1
|
Grindel BJ, Engel BJ, Ong JN, Srinivasamani A, Liang X, Zacharias NM, Bast RC, Curran MA, Takahashi TT, Roberts RW, Millward SW. Directed Evolution of PD-L1-Targeted Affibodies by mRNA Display. ACS Chem Biol 2022; 17:1543-1555. [PMID: 35611948 PMCID: PMC10691555 DOI: 10.1021/acschembio.2c00218] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Therapeutic monoclonal antibodies directed against PD-L1 (e.g., atezolizumab) disrupt PD-L1:PD-1 signaling and reactivate exhausted cytotoxic T-cells in the tumor compartment. Although anti-PD-L1 antibodies are successful as immune checkpoint inhibitor (ICI) therapeutics, there is still a pressing need to develop high-affinity, low-molecular-weight ligands for molecular imaging and diagnostic applications. Affibodies are small polypeptides (∼60 amino acids) that provide a stable molecular scaffold from which to evolve high-affinity ligands. Despite its proven utility in the development of imaging probes, this scaffold has never been optimized for use in mRNA display, a powerful in vitro selection platform incorporating high library diversity, unnatural amino acids, and chemical modification. In this manuscript, we describe the selection of a PD-L1-binding affibody by mRNA display. Following randomization of the 13 amino acids that define the binding interface of the well-described Her2 affibody, the resulting library was selected against recombinant human PD-L1 (hPD-L1). After four rounds, the enriched library was split and selected against either hPD-L1 or the mouse ortholog (mPD-L1). The dual target selection resulted in the identification of a human/mouse cross-reactive PD-L1 affibody (M1) with low nanomolar affinity for both targets. The M1 affibody bound with similar affinity to mPD-L1 and hPD-L1 expressed on the cell surface and inhibited signaling through the PD-L1:PD-1 axis at low micromolar concentrations in a cell-based functional assay. In vivo optical imaging with M1-Cy5 in an immune-competent mouse model of lymphoma revealed significant tumor uptake relative to a Cy5-conjugated Her2 affibody.
Collapse
Affiliation(s)
- Brian J. Grindel
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, Houston, Texas, USA, 77054
| | - Brian J. Engel
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, Houston, Texas, USA, 77054
| | - Justin N. Ong
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California, USA, 90089
| | | | - Xiaowen Liang
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, Texas, USA, 77054
| | - Niki M. Zacharias
- Department of Urology, MD Anderson Cancer Center, Houston, Texas, USA, 77054
| | - Robert C. Bast
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, Texas, USA, 77054
| | - Michael A. Curran
- Department of Immunology, MD Anderson Cancer Center, Houston, Texas, USA, 77054
| | - Terry T. Takahashi
- Department of Chemistry, University of Southern California, Los Angeles, California, USA, 90089
| | - Richard W. Roberts
- Department of Chemistry, University of Southern California, Los Angeles, California, USA, 90089
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California, USA, 90089
- USC Norris Comprehensive Cancer Center, Los Angeles, California, USA, 90089
| | - Steven W. Millward
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, Houston, Texas, USA, 77054
| |
Collapse
|
2
|
Vankayala R, Bahena E, Guerrero Y, Singh SP, Ravoori MK, Kundra V, Anvari B. Virus-Mimicking Nanoparticles for Targeted Near Infrared Fluorescence Imaging of Intraperitoneal Ovarian Tumors in Mice. Ann Biomed Eng 2021; 49:548-559. [PMID: 32761557 DOI: 10.1007/s10439-020-02589-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 07/31/2020] [Indexed: 12/12/2022]
Abstract
Ovarian cancer is the most lethal malignancy affecting the female reproductive system. Identification and removal of all ovarian intraperitoneal tumor deposits during the intraoperative surgery is important towards preventing cancer recurrence and ultimately improving patient survival. Herein, we investigate the effectiveness of virus mimicking nanoparticles, derived from genome-depleted plant-infecting brome mosaic virus, and doped with near infrared (NIR) brominated cyanine dye BrCy106-NHS, for targeted NIR fluorescence imaging of intraperitoneal ovarian tumors. We refer to these nanoparticles as optical viral ghosts (OVGs). We functionalized the OVGs with antibodies against HER2 receptor, a biomarker over-expressed in ovarian cancers. We injected functionalized OVGs, non-functionalized OVGs, and non-encapsulated BrCy106-NHS intravenously in mice implanted with ovarian intraperitoneal tumors. Tumors were extracted at 2, 6, and 24 h post-injection, and quantitatively analyzed using NIR fluorescence imaging. Fluorescence emission from tumors associated with the injection of the functionalized OVGs continued to increase between 2 and 24 h post-injection. At 24 h timepoint, the average spectrally-integrated fluorescence emission from homogenized tumors containing functionalized-OVGs was about 3.5 and 19.5 times higher than those containing non-functionalized OVGs or non-encapsulated BrCy106-NHS, respectively. Similarly, by using the functionalized-OVGs, the imaging signal-to-noise ratio at 24 h timepoint was enhanced by approximately threefold and sevenfold as compared to non-functionalized OVGs and the non-encapsulated dye, respectively. These functionalized virus-mimicking NIR nano-constructs could potentially be used for intraoperative visualization of ovarian tumors implants.
