlying the hepatoprotective effects of G2-SUISO using an elderly non-alcoholic steatohepatitis (NASH) rat model was investigated. Two days after fasting, six-month-old elderly male F344/NSlc rats were given a choline deficient high carbohydrate fat-free (CDHCFF) diet from day 0 to day 3 as CDHCFF control group, and then switched to a normal diet from days 4 to 7 with or without 300 mg/kg G2-SUISO. Rats in each group were finally being sacrificed on day 3 or day 7. In the CDHCFF diet group, G2-SUISO decreased the liver weight-to-body weight ratio, the serum AST, ALT, total cholesterol levels, inflammatory infiltration, pro-inflammatory cytokine expression and lipid droplets with inhibiting lipogenic pathways by reducing sterol regulatory element-binding protein-1c, acetyl-CoA carboxylase and fatty acid synthase gene expression compared with the CDHCFF diet alone. G2-SUISO had beneficial effects of anti-apoptosis as well the down-regulation of pro-apoptotic molecules including NF-κB, caspase-3, caspase-9 and Bax. These findings suggest that G2-SUISO treatment exerts a significant hepatoprotective effect against steatosis, inflammation and apoptosis in elderly NASH rats.
Collapse
Affiliation(s)
- Kuai Ma
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Xin Hu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | | | - Daisuke Ueda
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
| |
Collapse
|
12
|
Kisvarga S, Hamar-Farkas D, Ördögh M, Horotán K, Neményi A, Kovács D, Orlóci L. The Role of the Plant-Soil Relationship in Agricultural Production-With Particular Regard to PGPB Application and Phytoremediation. Microorganisms 2023; 11:1616. [PMID: 37375118 DOI: 10.3390/microorganisms11061616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Plant growth-promoting bacteria (PGPB) and other living organisms can help with the challenges of modern agriculture. PGPB offer ever-expanding possibilities for science and commerce, and the scientific results have been very advanced in recent years. In our current work, we collected the scientific results of recent years and the opinions of experts on the subject. Opinions and results on soil-plant relations, as well as the importance of PGPB and the latest related experiences, are important topics of our review work, which highlights the scientific results of the last 3-4 years. Overall, it can be concluded from all these observations that the bacteria that promote plant development are becoming more and more important in agriculture almost all over the world, thus, promoting more sustainable and environmentally conscious agricultural production and avoiding the use of artificial fertilizers and chemicals. Since many mechanisms of action, namely biochemical and operational processes, are still under investigation, a new emerging scientific direction is expected in the coming years with regard to PGPB, microbial, and other plant growth-stimulating substances, in which omics and microbial modulation also play a leading role.
Collapse
Affiliation(s)
- Szilvia Kisvarga
- Ornamental Plant and Green System Management Research Group, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences (MATE), 1223 Budapest, Hungary
| | - Dóra Hamar-Farkas
- Ornamental Plant and Green System Management Research Group, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences (MATE), 1223 Budapest, Hungary
- Department of Floriculture and Dendrology, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - Máté Ördögh
- Department of Floriculture and Dendrology, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - Katalin Horotán
- Zoological Department, Institute of Biology, Eszterházy Károly Catholic University, 3300 Eger, Hungary
| | - András Neményi
- Ornamental Plant and Green System Management Research Group, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences (MATE), 1223 Budapest, Hungary
| | - Dezső Kovács
- Department of Floriculture and Dendrology, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - László Orlóci
- Ornamental Plant and Green System Management Research Group, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences (MATE), 1223 Budapest, Hungary
| |
Collapse
|
13
|
