1
|
Carreira B, Acúrcio RC, Matos AI, Peres C, Pozzi S, Vaskovich‐Koubi D, Kleiner R, Bento M, Satchi‐Fainaro R, Florindo HF. Nanomedicines as Multifunctional Modulators of Melanoma Immune Microenvironment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Barbara Carreira
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Rita C. Acúrcio
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Ana I. Matos
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Carina Peres
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Daniella Vaskovich‐Koubi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Ron Kleiner
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Mariana Bento
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Helena F. Florindo
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| |
Collapse
|
2
|
Kim HS, Woo J, Lee JH, Joo HJ, Choi Y, Kim H, Moon WK, Kim SJ. In vivo Tracking of Dendritic Cell using MRI Reporter Gene, Ferritin. PLoS One 2015; 10:e0125291. [PMID: 25993535 PMCID: PMC4439152 DOI: 10.1371/journal.pone.0125291] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 03/14/2015] [Indexed: 01/05/2023] Open
Abstract
The noninvasive imaging of dendritic cells (DCs) migrated into lymph nodes (LNs) can provide helpful information on designing DCs-based immunotherapeutic strategies. This study is to investigate the influence of transduction of human ferritin heavy chain (FTH) and green fluorescence protein (GFP) genes on inherent properties of DCs, and the feasibility of FTH as a magnetic resonance imaging (MRI) reporter gene to track DCs migration into LNs. FTH-DCs were established by the introduction of FTH and GFP genes into the DC cell line (DC2.4) using lentivirus. The changes in the rate of MRI signal decay (R2*) resulting from FTH transduction were analyzed in cell phantoms as well as popliteal LN of mice after subcutaneous injection of those cells into hind limb foot pad by using a multiple gradient echo sequence on a 9.4 T MR scanner. The transduction of FTH and GFP did not influence the proliferation and migration abilities of DCs. The expression of co-stimulatory molecules (CD40, CD80 and CD86) in FTH-DCs was similar to that of DCs. FTH-DCs exhibited increased iron storage capacity, and displayed a significantly higher transverse relaxation rate (R2*) as compared to DCs in phantom. LNs with FTH-DCs exhibited negative contrast, leading to a high R2* in both in vivo and ex vivo T2*-weighted images compared to DCs. On histological analysis FTH-DCs migrated to the subcapsular sinus and the T cell zone of LN, where they highly expressed CD25 to bind and stimulate T cells. Our study addresses the feasibility of FTH as an MRI reporter gene to track DCs migration into LNs without alteration of their inherent properties. This study suggests that FTH-based MRI could be a useful technique to longitudinally monitor DCs and evaluate the therapeutic efficacy of DC-based vaccines.
Collapse
Affiliation(s)
- Hoe Suk Kim
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Korea
| | - Jisu Woo
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Korea
| | - Jae Hoon Lee
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Korea
| | - Hyun Jung Joo
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Korea
| | - YoonSeok Choi
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Korea
- Department of Biomedical Science, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, Korea
| | - Hyeonjin Kim
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Korea
- Department of Biomedical Science, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, Korea
| | - Woo Kyung Moon
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Korea
- Department of Biomedical Science, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, Korea
- * E-mail: (WKM); (SJK)
| | - Seung Ja Kim
- Department of Radiology, Seoul Metropolitan Government Seoul National University, Boramae Medical Center, 20 Boramae-ro, Dongjag-gu, Seoul, Korea
- * E-mail: (WKM); (SJK)
| |
Collapse
|
3
|
Lee HW, Yoon SY, Singh TD, Choi YJ, Lee HJ, Park JY, Jeong SY, Lee SW, Ha JH, Ahn BC, Jeon YH, Lee J. Tracking of dendritic cell migration into lymph nodes using molecular imaging with sodium iodide symporter and enhanced firefly luciferase genes. Sci Rep 2015; 5:9865. [PMID: 25974752 PMCID: PMC4431315 DOI: 10.1038/srep09865] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/26/2015] [Indexed: 12/14/2022] Open
Abstract
We sought to evaluate the feasibility of molecular imaging using the human sodium iodide symporter (hNIS) gene as a reporter, in addition to the enhanced firefly luciferase (effluc) gene, for tracking dendritic cell (DCs) migration in living mice. A murine dendritic cell line (DC2.4) co-expressing hNIS and effluc genes (DC/NF) was established. For the DC-tracking study, mice received either parental DCs or DC/NF cells in the left or right footpad, respectively, and combined I-124 PET/CT and bioluminescence imaging (BLI) were performed. In vivo PET/CT imaging with I-124 revealed higher activity of the radiotracer in the draining popliteal lymph nodes (DPLN) of the DC/NF injection site at day 1 than DC injection site (p < 0.05). The uptake value further increased at day 4 (p < 0.005). BLI also demonstrated migration of DC/NF cells to the DPLNs at day 1 post-injection, and signals at the DPLNs were much higher at day 4. These data support the feasibility of hNIS reporter gene imaging in the tracking of DC migration to lymphoid organs in living mice. DCs expressing the NIS reporter gene could be a useful tool to optimize various strategies of cell-based immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Hong Je Lee
