1
|
Vosshenrich J, Fritz J. [Accelerated musculoskeletal magnetic resonance imaging with deep learning-based image reconstruction at 0.55 T-3 T]. RADIOLOGIE (HEIDELBERG, GERMANY) 2024; 64:758-765. [PMID: 38864874 PMCID: PMC11422270 DOI: 10.1007/s00117-024-01325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/13/2024]
Abstract
CLINICAL/METHODICAL ISSUE Magnetic resonance imaging (MRI) is a central component of musculoskeletal imaging. However, long image acquisition times can pose practical barriers in clinical practice. STANDARD RADIOLOGICAL METHODS MRI is the established modality of choice in the diagnostic workup of injuries and diseases of the musculoskeletal system due to its high spatial resolution, excellent signal-to-noise ratio (SNR), and unparalleled soft tissue contrast. METHODOLOGICAL INNOVATIONS Continuous advances in hardware and software technology over the last few decades have enabled four-fold acceleration of 2D turbo-spin-echo (TSE) without compromising image quality or diagnostic performance. The recent clinical introduction of deep learning (DL)-based image reconstruction algorithms helps to minimize further the interdependency between SNR, spatial resolution and image acquisition time and allows the use of higher acceleration factors. PERFORMANCE The combined use of advanced acceleration techniques and DL-based image reconstruction holds enormous potential to maximize efficiency, patient comfort, access, and value of musculoskeletal MRI while maintaining excellent diagnostic accuracy. ACHIEVEMENTS Accelerated MRI with DL-based image reconstruction has rapidly found its way into clinical practice and proven to be of added value. Furthermore, recent investigations suggest that the potential of this technology does not yet appear to be fully harvested. PRACTICAL RECOMMENDATIONS Deep learning-reconstructed fast musculoskeletal MRI examinations can be reliably used for diagnostic work-up and follow-up of musculoskeletal pathologies in clinical practice.
Collapse
Affiliation(s)
- Jan Vosshenrich
- Department of Radiology, Grossman School of Medicine, New York University, 660 First Avenue, 10016, New York, NY, USA.
- Klinik für Radiologie und Nuklearmedizin, Universitätsspital Basel, Petersgraben 4, 4031, Basel, Schweiz.
| | - Jan Fritz
- Department of Radiology, Grossman School of Medicine, New York University, 660 First Avenue, 10016, New York, NY, USA
| |
Collapse
|
2
|
Vosshenrich J, Koerzdoerfer G, Fritz J. Modern acceleration in musculoskeletal MRI: applications, implications, and challenges. Skeletal Radiol 2024; 53:1799-1813. [PMID: 38441617 DOI: 10.1007/s00256-024-04634-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 08/09/2024]
Abstract
Magnetic resonance imaging (MRI) is crucial for accurately diagnosing a wide spectrum of musculoskeletal conditions due to its superior soft tissue contrast resolution. However, the long acquisition times of traditional two-dimensional (2D) and three-dimensional (3D) fast and turbo spin-echo (TSE) pulse sequences can limit patient access and comfort. Recent technical advancements have introduced acceleration techniques that significantly reduce MRI times for musculoskeletal examinations. Key acceleration methods include parallel imaging (PI), simultaneous multi-slice acquisition (SMS), and compressed sensing (CS), enabling up to eightfold faster scans while maintaining image quality, resolution, and safety standards. These innovations now allow for 3- to 6-fold accelerated clinical musculoskeletal MRI exams, reducing scan times to 4 to 6 min for joints and spine imaging. Evolving deep learning-based image reconstruction promises even faster scans without compromising quality. Current research indicates that combining acceleration techniques, deep learning image reconstruction, and superresolution algorithms will eventually facilitate tenfold accelerated musculoskeletal MRI in routine clinical practice. Such rapid MRI protocols can drastically reduce scan times by 80-90% compared to conventional methods. Implementing these rapid imaging protocols does impact workflow, indirect costs, and workload for MRI technologists and radiologists, which requires careful management. However, the shift from conventional to accelerated, deep learning-based MRI enhances the value of musculoskeletal MRI by improving patient access and comfort and promoting sustainable imaging practices. This article offers a comprehensive overview of the technical aspects, benefits, and challenges of modern accelerated musculoskeletal MRI, guiding radiologists and researchers in this evolving field.
Collapse
Affiliation(s)
- Jan Vosshenrich
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | | | - Jan Fritz
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Liu S, Zhang Y, Liu W, Yin T, Yuan J, Ran J, Li X. Simultaneous multi-slice technique for reducing acquisition times in diffusion tensor imaging of the knee: a feasibility study. Skeletal Radiol 2024:10.1007/s00256-024-04719-y. [PMID: 38913177 DOI: 10.1007/s00256-024-04719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024]
Abstract
OBJECTIVES To explore the feasibility of simultaneous multi-slice (SMS) technique for reducing acquisition times in readout-segmented echo planar imaging (RESOLVE) for diffusion tensor imaging (DTI) of the knee. MATERIALS AND METHODS A total of 30 healthy volunteers and 23 patients with knee acute injury (12 cases with anterior ligament (ACL) tears and 16 cases with patellar cartilage (PC) injury) were enrolled in this prospective study. Three DTI protocols were used: conventional RESOLVE-DTI with 12 directions (protocol 1), SMS-RESOLVE-DTI with 12 directions (protocol 2) and 20 directions (protocol 3). DTI parameters of gastrocnemius, ACL and posterior cruciate ligament (PCL), and PC from three protocols were quantitatively assessed. RESULTS For volunteers, protocol 2 significantly reduced acquisition time by 38.6% and 34.2% compared to protocols 1 and 3 while maintaining similar high-quality images and similar diffusive parameters, except for the fractional anisotropy (FA) and axial diffusivity (AD) of the PC between protocols 2 and 1 (P < 0.05). For injured ACL and PC, protocols 1 and 2 showed similar accurate diffusive parameters (except for AD, P = 0.025) and similar diagnostic efficacy, which demonstrated significantly lower FA and higher radial diffusivity (RD) in protocols 1 and 2 compared to volunteers (P < 0.05). CONCLUSIONS The 12-direction SMS-RESOLVE-DTI demonstrated a favorable balance between acquisition time and image quality, making it a promising alternative to conventional DTI for evaluating ligament and cartilage injuries. ADVANCES IN KNOWLEDGE The SMS technique greatly reduces acquisition time while maintaining image quality, which signified the possibility of DTI's clinical application.