Shi Y, Yuan Y, Feng Y, Zhang Y, Fan Y. Bacterial Diversity Analysis and Screening for ACC Deaminase-Producing Strains in Moss-Covered Soil at Different Altitudes in Tianshan Mountains-A Case Study of Glacier No. 1. Microorganisms 2023; 11:1521. [PMID: 37375023 DOI: 10.3390/microorganisms11061521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The elevation of the snowline of the No. 1 Glacier in the Tianshan Mountains is increasing due to global warming, which has created favorable conditions for moss invasion and offers an opportunity to investigate the synergistic effects of incipient succession by mosses, plants, and soils. In this study, the concept of altitude distance was used instead of succession time. To investigate the changes of bacterial-community diversity in moss-covered soils during glacial degeneration, the relationship between bacterial community structure and environmental factors was analyzed and valuable microorganisms in moss-covered soils were explored. To do so, the determination of soil physicochemical properties, high-throughput sequencing, the screening of ACC-deaminase-producing bacteria, and the determination of ACC-deaminase activity of strains were performed on five moss-covered soils at different elevations. The results showed that the soil total potassium content, soil available phosphorus content, soil available potassium content, and soil organic-matter content of the AY3550 sample belt were significantly different compared with those of other sample belts (p < 0.05). Secondly, there was a significant difference (p < 0.05) in the ACE index or Chao1 index between the moss-covered-soil AY3550 sample-belt and the AY3750 sample-belt bacterial communities as the succession progressed. The results of PCA analysis, RDA analysis, and cluster analysis at the genus level showed that the community structure of the AY3550 sample belt and the other four sample belts differed greatly and could be divided into two successional stages. The enzyme activities of the 33 ACC-deaminase-producing bacteria isolated and purified from moss-covered soil at different altitudes ranged from 0.067 to 4.7375 U/mg, with strains DY1-3, DY1-4, and EY2-5 having the highest enzyme activities. All three strains were identified as Pseudomonas by morphology, physiology, biochemistry, and molecular biology. This study provides a basis for the changes in moss-covered soil microhabitats during glacial degradation under the synergistic effects of moss, soil, and microbial communities, as well as a theoretical basis for the excavation of valuable microorganisms under glacial moss-covered soils.
Collapse
Affiliation(s)
- Yanlei Shi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Ye Yuan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Yingying Feng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Yinghao Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Yonghong Fan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
14
|
Orozco-Mosqueda MDC, Santoyo G, Glick BR. Recent Advances in the Bacterial Phytohormone Modulation of Plant Growth. PLANTS (BASEL, SWITZERLAND) 2023; 12:606. [PMID: 36771689 PMCID: PMC9921776 DOI: 10.3390/plants12030606] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Phytohormones are regulators of plant growth and development, which under different types of stress can play a fundamental role in a plant's adaptation and survival. Some of these phytohormones such as cytokinin, gibberellin, salicylic acid, auxin, and ethylene are also produced by plant growth-promoting bacteria (PGPB). In addition, numerous volatile organic compounds are released by PGPB and, like bacterial phytohormones, modulate plant physiology and genetics. In the present work we review the basic functions of these bacterial phytohormones during their interaction with different plant species. Moreover, we discuss the most recent advances of the beneficial effects on plant growth of the phytohormones produced by PGPB. Finally, we review some aspects of the cross-link between phytohormone production and other plant growth promotion (PGP) mechanisms. This work highlights the most recent advances in the essential functions performed by bacterial phytohormones and their potential application in agricultural production.
