1
|
Ali DC, Pan T, Wu Q, Wang Z. Oil-water interfaces of Pickering emulsions: microhabitats for living cell biocatalysis. Trends Biotechnol 2024:S0167-7799(24)00275-0. [PMID: 39395882 DOI: 10.1016/j.tibtech.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/14/2024]
Abstract
Based on the size of bacterial cells and bacterial surface hydrophobicity, some bacteria meet the requirements of Pickering particles to stabilize Pickering emulsions. Here, we discuss the oil-water interfaces of bacteria-stabilized Pickering emulsions as microhabitats for microbial metabolism of oil-soluble chemicals. The correlation between living bacteria-stabilized Pickering emulsions and microhabitats of living bacteria at oil-water interfaces offers a new perspective to study bioprocess engineering at the mesoscale between the cell and reactor scales, which not only provides novel parameters to optimize the bioprocess engineering, but also unravels the paradox of some natural phenomena related to living cell biocatalysis.
Collapse
Affiliation(s)
- Daniel Chikere Ali
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China
| | - Tao Pan
- Jiangxi Province Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Qingping Wu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China
| | - Zhilong Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China.
| |
Collapse
|
2
|
Ma Y, Shao T, Niu Q, Jilili Y, Zhen W. Superhydrophobic poly(lactic acid) membrane prepared with the induction of modified carbon dots for efficient separation of water-in-oil emulsions. Int J Biol Macromol 2024; 280:136001. [PMID: 39326624 DOI: 10.1016/j.ijbiomac.2024.136001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Superhydrophobic separation membranes are considered to be one of the most promising technologies for oil-water separation. However, the plastic waste generated from discarded membranes poses a challenge to the preparation of degraded superhydrophobic separation membranes for achieving eco-friendly separation. In this study, superhydrophobic poly(lactic acid) (PLA) membranes were fabricated using a non-solvent induced phase separation method assisted by l-cysteine modified carbon dots (Cys-CDs). The synergistic effect of Cys-CDs-induced crystallization behavior of PLA and the phase separation process results in the evolution of the surface of the PLA-based membrane from a pistil-like structure to a multi-level micro-nano structure composed of dense lamellar nanofibers and microspheres with an increase in Cys-CDs content. At a Cys-CDs content of 5 wt%, the surface roughness of PLA-based separation membrane reached its maximum, and the water contact angle was as high as 159°. Remarkably, the superhydrophobic Cys-CDs/PLA membrane exhibited promising performance in the separation of water-in-oil emulsions, with a rejection rate of 99.98% and a flux of 315.74 L·m-2·h-1·bar-1. Additionally, the superhydrophobic Cys-CDs/PLA separation membrane also demonstrates impressive properties such as acid-alkali resistance and rapid recycling into high-value chemicals. Consequently, this rapidly recoverable superhydrophobic porous Cys-CDs/PLA membrane shows great potential for practical applications in actual oil-water separation.
Collapse
Affiliation(s)
- Yumiao Ma
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China; College of Chemical and Environmental Engineering, Xinjiang Institute of Engineering, Urumqi 830023, Xinjiang, China
| | - Tengfei Shao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China
| | - Qingqing Niu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China
| | - Yikelamu Jilili
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China
| | - Weijun Zhen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| |
Collapse
|
3
|
Yin C, Chen X, Zhang H, Xue Y, Dong H, Mao X. Pickering emulsion biocatalysis: Bridging interfacial design with enzymatic reactions. Biotechnol Adv 2024; 72:108338. [PMID: 38460741 DOI: 10.1016/j.biotechadv.2024.108338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/21/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Non-homogeneous enzyme-catalyzed systems are more widely used than homogeneous systems. Distinguished from the conventional biphasic approach, Pickering emulsion stabilized by ultrafine solid particles opens up an innovative platform for biocatalysis. Their vast specific surface area significantly enhances enzyme-substrate interactions, dramatically increasing catalytic efficiency. This review comprehensively explores various aspects of Pickering emulsion biocatalysis, provides insights into the multiple types and mechanisms of its catalysis, and offers strategies for material design, enzyme immobilization, emulsion formation control, and reactor design. Characterization methods are summarized for the determination of drop size, emulsion type, interface morphology, and emulsion potential. Furthermore, recent reports on the design of stimuli-responsive reaction systems are reviewed, enabling the simple control of demulsification. Moreover, the review explores applications of Pickering emulsion in single-step, cascade, and continuous flow reactions and outlines the challenges and future directions for the field. Overall, we provide a review focusing on Pickering emulsions catalysis, which can draw the attention of researchers in the field of catalytic system design, further empowering next-generation bioprocessing.
Collapse
Affiliation(s)
- Chengmei Yin
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Xiangyao Chen
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Haiyang Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Yong Xue
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Hao Dong
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| |
Collapse
|
4
|
Ali DC, Zhang X, Wang Z. Surfactants Influencing the Biocatalytic Performance of Natural Alkane-Degrading Bacteria via Interfacial Biocatalysis in Pickering Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:291-301. [PMID: 38145885 DOI: 10.1021/acs.langmuir.3c02543] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Setting superhydrophobic Mycobacterium sp. as an example, the hydrophobic bacteria acting as demulsifying agents of surfactant-stabilized conventional emulsions, vice versa, the synergistic/antagonistic influence of nonionic surfactants (Tween 80 or Span 80) on the stability of the bacteria-stabilized Pickering emulsions was investigated. At the same time, the activated/suppression effect of nonionic surfactants on microbial degradation of tetradecane, which exhibited a dose-response relationship, was also found. The hydrophobic bacteria acting as demulsifying agents and the suppression influence of nonionic surfactants on the biocatalytic performance (indexing as biomass) of natural alkane-degrading bacteria, believed to be totally separated concepts previously, are for the first time found to be closely related to in situ surface modification of bacteria with nonionic surfactants. During the degradation of tetradecane by Mycobacterium sp. in the presence of nonionic surfactants, demulsification due to the bacteria acting as demulsifying agents and interfacial biocatalysis in the bacteria-stabilized Pickering emulsions are involved, which provides useful information to select optimal dispersants for marine oil spills.
Collapse
Affiliation(s)
- Daniel Chikere Ali
- State Key Laboratory of Microbial Metabolism, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China
| | - Zhilong Wang
- State Key Laboratory of Microbial Metabolism, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China
| |
Collapse
|