Collapse
Affiliation(s)
- Simin Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, Hubei Province, China
| | - Yao Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, Hubei Province, China
| | - Wei Liu
- MR Application Development, Siemens Shenzhen Magnetic Resonance Ltd., No. 32 Gaoxin C. Ave., 2nd, Shenzhen, China
| | - Ting Yin
- MR Collaborations, Siemens Healthineers Ltd., Chengdu, China
| | - Jie Yuan
- Department of Radiology, Zhongxiang People's Hospital, Zhongxiang City, China
| | - Jun Ran
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, Hubei Province, China.
| | - Xiaoming Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, Hubei Province, China.
| |
Collapse
|
4
|
Zhang Y, Ye Z, Xia C, Tan Y, Zhang M, Lv X, Tang J, Li Z. Clinical Applications and Recent Updates of Simultaneous Multi-slice Technique in Accelerated MRI. Acad Radiol 2024; 31:1976-1988. [PMID: 38220568 DOI: 10.1016/j.acra.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024]
Abstract
Simultaneous multi-slice (SMS) is a magnetic resonance imaging (MRI) acceleration technique that utilizes multi-band radio-frequency pulses to simultaneously excite and encode multiple slices. Currently, SMS has been widely studied and applied in the MRI examination to reduce acquisition time, which can significantly improve the examination efficiency and patient throughput. Moreover, SMS technique can improve spatial resolution, which is of great value in disease diagnosis, treatment response monitoring, and prognosis prediction. This review will briefly introduce the technical principles of SMS, and summarize its current clinical applications. More importantly, we will discuss the recent technical progress and future research direction of SMS, hoping to highlight the clinical value and scientific potential of this technique.
Collapse
Affiliation(s)
- Yiteng Zhang
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Zheng Ye
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Yuqi Tan
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Meng Zhang
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Xinyang Lv
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Jing Tang
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Zhenlin Li
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Herrmann J, Gassenmaier S, Keller G, Koerzdoerfer G, Almansour H, Nickel D, Othman A, Afat S, Werner S. Deep Learning MRI Reconstruction for Accelerating Turbo Spin Echo Hand and Wrist Imaging: A Comparison of Image Quality, Visualization of Anatomy, and Detection of Common Pathologies with Standard Imaging. Acad Radiol 2023; 30:2606-2615. [PMID: 36797172 DOI: 10.1016/j.acra.2022.12.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 02/16/2023]
Abstract
RATIONALE AND OBJECTIVES Magnetic resonance imaging (MRI) of the hand and wrist is a routine MRI examination and takes about 15-20 minutes, which can lead to problems resulting from the relatively long scan time, such as decreased image quality due to motion artifacts and lower patient throughput. The objective of this study was to evaluate a deep learning (DL) reconstruction for turbo spin echo (TSE) sequences of the hand and wrist regarding image quality, visualization of anatomy, and diagnostic performance concerning common pathologies. MATERIALS AND METHODS Twenty-one patients (mean age: 43 ± 19 [19-85] years, 10 men, 11 female) were prospectively enrolled in this study between October 2020 and June 2021. Each participant underwent two MRI protocols: first, standard fully sampled TSE sequences reconstructed with a standard GRAPPA reconstruction (TSES) and second, prospectively undersampled TSE sequences using a conventional parallel imaging undersampling pattern reconstructed with a DL reconstruction (TSEDL). Both protocols were acquired consecutively in one examination. Two experienced MSK-imaging radiologists qualitatively evaluated the images concerning image quality, noise, edge sharpness, artifacts, and diagnostic confidence, as well as the delineation of anatomical structures (triangular fibrocartilage complex, tendon of the extensor carpi ulnaris muscle, extrinsic and intrinsic ligaments, median nerve, cartilage) using a five-point Likert scale and assessed common pathologies. Wilcoxon signed-rank test and kappa statistics were performed to compare the sequences. RESULTS Overall image quality, artifacts, delineation of anatomical structures, and diagnostic confidence of TSEDL were rated to be comparable to TSES (p > 0.05). Additionally, TSEDL showed decreased image noise (4.90, median 5, IQR 5-5) compared to TSES (4.52, median 5, IQR 4-5, p < 0.05) and improved edge sharpness (TSEDL: 4.10, median 4, IQR 3.5-5; TSES: 3.57, median 4, IQR 3-4; p < 0.05). Inter- and intrareader agreement was substantial to almost perfect (κ = 0.632-1.000) for the detection of common pathologies. Time of acquisition could be reduced by more than 60% with the protocol using TSEDL. CONCLUSION Compared to TSES, TSEDL provided decreased noise and increased edge sharpness, equal image quality, delineation of anatomical structures, detection of pathologies, and diagnostic confidence. Therefore, TSEDL may be clinically relevant for hand and wrist imaging, as it reduces examination time by more than 60%, thus increasing patient comfort and patient throughput.