Collapse
Affiliation(s)
- Ma. del Carmen Orozco-Mosqueda
- Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México/I.T. Celaya, Celaya 38110, Guanajuato, Mexico
| | - Gustavo Santoyo
- Genomic Diversity Laboratory, Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacan, Mexico
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
15
|
Sun S, Xue R, Liu M, Wang L, Zhang W. Research progress and hotspot analysis of rhizosphere microorganisms based on bibliometrics from 2012 to 2021. Front Microbiol 2023; 14:1085387. [PMID: 36910227 PMCID: PMC9995608 DOI: 10.3389/fmicb.2023.1085387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/24/2023] [Indexed: 02/25/2023] Open
Abstract
Rhizosphere microorganisms are important organisms for plant growth promotion and bio-control. To understand the research hot topics and frontier trends of rhizosphere microorganisms comprehensively and systematically, we collected 6,056 publications on rhizosphere microorganisms from Web of Science and performed a bibliometric analysis by CiteSpace 6.1.3 and R 5.3.1. The results showed that the total number of references issued in this field has been on the rise in the past decades. China, India, and Pakistan are the top three countries in terms of the number of articles issued, while Germany, the United States, and Spain were the countries with the highest number of co-published papers with other countries. The core research content in this field were the bio-control, bacterial community, ACC deaminase, phytoremediation, induced systematic resistance, and plant growth promotion. Seeding growth, Bacillus velezensis, plant-growth, and biological-control were currently and may be the highlights in the field of rhizosphere microorganisms research for a long time in the future. The above study results quantitatively, objectively, and scientifically described the research status and research focus of rhizosphere microorganisms from 2012 to 2021 from the perspective of referred papers, with a view to promoting in-depth research in this field and providing reference information for scholars in related fields to refine research trends and scientific issues.
Collapse
Affiliation(s)
- Shangsheng Sun
- Engineering Center for Environmental DNA Technology and Aquatic Ecological Health Assessment, Shanghai Ocean University, Shanghai, China
| | - Ruipeng Xue
- Engineering Center for Environmental DNA Technology and Aquatic Ecological Health Assessment, Shanghai Ocean University, Shanghai, China
| | - Mengyue Liu
- Engineering Center for Environmental DNA Technology and Aquatic Ecological Health Assessment, Shanghai Ocean University, Shanghai, China
| | - Liqing Wang
- Engineering Center for Environmental DNA Technology and Aquatic Ecological Health Assessment, Shanghai Ocean University, Shanghai, China.,Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Wei Zhang
- Engineering Center for Environmental DNA Technology and Aquatic Ecological Health Assessment, Shanghai Ocean University, Shanghai, China.,Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
16
|
Meena M, Yadav G, Sonigra P, Nagda A, Mehta T, Swapnil P, Marwal A, Zehra A. Advantageous features of plant growth-promoting microorganisms to improve plant growth in difficult conditions. PLANT-MICROBE INTERACTION - RECENT ADVANCES IN MOLECULAR AND BIOCHEMICAL APPROACHES 2023:279-296. [DOI: 10.1016/b978-0-323-91876-3.00019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
17
|
Haque MA, Hossain MS, Ahmad I, Akbor MA, Rahman A, Manir MS, Patel HM, Cho KM. Unveiling chlorpyrifos mineralizing and tomato plant-growth activities of Enterobacter sp. strain HSTU-ASh6 using biochemical tests, field experiments, genomics, and in silico analyses. Front Microbiol 2022; 13:1060554. [PMID: 36523825 PMCID: PMC9745158 DOI: 10.3389/fmicb.2022.1060554] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/07/2022] [Indexed: 07/29/2023] Open
Abstract
The chlorpyrifos-mineralizing rice root endophyte Enterobacter sp. HSTU-ASh6 strain was identified, which enormously enhanced the growth of tomato plant under epiphytic conditions. The strain solubilizes phosphate and grew in nitrogen-free Jensen's medium. It secreted indole acetic acid (IAA; 4.8 mg/mL) and ACC deaminase (0.0076 μg/mL/h) and hydrolyzed chlorpyrifos phosphodiester bonds into 3,5,6-trichloro-2-pyridinol and diethyl methyl-monophosphate, which was confirmed by Gas Chromatography - Tandem Mass Spectrometry (GC-MS/MS) analysis. In vitro and in silico (ANI, DDH, housekeeping genes and whole genome phylogenetic tree, and genome comparison) analyses confirmed that the strain belonged to a new species of Enterobacter. The annotated genome of strain HSTU-ASh6 revealed a sets of nitrogen-fixing, siderophore, acdS, and IAA producing, stress tolerance, phosphate metabolizing, and pesticide-degrading genes. The 3D structure of 28 potential model proteins that can degrade pesticides was validated, and virtual screening using 105 different pesticides revealed that the proteins exhibit strong catalytic interaction with organophosphorus pesticides. Selected docked complexes such as α/β hydrolase-crotoxyphos, carboxylesterase-coumaphos, α/β hydrolase-cypermethrin, α/β hydrolase-diazinon, and amidohydrolase-chlorpyrifos meet their catalytic triads in visualization, which showed stability in molecular dynamics simulation up to 100 ns. The foliar application of Enterobacter sp. strain HSTU-ASh6 on tomato plants significantly improved their growth and development at vegetative and reproductive stages in fields, resulting in fresh weight and dry weight was 1.8-2.0-fold and 1.3-1.6-fold higher in where urea application was cut by 70%, respectively. Therefore, the newly discovered chlorpyrifos-degrading species Enterobacter sp. HSTU-ASh6 could be used as a smart biofertilizer component for sustainable tomato cultivation.
