1
|
Munhoz DR, Meng K, Wang L, Lwanga EH, Geissen V, Harkes P. Exploring the potential of earthworm gut bacteria for plastic degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172175. [PMID: 38575018 DOI: 10.1016/j.scitotenv.2024.172175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
The use of plastic mulch films in agriculture leads to the inevitable accumulation of plastic debris in soils. Here, we explored the potential of earthworm gut-inhabiting bacterial strains (Mycobacterium vanbaalenii (MV), Rhodococcus jostii (RJ), Streptomyces fulvissimus (SF), Bacillus simplex (BS), and Sporosarcina globispora (SG) to degrade plastic films (⌀ = 15 mm) made from commonly used polymers: low-density polyethylene film (LDPE-f), polylactic acid (PLA-f), polybutylene adipate terephthalate film (PBAT-f), and a commercial biodegradable mulch film, Bionov-B® (composed of Mater-Bi, a feedstock with PBAT, PLA and other chemical compounds). A 180-day experiment was conducted at room temperature (x̄ =19.4 °C) for different strain-plastic combinations under a low carbon media (0.1× tryptic soy broth). Results showed that the tested strain-plastic combinations did not facilitate the degradation of LDPE-f (treated with RJ and SF), PBAT-f (treated with BS and SG), and Bionov-B (treated with BS, MV, and SG). However, incubating PLA-f with SF triggered a reduction in the molecular weights and an increase in crystallinity. Therefore, we used PLA-f as model plastic to study the influence of temperature ("room temperature" & "30 °C"), carbon source ("carbon-free" & "low carbon supply"), and strain interactions ("single strains" & "strain mixtures") on PLA degradation. SF and SF + RJ treatments significantly fostered PLA degradation under 30 °C in a low-carbon media. PLA-f did not show any degradation in carbon-free media treatments. The competition between different strains in the same system likely hindered the performance of PLA-degrading strains. A positive correlation between the final pH of culture media and PLA-f weight loss was observed, which might reflect the pH-dependent hydrolysis mechanism of PLA. Our results situate SF and its co-culture with RJ strains as possible accelerators of PLA degradation in temperatures below PLA glass transition temperature (Tg). Further studies are needed to test the bioremediation feasibility in soils.
Collapse
Affiliation(s)
- Davi R Munhoz
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands.
| | - Ke Meng
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| | - Lang Wang
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| | - Esperanza Huerta Lwanga
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands; Agroecología, El Colegio de la Frontera Sur, Unidad Campeche, Av Polígono s/n, Cd. Industrial, Lerma, Campeche, Mexico
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| | - Paula Harkes
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| |
Collapse
|
2
|
Pan H, Yu T, Zheng Y, Ma H, Shan J, Yi X, Liu Y, Zhan J, Wang W, Zhou H. Isolation, characteristics, and poly(butylene adipate-co-terephthalate) (PBAT) degradation mechanism of a marine bacteria Roseibium aggregatum ZY-1. MARINE POLLUTION BULLETIN 2024; 201:116261. [PMID: 38537567 DOI: 10.1016/j.marpolbul.2024.116261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Marine microorganisms have been reported to degrade microplastics. However, the degradation mechanisms are still poorly understood. In this study, a bacterium Roseibium aggregatum ZY-1 was isolated from seawater, which can degrade poly(butylene adipate-co-terephthalate) (PBAT). The PBAT-PLA(polylactic acid, PLA) films, before and after degradation, were characterized by scanning electron microscope (SEM) and Fourier transform infrared spectrometer (FTIR), the weight loss rate and water contact angle were measured. The results indicate that ZY-1 colonized on PBAT-PLA film, changed the functional groups and decreased water contact angle of PBAT-PLA film. Moreover, liquid chromatography mass spectrometry (LC-MS) analysis reveales that PBAT was degraded into its oligomers (TB, BTB) and monomers (T, A) during 10 days, and adipic acid (A) could be used as a sole carbon source. The whole genome sequencing analyses illustrate the mechanisms and enzymes such as PETase, carboxylesterases, arylesterase (PpEst) and genes like pobA, pcaBCDFGHIJKT, dcaAEIJK, paaGHJ involved in PBAT degradation. Therefore, the R. aggregatum ZY-1 will be a promising candidate of PBAT degradation.
Collapse
Affiliation(s)
- Haixia Pan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Tianyi Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Yuan Zheng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Huiqing Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Jiajia Shan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Xianliang Yi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Yang Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Wenyuan Wang
- State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China.
| |
Collapse
|
3
|
Ferreira-Filipe DA, Paço A, Pinho B, Silva R, Silva SAM, Jesus F, Pereira JL, Duarte AC, Rocha-Santos TAP, Patrício-Silva AL. Microplastics from agricultural mulch films: Biodegradation and ecotoxicity in freshwater systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169287. [PMID: 38103621 DOI: 10.1016/j.scitotenv.2023.169287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
The application of bio-based biodegradable mulch films in agriculture has raised environmental concerns regarding their potential impacts on adjacent freshwater ecosystems. This study investigated the biodegradation of microplastics derived from a bio-based biodegradable mulch (bio-MPs) and its acute and chronic ecotoxicity considering relevant scenarios (up to 200 and 250 mg/kg of sediment, using pristine and/or UV-aged particles), using the fungus Penicillium brevicompactum and the dipteran Chironomus riparius as model organisms, respectively, due to their ecological relevance in freshwater environments. Fourier-transform infrared spectroscopy analysis suggested changes in the fungus's carbohydrate reserves and bio-MP degradation through the appearance of low molecular weight esters throughout a 28 day biodegradation test. In a short-term exposure (48 h), C. riparius larvae exposed to pristine or UV-aged bio-MPs had up to 2 particles in their gut. Exposure to pristine bio-MPs decreased larval aerobic metabolism (<20 %) and increased neurotransmission (>15 %), whereas exposure to UV-aged bio-MPs activated larval aerobic metabolism (>20 %) and increased antioxidant defences (catalase activity by >30 % and glutathione-s-transferase by >20 %) and neurotransmission (>30 %). Longer-term (28-d) exposure to UV-aged bio-MPs did not affect larval survival and growth nor the dipteran's emergence but increased male numbers (>30 %) at higher concentrations. This study suggests that the selected agricultural bio-based mulch film is prone to biodegradation by a naturally occurring fungus. However, there is a potential for endocrine disruption in the case of prolonged exposures to UV-aged microplastics. This study emphasises the importance of further research to elucidate the potential ecological effects of these plastic products, to ensure effective management practices, and to establish new regulations governing their use.
Collapse
Affiliation(s)
- Diogo A Ferreira-Filipe
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Paço
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruna Pinho
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rafael Silva
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sara A M Silva
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fátima Jesus
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana L Pereira
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Armando C Duarte
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Teresa A P Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Patrício-Silva
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|