Collapse
Affiliation(s)
- Judith Herrmann
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University, Tuebingen University Hospital, Tuebingen, Germany
| | - Sebastian Gassenmaier
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University, Tuebingen University Hospital, Tuebingen, Germany
| | - Gabriel Keller
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University, Tuebingen University Hospital, Tuebingen, Germany
| | | | - Haidara Almansour
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University, Tuebingen University Hospital, Tuebingen, Germany
| | - Dominik Nickel
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Ahmed Othman
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University, Tuebingen University Hospital, Tuebingen, Germany; Department of Neuroradiology, University Medical Center Mainz, Mainz, Germany
| | - Saif Afat
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University, Tuebingen University Hospital, Tuebingen, Germany.
| | - Sebastian Werner
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University, Tuebingen University Hospital, Tuebingen, Germany
| |
Collapse
|
6
|
Herrmann J, Afat S, Gassenmaier S, Koerzdoerfer G, Lingg A, Almansour H, Nickel D, Werner S. Image Quality and Diagnostic Performance of Accelerated 2D Hip MRI with Deep Learning Reconstruction Based on a Deep Iterative Hierarchical Network. Diagnostics (Basel) 2023; 13:3241. [PMID: 37892062 PMCID: PMC10606422 DOI: 10.3390/diagnostics13203241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
OBJECTIVES Hip MRI using standard multiplanar sequences requires long scan times. Accelerating MRI is accompanied by reduced image quality. This study aimed to compare standard two-dimensional (2D) turbo spin echo (TSE) sequences with accelerated 2D TSE sequences with deep learning (DL) reconstruction (TSEDL) for routine clinical hip MRI at 1.5 and 3 T in terms of feasibility, image quality, and diagnostic performance. MATERIAL AND METHODS In this prospective, monocentric study, TSEDL was implemented clinically and evaluated in 14 prospectively enrolled patients undergoing a clinically indicated hip MRI at 1.5 and 3T between October 2020 and May 2021. Each patient underwent two examinations: For the first exam, we used standard sequences with generalized autocalibrating partial parallel acquisition reconstruction (TSES). For the second exam, we implemented prospectively undersampled TSE sequences with DL reconstruction (TSEDL). Two radiologists assessed the TSEDL and TSES regarding image quality, artifacts, noise, edge sharpness, diagnostic confidence, and delineation of anatomical structures using an ordinal five-point Likert scale (1 = non-diagnostic; 2 = poor; 3 = moderate; 4 = good; 5 = excellent). Both sequences were compared regarding the detection of common pathologies of the hip. Comparative analyses were conducted to assess the differences between TSEDL and TSES. RESULTS Compared with TSES, TSEDL was rated to be significantly superior in terms of image quality (p ≤ 0.020) with significantly reduced noise (p ≤ 0.001) and significantly improved edge sharpness (p = 0.003). No difference was found between TSES and TSEDL concerning the extent of artifacts, diagnostic confidence, or the delineation of anatomical structures (p > 0.05). Example acquisition time reductions for the TSE sequences of 52% at 3 Tesla and 70% at 1.5 Tesla were achieved. CONCLUSION TSEDL of the hip is clinically feasible, showing excellent image quality and equivalent diagnostic performance compared with TSES, reducing the acquisition time significantly.
Collapse
Affiliation(s)
- Judith Herrmann
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany
| | - Saif Afat
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany
| | - Sebastian Gassenmaier
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany
| | - Gregor Koerzdoerfer
- MR Applications Predevelopment, Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052 Erlangen, Germany
| | - Andreas Lingg
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany
| | - Haidara Almansour
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany
| | - Dominik Nickel
- MR Applications Predevelopment, Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052 Erlangen, Germany
| | - Sebastian Werner
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany
| |
Collapse
|
7
|
Preisner F, Hayes JC, Charlet T, Carinci F, Hielscher T, Schwarz D, Vollherbst DF, Breckwoldt MO, Jesser J, Heiland S, Bendszus M, Hilgenfeld T. Simultaneous Multislice Accelerated TSE for Improved Spatiotemporal Resolution and Diagnostic Accuracy in Magnetic Resonance Neurography: A Feasibility Study. Invest Radiol 2023; 58:363-371. [PMID: 36729753 DOI: 10.1097/rli.0000000000000940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES This study aims to evaluate the utility of simultaneous multislice (SMS) acceleration for routine magnetic resonance neurography (MRN) at 3 T. MATERIALS AND METHODS Patients with multiple sclerosis underwent MRN of the sciatic nerve consisting of a standard fat-saturated T2-weighted turbo spin echo (TSE) sequence using integrated parallel acquisition