Collapse
Affiliation(s)
- Md. Azizul Haque
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science & Technology University, Dinajpur, Bangladesh
| | - Md. Shohorab Hossain
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science & Technology University, Dinajpur, Bangladesh
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Md. Ahedul Akbor
- Institute of National Analytical Research and Services, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| | - Aminur Rahman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf, Saudi Arabia
| | - Md. Serajum Manir
- Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Research Establishment, Dhaka, Bangladesh
| | - Harun M. Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Kye Man Cho
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
18
|
Kumar P, Singh S, Pranaw K, Kumar S, Singh B, Poria V. Bioinoculants as mitigators of multiple stresses: A ray of hope for agriculture in the darkness of climate change. Heliyon 2022; 8:e11269. [PMID: 36339753 PMCID: PMC9634370 DOI: 10.1016/j.heliyon.2022.e11269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/04/2022] [Accepted: 10/21/2022] [Indexed: 11/28/2022] Open
Abstract
Plant encounters various biotic and abiotic stresses, that affect agricultural productivity and reduce farmer's income especially under changing global climate. These environmental stresses can advance plant senescence by inducing osmotic stress, nutrient stress, hormonal imbalance, production of oxygen radicals, and ion toxicity, etc. Additionally, these stresses are not limited to plant health but also deteriorate soil health by affecting the microbial diversity of soil. To tackle this global delinquent of agriculture, several methods are suggested to ameliorate the negative effect of different types of stresses, the application of beneficial microorganisms or bioinoculants is one of them. Beneficial microorganisms that are used as bioinoculants not only facilitate plant growth by fulfilling the nutrient requirements but also assist the plant to withstand these stresses. These microorganisms produce certain chemicals such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase, phytohormones, antioxidants, extracellular polysaccharide (EPS), siderophores, antibiotics, and volatile organic compounds (VOCs), etc. which help the plants to mitigate various stresses. Besides, these microbes also activate plant defence responses. Thus, these bioinoculants can effectively replace chemical inputs to supplement nutrient requirements and mitigation of multiple stresses in plants.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, University of Warsaw, Miecznikowa, 102-096 Warsaw, Poland
| | - Sandeep Kumar
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Balkar Singh
- Department of Botany, Arya PG College, Panipat, Haryana, 132103, India
| | - Vikram Poria
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| |
Collapse
|
19
|
Joe MM, Benson A, Walitang DI, Sa T. Development of ACCd producer A. brasilense mutant and the effect of inoculation on red pepper plants. 3 Biotech 2022; 12:252. [PMID: 36060892 PMCID: PMC9428088 DOI: 10.1007/s13205-022-03300-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/10/2022] [Indexed: 11/01/2022] Open
Abstract
