Ouyang SP, Sun SY, Liu Q, Chen J, Chen GQ. Microbial transformation of benzene to cis-3,5-cyclohexadien-1,2-diols by recombinant bacteria harboring toluene dioxygenase gene tod.
Appl Microbiol Biotechnol 2007;
74:43-9. [PMID:
17021870 DOI:
10.1007/s00253-006-0637-6]
[Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 08/14/2006] [Accepted: 08/16/2006] [Indexed: 11/30/2022]
Abstract
Toluene dioxygenase (TDO) catalyzes asymmetric cis-dihydroxylation of aromatic compounds. To achieve high efficient biotransformation of benzene to benzene cis-diols, Pseudomonas putida KT2442, Pseudomonas stutzeri 1317, and Aeromonas hydrophila 4AK4 were used as hosts to express TDO gene tod. Plasmid pSPM01, a derivative of broad-host plasmid pBBR1MCS-2 harboring tod from plasmid pKST11, was constructed and introduced into the above three strains. Their abilities to catalyze the biotransformation of benzene to benzene cis-diols, namely, cis-3,5-cyclohexadien-1,2-diols abbreviated as DHCD, were examined. In shake-flask cultivation under optimized culture media and growth condition, benzene cis-diols production by recombinant P. putida KT2442 (pSPM01), P. stutzeri 1317 (pSPM01), and A. hydrophila 4AK4 (pSPM01) were 2.68, 2.13, and 1.17 g/l, respectively. In comparison, Escherichia coli JM109 (pSPM01) and E. coli JM109 (pKST11) produced 0.45 and 0.53 g/l of DHCD, respectively. When biotransformation was run in a 6-l fermenter, DHCD production in P. putida KT2442 (pSPM01) was approximately 60 g/l; this is the highest DHCD production yield reported so far.
Collapse