technique (PAT2) acceleration and 2 T2 TSE sequences using a combination of PAT-SMS acceleration (1) to reduce scan time (PAT2-SMS2; SMS-TSE FAST ) and (2) for time neutral increase of in-plane resolution (PAT1-SMS2; SMS-TSE HR ). Acquisition times were 5:29 minutes for the standard T2 TSE, 3:12 minutes for the SMS-TSE FAST , and 5:24 minutes for the SMS-TSE HR . Six qualitative imaging parameters were analyzed by 2 blinded readers using a 5-point Likert scale and T2 nerve lesions were quantified, respectively. Qualitative and quantitative image parameters were compared, and both interrater and intrarater reproducibility were statistically assessed. In addition, signal-to-noise ratio/contrast-to-noise ratio (CNR) was obtained in healthy controls using the exact same imaging protocol. RESULTS A total of 15 patients with MS (mean age ± standard deviation, 38.1 ± 11 years) and 10 healthy controls (mean age, 29.1 ± 7 years) were enrolled in this study. CNR analysis was highly reliable (intraclass correlation coefficient, 0.755-0.948) and revealed a significant CNR decrease for the sciatic nerve for both SMS protocols compared with standard T2 TSE (SMS-TSE FAST /SMS-TSE HR , -39%/-55%; P ≤ 0.01). Intrarater and interrater reliability of qualitative image review was good to excellent (κ: 0.672-0.971/0.617-0.883). Compared with the standard T2 TSE sequence, both SMS methods were shown to be superior in reducing pulsatile flow artifacts ( P < 0.01). Ratings for muscle border sharpness, detailed muscle structures, nerve border sharpness, and nerve fascicular structure did not differ significantly between the standard T2 TSE and the SMS-TSE FAST ( P > 0.05) and were significantly better for the SMS-TSE HR than for standard T2 TSE ( P < 0.001). Muscle signal homogeneity was mildly inferior for both SMS-TSE FAST ( P > 0.05) and SMS-TSE HR ( P < 0.001). A significantly higher number of T2 nerve lesions were detected by SMS-TSE HR ( P ≤ 0.01) compared with the standard T2 TSE and SMS-TSE FAST , whereas no significant difference was observed between the standard T2 TSE and SMS-TSE FAST . CONCLUSIONS Implementation of SMS offers either to substantially reduce acquisition time by over 40% without significantly impeding image quality compared with the standard T2 TSE or to increase in-plane resolution for a high-resolution approach and improved depiction of T2 nerve lesions while keeping acquisition times constant. This addresses the specific needs of MRN by providing different imaging approaches for 2D clinical MRN.
Collapse
Affiliation(s)
- Fabian Preisner
- From the Department of Neuroradiology, Heidelberg University Hospital, Heidelberg
| | - Jennifer C Hayes
- From the Department of Neuroradiology, Heidelberg University Hospital, Heidelberg
| | - Tobias Charlet
- From the Department of Neuroradiology, Heidelberg University Hospital, Heidelberg
| | | | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Schwarz
- From the Department of Neuroradiology, Heidelberg University Hospital, Heidelberg
| | - Dominik F Vollherbst
- From the Department of Neuroradiology, Heidelberg University Hospital, Heidelberg
| | - Michael O Breckwoldt
- From the Department of Neuroradiology, Heidelberg University Hospital, Heidelberg
| | - Jessica Jesser
- From the Department of Neuroradiology, Heidelberg University Hospital, Heidelberg
| | - Sabine Heiland
- From the Department of Neuroradiology, Heidelberg University Hospital, Heidelberg
| | - Martin Bendszus
- From the Department of Neuroradiology, Heidelberg University Hospital, Heidelberg
| | - Tim Hilgenfeld
- From the Department of Neuroradiology, Heidelberg University Hospital, Heidelberg
| |
Collapse
|
8
|
Abstract
This article provides a focused overview of emerging technology in musculoskeletal MRI and CT. These technological advances have primarily focused on decreasing examination times, obtaining higher quality images, providing more convenient and economical imaging alternatives, and improving patient safety through lower radiation doses. New MRI acceleration methods using deep learning and novel reconstruction algorithms can reduce scanning times while maintaining high image quality. New synthetic techniques are now available that provide multiple tissue contrasts from a limited amount of MRI and CT data. Modern low-field-strength MRI scanners can provide a more convenient and economical imaging alternative in clinical practice, while clinical 7.0-T scanners have the potential to maximize image quality. Three-dimensional MRI curved planar reformation and cinematic rendering can provide improved methods for image representation. Photon-counting detector CT can provide lower radiation doses, higher spatial resolution, greater tissue contrast, and reduced noise in comparison with currently used energy-integrating detector CT scanners. Technological advances have also been made in challenging areas of musculoskeletal imaging, including MR neurography, imaging around metal, and dual-energy CT. While the preliminary results of these emerging technologies have been encouraging, whether they result in higher diagnostic performance requires further investigation.
