1
|
Alberts I, Sari H, Mingels C, Afshar-Oromieh A, Pyka T, Shi K, Rominger A. Long-axial field-of-view PET/CT: perspectives and review of a revolutionary development in nuclear medicine based on clinical experience in over 7000 patients. Cancer Imaging 2023; 23:28. [PMID: 36934273 PMCID: PMC10024603 DOI: 10.1186/s40644-023-00540-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/25/2023] [Indexed: 03/20/2023] Open
Abstract
Recently introduced long-axial field-of-view (LAFOV) PET/CT systems represent one of the most significant advancements in nuclear medicine since the advent of multi-modality PET/CT imaging. The higher sensitivity exhibited by such systems allow for reductions in applied activity and short duration scans. However, we consider this to be just one small part of the story: Instead, the ability to image the body in its entirety in a single FOV affords insights which standard FOV systems cannot provide. For example, we now have the ability to capture a wider dynamic range of a tracer by imaging it over multiple half-lives without detrimental image noise, to leverage lower radiopharmaceutical doses by using dual-tracer techniques and with improved quantification. The potential for quantitative dynamic whole-body imaging using abbreviated protocols potentially makes these techniques viable for routine clinical use, transforming PET-reporting from a subjective analysis of semi-quantitative maps of radiopharmaceutical uptake at a single time-point to an accurate and quantitative, non-invasive tool to determine human function and physiology and to explore organ interactions and to perform whole-body systems analysis. This article will share the insights obtained from 2 years' of clinical operation of the first Biograph Vision Quadra (Siemens Healthineers) LAFOV system. It will also survey the current state-of-the-art in PET technology. Several technologies are poised to furnish systems with even greater sensitivity and resolution than current systems, potentially with orders of magnitude higher sensitivity. Current barriers which remain to be surmounted, such as data pipelines, patient throughput and the hindrances to implementing kinetic analysis for routine patient care will also be discussed.
Collapse
Affiliation(s)
- Ian Alberts
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Thomas Pyka
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland.
| |
Collapse
|
3
|
Nogueira SA, Lederman HM, Wagner J, Yamaga LY, Cunha MLD, Funari MBDG. Estudo comparativo da qualidade de imagem dos modos de aquisição da PET: validação de um protocolo para reduzir a dose de radiação. Radiol Bras 2009. [DOI: 10.1590/s0100-39842009000200008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJETIVO: O presente experimento visa a validar um protocolo de aquisição em 3D na tomografia por emissão de pósitrons, em substituição ao modo 2D, de forma a reduzir a dose de radiação nos pacientes, sem perda da qualidade de imagens. MATERIAIS E MÉTODOS: Foram realizadas 27 simulações em equipamento Discovery ST, nos modos 2D com quatro minutos de aquisição e 3D com dois e quatro minutos. Utilizou-se um simulador do protocolo da National Electrical Manufacturers Association. No interior deste simulador estão inseridas seis esferas com diferentes diâmetros para a determinação da qualidade de imagem. As aquisições foram comparadas por três médicos nucleares, sem que eles identificassem o modo de aquisição. Cada observador atribuiu o valor igual a 1 quando alguma esfera não foi identificada ou valor 2 para esferas visíveis. RESULTADOS: A análise qualitativa pelo kappa generalizado demonstrou que a frequência de esferas visíveis foi maior no modo 3D com quatro minutos (85%) e a porcentagem de concordância também foi maior (88,9%), com kappa generalizado = 0,725 [0,507;0,942]. CONCLUSÃO: O modo 3D com quatro minutos de aquisição e com menores atividades de FDG-18F pode ser utilizado em pacientes com biótipo equivalente ao simulador, sem perda de qualidade de imagem.
Collapse
|
4
|
Stauss J, Franzius C, Pfluger T, Juergens KU, Biassoni L, Begent J, Kluge R, Amthauer H, Voelker T, Højgaard L, Barrington S, Hain S, Lynch T, Hahn K. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging 2008; 35:1581-8. [PMID: 18536914 DOI: 10.1007/s00259-008-0826-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The purpose of these guidelines is to offer to the nuclear medicine team a framework that could prove helpful in daily practice. These guidelines contain information related to the indications, acquisition, processing and interpretation of (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) in paediatric oncology. The Oncology Committee of the European Association of Nuclear Medicine (EANM) has published excellent procedure guidelines on tumour imaging with (18)F-FDG PET (Bombardieri et al., Eur J Nucl Med Mol Imaging 30:BP115-24, 2003). These guidelines, published by the EANM Paediatric Committee, do not intend to compete with the existing guidelines, but rather aim at providing additional information on issues particularly relevant to PET imaging of children with cancer. CONCLUSION The guidelines summarize the views of the Paediatric Committee of the European Association of Nuclear Medicine. They should be taken in the context of "good practice" of nuclear medicine and of any national rules, which may apply to nuclear medicine examinations. The recommendations of these guidelines cannot be applied to all patients in all practice settings. The guidelines should not be deemed inclusive of all proper procedures or exclusive of other procedures reasonably directed to obtaining the same results.
Collapse
Affiliation(s)
- J Stauss
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Depas G, Decortis T, Francotte N, Bricteux G, Hustinx R. F-18 FDG PET in Infectious Diseases in Children. Clin Nucl Med 2007; 32:593-8. [PMID: 17667429 DOI: 10.1097/rlu.0b013e3180a1abe8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim is to report our observations regarding the role of F-18 FDG PET in children's infectious processes. MATERIAL AND METHODS A presentation is made of 3 neonatal infections unresponsive to treatment, 2 invasive infections in immunocompromised children, and 1 discitis in an immunocompetent child. PET or PET/CT was performed to address a specific question pertaining to the management of the diseases. Results were correlated with the clinical outcome. The impact on patient management is discussed. RESULTS In 1 neonate, PET localized the infection in a bone which allowed surgical curettage. In another one, it localized the infection in recently renewed exogenous material and led to subsequent removal. It was negative in the third one, whose evolution was rapidly favorable. In the immunocompromised children, treatment of invasive infection was adapted according to the metabolic inflammatory activity of the disease. In a limping child with slight abnormalities on bone scintigraphy but major misleading involvement on MRI, PET/CT demonstrated hypermetabolism limited to a disc, thus avoiding further invasive procedures. CONCLUSIONS Although not meant as a first choice examination, F-18 FDG PET should be considered in difficult cases of neonatal infection or in challenging diagnoses like discitis in the young child. It provides more accurate staging and treatment monitoring of the inflammatory process in invasive infections of immunocompromised children.
Collapse
Affiliation(s)
- Gisele Depas
- Department of Nuclear Medicine, CHU Sart Tilman, University of Liège, Liège, Belgium.
| | | | | | | | | |
Collapse
|