- Department of Nuclear Medicine, Dongnam Institution of Radiological &Medical SciencesBusan
| | - Ji Young Park
- Department of Pathology, School of Medicine, Kyungpook National UniversityDaegu
| | | | - Sang-Woo Lee
- 1] Department of Nuclear Medicine [2] Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, 807 Hogukro, Bukgu, Daegu
| | | | | | - Yong Hyun Jeon
- 1] Department of Nuclear Medicine [2] Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, 807 Hogukro, Bukgu, Daegu
| | - Jaetae Lee
- 1] Department of Nuclear Medicine [2] Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 701-310, Republic of Korea
| |
Collapse
|
4
|
Joo HJ, Kim HS, Choi YS, Kim H, Kim SJ, Moon WK. Detection of prostaglandin E2-induced dendritic cell migration into the lymph nodes of mice using a 1.5 T clinical MR scanner. NMR IN BIOMEDICINE 2012; 25:570-579. [PMID: 22009917 DOI: 10.1002/nbm.1774] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 05/23/2011] [Accepted: 06/21/2011] [Indexed: 05/31/2023]
Abstract
The control of dendritic cell (DC) migration into lymph nodes (LNs) is important for the development of more effective DC-based immunotherapies. This study was undertaken to evaluate, dynamically and noninvasively, prostaglandin E2 (PGE2)-enhanced migration of DCs using a 1.5 T clinical MR scanner. DC2.4 cells were labeled with superparamagnetic iron oxide (SPIO), a clinically approved MRI contrast agent. DCs were stimulated with tumor necrosis factor-α and interferon-γ in the presence or absence of PGE2. Before and after subcutaneous injection of labeled DCs into the hind leg footpads of mice, MRI detailing the extent of DC migration into popliteal LNs was performed using a 1.5 T clinical MR scanner. SPIO labeling did not influence the viability, endocytic activity, migratory ability and/or co-stimulatory molecule expression of DCs. PGE2 enhanced significantly chemokine receptor-7 expression and the migration of DCs (p < 0.05). After subcutaneous injection of DCs, there were decreases in MR signal intensity in popliteal LNs at 24 h post-injection; in PGE2-treated cells, the MR signal intensity was significantly lower (decrease of 86.6 ± 2.5%) than in PGE2-untreated cells (decrease of 70.0 ± 4.2%) (p < 0.05). Histological analyses with the conventionally used Prussian blue stain demonstrated that the PGE2-treated DCs migrated more deeply into the center of LNs. PGE2-enhanced migration of SPIO-labeled DCs into LNs can be detected using a 1.5 T clinical MR scanner. Our results suggest that in vivo MRI of DC migration is a useful imaging method to predict DC therapy with a high rate of efficacy and to improve DC-based immunotherapy, thereby reducing costs compared with current treatments in clinical trials.
Collapse
Affiliation(s)
- Hyun Jung Joo
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
5
|
Tracking the migration of dendritic cells by in vivo optical imaging. Neoplasia 2008; 9:1130-7. [PMID: 18084620 DOI: 10.1593/neo.07586] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 10/08/2007] [Accepted: 10/09/2007] [Indexed: 01/15/2023] Open
Abstract
We report herein a method to track the migration of dendritic cells (DCs) using optical imaging. With the assistance of the delivery module, fluorescein isothiocyanate (FITC) could internalize inside DCs within 15 minutes of incubation. The fluorescent signal was mostly cytoplasmic and could be detected using in vivo imaging. Furthermore, we observed that the probe did not interfere with the DCs maturation as we assessed the expression of several surface markers. The labeled DCs secreted interleukin-12 (IL-12) and tumor necrosis factor-alpha (TNF-alpha) and stimulated the proliferation of CD4+ T lymphocytes responding to lipopolysaccharide (LPS) stimulation. We have systematically compared the probe uptake between mature and immature DCs. The study showed that the latter phagocytosed the probe slightly better than the former. Intravital imaging of treated mice showed the migration of DCs to lymph nodes (LNs), which is confirmed by immunohistochemistry. Taken together, we demonstrated the potential use of optical imaging for tracking the migration of DCs and homing in vivo. The delivery molecules could also be used on other imaging modalities or for delivery of antigens.
Collapse
|
7
|
Abstract
Dendritic cells (DCs) play important roles in the initiation of adaptive immune responses. The transport of antigen from the infection site to the draining lymph node by DCs is a crucial component in this process. Accordingly, immunotherapeutic applications of in vitro-generated DCs require reliable methods experimentally in mice and clinically in patients to monitor the efficiency of their successful lymph node homing after injection. Recent developments of new methods to follow DC migration by non-invasive imaging modalities such as scintigraphy, PET, MRI, or bioluminescence imaging, have gained attraction because of their potential clinical applicability. The current state of the literature and a comparative evaluation of the methods are reported in this review.
Collapse
Affiliation(s)
- Dirk Baumjohann
- Department of Dermatology, University Hospital Erlangen, Hartmannstr. 14, 91052 Erlangen, Germany
| | | |
Collapse
|