Collapse
Affiliation(s)
- Richard Kijowski
- From the Department of Radiology, New York University Grossman School of Medicine, 660 First Ave, 3rd Floor, New York, NY 10016
| | - Jan Fritz
- From the Department of Radiology, New York University Grossman School of Medicine, 660 First Ave, 3rd Floor, New York, NY 10016
| |
Collapse
|
9
|
Kim HG, Oh SW, Han D, Kim JY, Lim GY. Accelerated 3D T2-weighted images using compressed sensing for pediatric brain imaging. Neuroradiology 2022; 64:2399-2407. [PMID: 35920890 DOI: 10.1007/s00234-022-03028-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE The purpose of this study was to compare the image quality of the 3D T2-weighted images accelerated using conventional method (CAI-SPACE) with the images accelerated using compressed sensing (CS-SPACE) in pediatric brain imaging. METHODS A total of 116 brain MRI (53 with CAI-SPACE and 63 with CS-SPACE) were obtained from children 16 years old or younger. Quantitative image quality was evaluated using the apparent signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). The sequences were qualitatively evaluated for overall image quality, general artifact, cerebrospinal fluid (CSF)-related artifact, and grey-white matter differentiation. The two sequences were compared for the total and two age groups (< 24 months vs. ≥ 24 months). RESULTS Compressed sensing application in 3D T2-weighted imaging resulted in 8.5% reduction in scanning time. Quantitative image quality analysis showed higher apparent SNR (median [Interquartile range]; 29 [25] vs. 23 [14], P = 0.005) and CNR (0.231 [0.121] vs. 0.165 [0.120], P = 0.027) with CS-SPACE compared to CAI-SPACE. Qualitative image quality analysis showed better image quality with CS-SPACE for general (P = 0.024) and CSF-related artifact (P < 0.001). CSF-related artifacts reduction was prominent in the older age group (≥ 24 months). Overall image quality (P = 0.162) and grey-white matter differentiation (P = 0.397) were comparable between CAI-SPACE and CS-SPACE. CONCLUSION Compressed sensing application in 3D T2-weighted images modestly reduced acquisition time and lowered CSF-related artifact compared to conventional images of the pediatric brain.
Collapse
Affiliation(s)
- Hyun Gi Kim
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Se Won Oh
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - Jee Young Kim
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gye Yeon Lim
- Department of Radiology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
10
|
Gao F, Wen Z, Dou S, Kan X, Wei S, Ge Y. High-Resolution Simultaneous Multi-Slice Accelerated Turbo Spin-Echo Musculoskeletal Imaging: A Head-to-Head Comparison With Routine Turbo Spin-Echo Imaging. Front Physiol 2022; 12:759888. [PMID: 34992546 PMCID: PMC8724040 DOI: 10.3389/fphys.2021.759888] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023] Open
Abstract
Background/Aim: The turbo spin-echo (TSE) sequence is widely used for musculoskeletal (MSK) imaging; however, its acquisition speed is limited and can be easily affected by motion artifacts. We aimed to evaluate whether the use of a simultaneous multi-slice TSE (SMS-TSE) sequence can accelerate MSK imaging while maintaining image quality when compared with the routine TSE sequence. Methods: We prospectively enrolled 71 patients [mean age, 37.43 ± 12.56 (range, 20–67) years], including 37 men and 34 women, to undergo TSE and SMS sequences. The total scanning times for the wrist, ankle and knee joint with routine sequence were 14.92, 13.97, and 13.48 min, respectively. For the SMS-TSE sequence, they were 7.52, 7.20, and 6.87 min. Quantitative parameters, including the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), were measured. Three experienced MSK imaging radiologists qualitatively evaluated the image quality of bone texture, cartilage, tendons, ligament, meniscus, and artifact using a 5-point evaluation system, and the diagnostic performance of the SMS-TSE sequences was evaluated. Results: Compared with the routine TSE sequences, the scanning time was lower by 49.60, 48.46, and 49.04% using SMS-TSE sequences for the wrist, ankle, and knee joints, respectively. For the SNR comparison, the SMS-TSE sequences were significantly higher than the routine TSE sequence for wrist (except for Axial-T2WI-FS), ankle, and knee joint MR imaging (all p < 0.05), but no statistical significance was obtained for the CNR measurement (all p > 0.05, except for Sag-PDWI-FS in ankle joint). For the wrist joint, the diagnostic sensitivity, specificity, and accuracy were 88.24, 100, and 92%. For the ankle joint, they were 100, 75, and 93.33%. For the knee joint, they were 87.50, 85.71, and 87.10%. Conclusion: The use of the SMS-TSE sequence in the wrist, ankle, and knee joints can significantly reduce the scanning time and show similar image quality when compared with the routine TSE sequence.
Collapse
Affiliation(s)
- Feifei Gao
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zejun Wen
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shewei Dou
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaojing Kan
- Department of Radiology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Shufang Wei
- Department of Radiology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Yinghui Ge
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Radiology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| |
Collapse
|
11
|
Feasibility of an accelerated 2D-multi-contrast knee MRI protocol using deep-learning image reconstruction: a prospective intraindividual comparison with a standard MRI protocol. Eur Radiol 2022; 32:6215-6229. [PMID: 35389046 PMCID: PMC9381615 DOI: 10.1007/s00330-022-08753-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the image quality and diagnostic performance of a deep-learning (DL)-accelerated two-dimensional (2D) turbo spin echo (TSE) MRI of the knee at 1.5 and 3 T in clinical routine in comparison to standard MRI. MATERIAL AND METHODS Sixty participants, who underwent knee MRI at 1.5 and 3 T between October/2020 and March/2021 with a protocol using standard 2D-TSE (TSES) and DL-accelerated 2D-TSE sequences (TSEDL), were enrolled in this prospective institutional review board-approved study. Three radiologists assessed the sequences regarding structural abnormalities and evaluated the images concerning overall image quality, artifacts, noise, sharpness, subjective signal-to-noise ratio, and diagnostic confidence using a Likert scale (1-5, 5 = best). RESULTS Overall image quality for TSEDL was rated to be excellent (median 5, IQR 4-5), significantly higher compared to TSES (median 5, IQR 4 - 5, p < 0.05), showing significantly lower extents of noise and improved sharpness (p < 0.001). Inter- and intra-reader agreement was almost perfect (κ = 0.92-1.00) for the detection of internal derangement and substantial to almost perfect (κ = 0.58-0.98) for the assessment of cartilage defects. No difference was found concerning the detection of bone marrow edema and fractures. The diagnostic confidence of TSEDL was rated to be comparable to that of TSES (median 5, IQR 5-5, p > 0.05). Time of acquisition could be reduced to 6:11 min using TSEDL compared to 11:56 min for a protocol using TSES. CONCLUSION TSEDL of the knee is clinically feasible, showing excellent image quality and equivalent diagnostic performance compared to TSES, reducing the acquisition time about 50%. KEY POINTS • Deep-learning reconstructed TSE imaging is able to almost halve the acquisition time of a three-plane knee MRI with proton density and T1-weighted images, from 11:56 min to 6:11 min at 3 T. • Deep-learning reconstructed TSE imaging of the knee provided significant improvement of noise levels (p < 0.001), providing higher image quality (p < 0.05) compared to conventional TSE imaging. • Deep-learning reconstructed TSE imaging of the knee had similar diagnostic performance for internal derangement of the knee compared to standard TSE.