Azospirillum is a plant-growth-promoting bacterium capable of colonizing and promoting growth in numerous crops of agronomic and horticultural significance. The objective of the present study is to develop Azospirillum brasilense CW903-acdS flocculating cells and to test their performance in promoting the growth of red pepper plants grown under salt stress. The flocculating CW903-acdS recorded 12.6, 37.3 and 91.6% higher ACCd activity at 50, 100 and 150 mM NaCl concentrations, respectively, compared to non-flocculating (normal) CW903-acdS cells. The flocculating CW903-acdS recorded 29.8 and 24.5% higher specific growth rates compared to non-flocculating CW903-acdS cells at 100 and 150 mM NaCl concentration, respectively. The flocculating CW903-acdS recorded 29.7 and 24.5% higher production of IAA-like molecule compared to the non-flocculating CW903-acdS at 100 and 150 mM NaCl concentration, respectively. Similarly, 27.5 and 25.7% higher ARA activity was observed with the flocculating CW903-acdS compared to the non-flocculating CW903-acdS type cells at 100 and 150 mM NaCl concentration, respectively. In the pot culture experiment at 50 and 100 mM NaCl concentration, CW903-acdS inoculated pepper plants recorded 9.4 and 4.7% less ethylene emission, when compared to plants inoculated with non-flocculating CW903-acdS cells. At 100 mM NaCl concentration, plants inoculated with flocculating CW903-acdS recorded 27.5% higher dry weight compared to plants inoculated with non-flocculating CW903-acdS cells. This study implied the significance of flocculating CW903-acdS with better stress amelioration and plant growth promotion in red pepper plants grown under salt-affected conditions due to the positive influence of ACCd activity.
Collapse
Affiliation(s)
- Manoharan Melvin Joe
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
- Department of Microbiology, SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Chengalpattu, India
| | - Abitha Benson
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, Chengalpattu, Tamil Nadu India
| | - Denver I. Walitang
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
- College of Agriculture, Fisheries and Forestry, Romblon State University, 5505 Romblon, Philippines
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
- The Korean Academy of Science and Technology, Seongnam, Republic of Korea
| |
Collapse
|
20
|
Molecular Characterization of Bacterial Isolates from Soil Samples and Evaluation of their Antibacterial Potential against MDRS. Molecules 2022; 27:molecules27196281. [PMID: 36234819 PMCID: PMC9573682 DOI: 10.3390/molecules27196281] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Some soil microbes, with their diverse inhabitance, biologically active metabolites, and endospore formation, gave them characteristic predominance and recognition among other microbial communities. The present study collected ten soil samples from green land, agricultural and marshy soil sites of Khyber Pakhtunkhwa, Pakistan. After culturing on described media, the bacterial isolates were identified through phenotypic, biochemical and phylogenetic analysis. Our phylogenetic analysis revealed three bacterial isolates, A6S7, A1S6, and A1S10, showing 99% nucleotides sequence similarity with Brevibacillus formosus, Bacillus Subtilis and Paenibacillus dendritiformis. The crude extract was prepared from bacterial isolates to assess the anti-bacterial potential against various targeted multidrug-resistant strains (MDRS), including Acinetobacter baumannii (ATCC 19606), Methicillin-resistant Staphylococcus aureus (MRSA) (BAA-1683), Klebsiella pneumoniae (ATCC 13883), Pseudomonas aeruginosa (BAA-2108), Staphylococcus aureus (ATCC 292013), Escherichia coli (ATCC25922) and Salmonella typhi (ATCC 14028). Our analysis revealed that all bacterial extracts possess activity against Gram-negative and Gram-positive bacteria at a concentration of 5 mg/mL, efficiently restricting the growth of E. coli compared with positive control ciprofloxacin. The study concluded that the identified species have the potential to produce antimicrobial compounds which can be used to control different microbial infections, especially MDRS. Moreover, the analysis of the bacterial extracts through GC-MS indicated the presence of different antimicrobial compounds such as propanoic acid, oxalic acid, phenol and hexadecanoic acid.