Collapse
|
12
|
Kim S, Park C, Kim KS, Jeong HS, Lee SM. Clinical feasibility of simultaneous multislice acceleration in knee MRI. Clin Imaging 2021; 82:216-223. [PMID: 34896934 DOI: 10.1016/j.clinimag.2021.11.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/13/2021] [Accepted: 11/27/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE To find the best simultaneous multislice (SMS) accelerated setting for clinical application in knee MRI. MATERIAL AND METHODS Thirty-three patients (mean age, 54 years; 21 women) who underwent knee MRI (conventional/SMS sequences) between June and October 2020 were enrolled. Two radiologists retrospectively evaluated sagittal T1- and T2-weighted conventional (2-fold parallel acquisition technique [PAT-2]) and SMS (SMS-2 [PAT-2 with 2-fold SMS], SMS-3, and SMS-4) images. For qualitative analysis, artifacts (zebra/residual aliasing) and diagnostic confidence for internal derangement of knee (bone marrow, cartilage, meniscus, anterior cruciate ligament, and synovium abnormalities) were evaluated. For quantitative analysis, contrast-to-noise ratios of bone marrow, meniscus, joint effusion, and ligament were evaluated. RESULTS Compared to PAT-2 (2 min 32 s), mean acquisition time was reduced by 47% in SMS-2; 64%, SMS-3; and 70%, SMS-4. In qualitative analysis, zebra artifacts were only seen on T2-weighted SMS images. The more SMS was applied, the more zebra and residual aliasing artifacts were seen and the lower diagnostic confidence was for internal derangement. However, qualitative analysis showed acceptable image quality in SMS-2 and SMS-3 images, but not in SMS-4 images. In quantitative analysis, SMS-4 images showed the lowest contrast-to-noise ratios and there were no significant differences among PAT-2, SMS-2, and SMS-3 images. CONCLUSION Applying SMS-3 to knee MRI reduced scan time and showed acceptable image quality compared to conventional (PAT-2). However, when evaluating SMS images, radiologists should know that when more SMS is applied, more zebra and residual aliasing artifacts appear.
Collapse
Affiliation(s)
- Shinyoung Kim
- Department of Radiology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Chankue Park
- Department of Radiology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.
| | | | - Hee Seok Jeong
- Department of Radiology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Sang-Min Lee
- Department Orthopedic Surgery, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| |
Collapse
|
13
|
Subhas N. Establishing a New Normal: The 5-Minute MRI. Radiology 2021; 299:647-648. [PMID: 33826445 PMCID: PMC8165943 DOI: 10.1148/radiol.2021210423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Naveen Subhas
- From the Imaging Institute, Cleveland Clinic, 9500 Euclid Ave, A21, Cleveland, OH 44195
| |
Collapse
|
14
|
York V, Sultan N, Thapa M, Chaturvedi A. Musculoskeletal MRI in Infants: Technical Considerations, Pitfalls and Optimization Strategies. Semin Roentgenol 2021; 56:277-287. [PMID: 34281680 DOI: 10.1053/j.ro.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vincent York
- Department of Radiology, Rochester General Hospital, Rochester, NY.
| | - Nadia Sultan
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY
| | - Mahesh Thapa
- Department of Radiology, University of Washington, Seattle, WA
| | - Apeksha Chaturvedi
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
15
|
Jaimes C, Robson CD, Machado-Rivas F, Yang E, Mahan K, Bixby SD, Robertson RL. Success of Nonsedated Neuroradiologic MRI in Children 1-7 Years Old. AJR Am J Roentgenol 2021; 216:1370-1377. [PMID: 32783551 DOI: 10.2214/ajr.20.23654] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND. MRI use and the need for monitored anesthesia care (MAC) in children have increased. However, MAC is associated with examination delays, increased cost, and safety concerns. OBJECTIVE. The purpose of this study was to evaluate the success rate of nonsedated neuroradiologic MRI studies in children 1-7 years old and to investigate factors associated with success. METHODS. We retrospectively reviewed data from our institutional nonsedated MRI program. Inclusion criteria were outpatient nonsedated MRI referral, age 1-7 years old, and neuroradiologic indication. Exclusion criteria were MRI examinations for ventricular checks and contrast material use. Success was determined by reviewing the clinical MRI report. We recorded patient age and sex, type of MRI examination (brain, spine, craniospinal, head and neck, and brain with MRA), protocol length, presence of child life specialist, video goggle use, and MRI appointment time (routine daytime appointment or evening appointment). We used descriptive statistics to summarize patient demographics and clinical data and logistic regression models to evaluate predictors of success in the entire sample. Subset analyses were performed for children from 1 to < 3 years old and 3 to 7 years old. RESULTS. We analyzed 217 patients who underwent nonsedated MRI examinations (median age, 5.1 years). Overall success rate was 82.0% (n = 178). The success rates were 81.4% (n = 127) for brain, 90.3% (n = 28) for spine, 71.4% (n = 10) for craniospinal, 66.7% (n = 6) for head and neck, and 100% (n = 7) for brain with MRA. Age was significantly associated with success (odds ratio [OR], 1.33; p = .009). In children 1 to < 3 years old, none of the factors analyzed were significant predictors of success (all, p > .48). In children 3-7 years old, protocol duration (OR, 0.96; 95% CI, 0.93-0.99; p = .02) and video goggle use (OR, 6.38; 95% CI, 2.16-18.84; p = .001) were significantly associated with success. CONCLUSION. A multidisciplinary approach with age-appropriate resources enables a high success rate for nonsedated neuroradiologic MRI in children 1-7 years old. CLINICAL IMPACT. Using age as the primary criterion to determine the need for MAC may lead to overuse of these services. Dissemination of information regarding nonsedated MRI practice could reduce the rate of sedated MRI in young children.