Collapse
|
21
|
Contrasting genome patterns of two pseudomonas strains isolated from the date palm rhizosphere to assess survival in a hot arid environment. World J Microbiol Biotechnol 2022; 38:207. [PMID: 36008694 DOI: 10.1007/s11274-022-03392-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 08/13/2022] [Indexed: 10/15/2022]
Abstract
The plant growth-promoting rhizobacteria (PGPRs) improve plant growth and fitness by multiple direct (nitrogen fixation and phosphate solubilization) and indirect (inducing systematic resistance against phytopathogens, soil nutrient stabilization, and maintenance) mechanisms. Nevertheless, the mechanisms by which PGPRs promote plant growth in hot and arid environments remain poorly recorded. In this study, a comparative genome analysis of two phosphate solubilizing bacteria, Pseudomonas atacamensis SM1 and Pseudomonas toyotomiensis SM2, isolated from the rhizosphere of date palm was performed. The abundance of genes conferring stress tolerance (chaperones, heat shock genes, and chemotaxis) and supporting plant growth (plant growth hormone, root colonization, nitrogen fixation, and phosphate solubilization) were compared among the two isolates. This study further evaluated their functions, metabolic pathways, and evolutionary relationship. Results show that both bacterial strains have gene clusters required for plant growth promotion (phosphate solubilization and root colonization), but it is more abundant in P. atacamensis SM1 than in P. toyotomiensis SM2. Genes involved in stress tolerance (mcp, rbs, wsp, and mot), heat shock, and chaperones (hslJ and hslR) were also more common in P. atacamensis SM1. These findings suggest that P. atacamensis SM1could have better adaptability to the hot and arid environment owing to a higher abundance of chaperone genes and heat shock proteins. It may promote plant growth owing to a higher load of root colonization and phosphate solubilization genes and warrants further in vitro study.
Collapse
|
22
|
Moon YS, Ali S. Isolation and identification of multi-trait plant growth-promoting rhizobacteria from coastal sand dune plant species of Pohang beach. Folia Microbiol (Praha) 2022; 67:523-533. [PMID: 35211835 DOI: 10.1007/s12223-022-00959-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/02/2022] [Indexed: 11/27/2022]
Abstract
Rhizobacteria are root-associated bacteria that influence plant growth by various direct and indirect mechanisms. In quest of efficient plant growth-promoting rhizobacteria (PGPR) with multiple plant growth-promoting traits, a total of 52 rhizobacterial isolates were isolated from the rhizospheric soil collected at Pohang beach, Republic of Korea. The bacterial isolates were evaluated in vitro for their plant growth-promoting traits like production of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, indole-3-acetic acid (IAA), siderophore, and phosphate solubilization activities. More than 28% of the isolates revealed all of the multi-trait plant growth-promoting activities, whereas 11.54% exhibited robust results for producing IAA, ACC deaminase, siderophore, and phosphate solubilization activities. Similarly, 36% isolates were capable for the production of IAA, siderophore, and ACC deaminase, while 32% revealed phosphate solubilization and siderophore production. The isolates with prominent multi-trait plant growth-promoting activities were identified based on 16S rRNA gene sequences and matched to Pseudomonas koreensis-(S4T10), Pseudomonas fluorescens-(S3B1), Serratia fonticola-(S1T1), Sphingobacterium multivorum-(S1B1), Brevundimonas vesicularis-(S1T13), and Arthrobacter sp.-(S2T9) with 99-100% similarity. Our results confirm that further evaluation of these PGPR (exhibiting multi-traits for plant growth promotion) is required on crop plants to reveal their pragmatic role under normal and abiotic stress conditions and add into the consortium of biofertilizers for sustainable agriculture.
Collapse
Affiliation(s)
- Yong-Sun Moon
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan, Republic of Korea.
| |
Collapse
|