Collapse
Affiliation(s)
- Camilo Jaimes
- Department of Radiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02215
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Caroline D Robson
- Department of Radiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02215
- Harvard Medical School, Boston, MA
| | - Fedel Machado-Rivas
- Harvard Medical School, Boston, MA
- Department of Radiology, Massachusetts General Hospital, Boston, MA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02215
- Harvard Medical School, Boston, MA
| | - Kellyn Mahan
- Department of Radiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02215
| | - Sarah D Bixby
- Department of Radiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02215
- Harvard Medical School, Boston, MA
| | - Richard L Robertson
- Department of Radiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02215
- Harvard Medical School, Boston, MA
| |
Collapse
|
16
|
Rapid Musculoskeletal MRI in 2021: Clinical Application of Advanced Accelerated Techniques. AJR Am J Roentgenol 2021; 216:718-733. [DOI: 10.2214/ajr.20.22902] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Gentle Touch: Noninvasive Approaches to Improve Patient Comfort and Cooperation for Pediatric Imaging. Top Magn Reson Imaging 2021; 29:187-195. [PMID: 32541256 DOI: 10.1097/rmr.0000000000000245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pediatric imaging presents unique challenges related to patient anxiety, cooperation, and safety. Techniques to reduce anxiety and patient motion in adults must often be augmented in pediatrics, because it is always mentioned in the field of pediatrics, children are not miniature adults. This article will review methods that can be considered to improve patient experience and cooperation in imaging studies. Such techniques can range from modifications to the scanner suite, different ways of preparing and interacting with children, collaborating with parents for improved patient care, and technical advances such as accelerated acquisition and motion correction to reduce artifact. Special considerations for specific populations including transgender patients, neonates, and pregnant women undergoing fetal imaging will be described. The unique risks of sedation in children will also be briefly reviewed.
Collapse
|
18
|
Jiang JS, Zhu LN, Wu Q, Sun Y, Liu W, Xu XQ, Wu FY. Feasibility study of using simultaneous multi-slice RESOLVE diffusion weighted imaging to assess parotid gland tumors: comparison with conventional RESOLVE diffusion weighted imaging. BMC Med Imaging 2020; 20:93. [PMID: 32762734 PMCID: PMC7412638 DOI: 10.1186/s12880-020-00492-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/29/2020] [Indexed: 11/17/2022] Open
Abstract
Background To evaluate the feasibility of using simultaneous multi-slice (SMS) readout segmentation of long variable echo-trains (RESOLVE) diffusion-weighted imaging (DWI) to assess parotid gland tumors, compared with conventional RESOLVE DWI. Methods From September 2018 to December 2018, 20 consecutive patients with parotid tumors who underwent MRI scan for pre-surgery evaluation were enrolled. SMS-RESOLVE DWI and conventional RESOLVE DWI were scanned with matched imaging parameters, respectively. The scan time of two DWI sequences was recorded. Qualitative (anatomical structure differentiation, lesion display, artifact, and overall image quality) and quantitative (apparent diffusion coefficient, ADC; ratio of signal-to-noise ratio, SNR ratio; ratio of contrast-to-noise ratio, CNR ratio) assessments of image quality were performed, and compared between SMS-RESOLVE DWI and conventional RESOLVE DWI by using Paired t-test. Two-sided P value less than 0.05 indicated significant difference. Results The scan time was 3 min and 41 s for SMS-RESOLVE DWI, and 5 min and 46 s for conventional RESOLVE DWI. SMS-RESOLVE DWI produced similar qualitative image quality with RESOLVE DWI (anatomical structure differentiation, P = 0.164; lesion display, P = 0.193; artifact, P = 0.330; overall image quality, P = 0.083). Meanwhile, there were no significant difference on ADCLesion (P = 0.298), ADCMasseter (P = 0.122), SNR ratio (P = 0.584) and CNR ratio (P = 0.217) between two DWI sequences. Conclusion Compared with conventional RESOLVE DWI, SMS-RESOLVE DWI could provide comparable image quality using markedly reduced scan time. SMS could increase the clinical usability of RESOLVE technique for DWI of parotid gland.
Collapse
Affiliation(s)
- Jia-Suo Jiang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Nanjing, China
| | - Liu-Ning Zhu
- Department of Stomatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Nanjing, China
| | - Yi Sun
- MR Collaboration, Siemens Healthcare Ltd., Shanghai, China
| | - Wei Liu
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Nanjing, China.
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Nanjing, China.
| |
Collapse
|
19
|
Is simultaneous multisection turbo spin echo ready for clinical MRI? A feasibility study on fast imaging of knee lesions. Clin Radiol 2020; 75:238.e21-238.e30. [DOI: 10.1016/j.crad.2019.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022]
|
20
|
Kozak BM, Jaimes C, Kirsch J, Gee MS. MRI Techniques to Decrease Imaging Times in Children. Radiographics 2020; 40:485-502. [PMID: 32031912 DOI: 10.1148/rg.2020190112] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Long acquisition times can limit the use of MRI in pediatric patients, and the use of sedation or general anesthesia is frequently necessary to facilitate diagnostic examinations. The use of sedation or anesthesia has disadvantages including increased cost and imaging time and potential risks to the patient. Reductions in imaging time may decrease or eliminate the need for sedation or general anesthesia. Over the past decade, a number of imaging techniques that can decrease imaging time have become commercially available. These products have been used increasingly in clinical practice and include parallel imaging, simultaneous multisection imaging, radial k-space acquisition, compressed sensing MRI reconstruction, and automated protocol selection software. The underlying concepts, supporting data, current clinical applications, and available products for each of these strategies are reviewed in this article. In addition, emerging techniques that are still under investigation may provide further reductions in imaging time, including artificial intelligence-based reconstruction, gradient-controlled aliasing sampling and reconstruction, three-dimensional MR spectroscopy, and prospective motion correction. The preliminary results for these techniques are also discussed. ©RSNA, 2020 See discussion on this article by Greer and Vasanawala.
Collapse
Affiliation(s)
- Benjamin M Kozak
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Founders 210, Boston, MA 02114 (B.M.K., J.K., M.S.G.); Department of Radiology, Harvard Medical School, Boston, Mass (B.M.K., C.J., J.K., M.S.G.); and Department of Radiology, Boston Children's Hospital, Boston, Mass (C.J.)
| | - Camilo Jaimes
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Founders 210, Boston, MA 02114 (B.M.K., J.K., M.S.G.); Department of Radiology, Harvard Medical School, Boston, Mass (B.M.K., C.J., J.K., M.S.G.); and Department of Radiology, Boston Children's Hospital, Boston, Mass (C.J.)
| | - John Kirsch
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Founders 210, Boston, MA 02114 (B.M.K., J.K., M.S.G.); Department of Radiology, Harvard Medical School, Boston, Mass (B.M.K., C.J., J.K., M.S.G.); and Department of Radiology, Boston Children's Hospital, Boston, Mass (C.J.)
| | - Michael S Gee
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Founders 210, Boston, MA 02114 (B.M.K., J.K., M.S.G.); Department of Radiology, Harvard Medical School, Boston, Mass (B.M.K., C.J., J.K., M.S.G.); and Department of Radiology, Boston Children's Hospital, Boston, Mass (C.J.)
| |
Collapse
|
21
|
Murata S, Tachibana Y, Murata K, Kamagata K, Hori M, Andica C, Suzuki M, Wada A, Kumamaru K, Hagiwara A, Irie R, Sato S, Hamasaki N, Fukunaga I, Hoshito H, Aoki S. Comparison of magnetization transfer contrast of conventional and simultaneous multislice turbo spin echo acquisitions focusing on excitation time interval. Jpn J Radiol 2019; 37:579-589. [PMID: 31230186 DOI: 10.1007/s11604-019-00848-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Image contrast differs between conventional multislice turbo spin echo (conventional TSE) and multiband turbo spin echo (SMS-TSE). Difference in time interval between excitations for adjacent slices (SETI) might cause this difference. This study aimed to evaluate the influence of SETI on MT effect for conventional TSE and compare conventional TSE with SMS-TSE in this respect. MATERIALS AND METHODS Three different agar concentration phantoms were scanned with conventional TSE by adjusting SETI and TR. Signal change for different SETI was evaluated using Pearson's correlation analysis. SMS-TSE was acquired by changing TR similarly. Three human volunteers were scanned with similar settings to evaluate reproducibility of the phantom results in human brain. RESULTS In conventional TSE, shorter SETI induced larger signal reduction. Longer TR and higher agar concentration emphasized this characteristic. Significant linear correlation (P < 0.05) was found in the major cases. The SMS-TSE signal intensity in each TR and phantom was smaller than the assumable levels in conventional TSE when the slices were simultaneously excited. Similar characteristic was observed in human brain. CONCLUSION Shorter SETI results in larger MT effect in conventional TSE. The contrast change in SMS-TSE was larger than the supposable level from simultaneous excitation, which needs consideration in clinics.
Collapse
Affiliation(s)
- Syo Murata
- Department of Radiology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasuhiko Tachibana
- Department of Radiology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,Applied MRI Research, Department of Molecular Imaging and Theranostics, NIRS, QST, Chiba, Japan.
| | | | - Koji Kamagata
- Department of Radiology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Christina Andica
- Department of Radiology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Michimasa Suzuki
- Department of Radiology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akihiko Wada
- Department of Radiology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kanako Kumamaru
- Department of Radiology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryusuke Irie
- Department of Radiology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shuji Sato
- Department of Radiology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Nozomi Hamasaki
- Department of Radiology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Issei Fukunaga
- Department of Radiology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Haruyoshi Hoshito
- Department of Radiology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|