Collapse
Affiliation(s)
- Raviraj Vankayala
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Edver Bahena
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Yadir Guerrero
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Sheela P Singh
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Murali K Ravoori
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vikas Kundra
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bahman Anvari
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA.
| |
Collapse
|
3
|
Tolmachev V, Orlova A, Sörensen J. The emerging role of radionuclide molecular imaging of HER2 expression in breast cancer. Semin Cancer Biol 2021; 72:185-197. [PMID: 33465471 DOI: 10.1016/j.semcancer.2020.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Targeting of human epidermal growth factor type 2 (HER2) using monoclonal antibodies, antibody-drug conjugates and tyrosine kinase inhibitors extends survival of patients with HER2-expressing metastatic breast cancer. High expression of HER2 is a predictive biomarker for such specific treatment. Accurate determination of HER2 expression level is necessary for stratification of patients to targeted therapy. Non-invasive in vivo radionuclide molecular imaging of HER2 has a potential of repetitive measurements, addressing issues of heterogeneous expression and conversion of HER2 status during disease progression or in response to therapy. Imaging probes based of several classes of targeting proteins are currently in preclinical and early clinical development. Both preclinical and clinical data suggest that the most promising are imaging agents based on small proteins, such as single domain antibodies or engineered scaffold proteins. These agents permit a very specific high-contrast imaging at the day of injection.
Collapse
Affiliation(s)
- Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia.
| | - Anna Orlova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia; Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jens Sörensen
- Division of Radiology and Nuclear Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Bragina O, von Witting E, Garousi J, Zelchan R, Sandström M, Orlova A, Medvedeva A, Doroshenko A, Vorobyeva A, Lindbo S, Borin J, Tarabanovskaya N, Sörensen J, Hober S, Chernov V, Tolmachev V. Phase I Study of 99mTc-ADAPT6, a Scaffold Protein-Based Probe for Visualization of HER2 Expression in Breast Cancer. J Nucl Med 2020; 62:493-499. [PMID: 32817142 DOI: 10.2967/jnumed.120.248799] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/03/2020] [Indexed: 01/29/2023] Open
Abstract
Radionuclide molecular imaging of human epidermal growth factor receptor type 2 (HER2) expression may help to stratify breast and gastroesophageal cancer patients for HER2-targeting therapies. Albumin-binding domain-derived affinity proteins (ADAPTs) are a new type of small (46-59 amino acids) protein useful as probes for molecular imaging. The aim of this first-in-humans study was to evaluate the biodistribution, dosimetry, and safety of the HER2-specific 99mTc-ADAPT6. Methods: Twenty-nine patients with primary breast cancer were included. In 22 patients with HER2-positive (n = 11) or HER2-negative (n = 11) histopathology, an intravenous injection of 385 ± 125 MBq of 99mTc-ADAPT6 was performed, randomized to an injected protein mass of either 500 μg (n = 11) or 1,000 μg (n = 11). Planar scintigraphy followed by SPECT imaging was performed after 2, 4, 6, and 24 h. An additional cohort (n = 7) was injected with 165 ± 29 MBq (injected protein mass, 250 μg), and imaging was performed after 2 h only. Results: Injections of 99mTc-ADAPT6 were well tolerated at all mass levels and not associated with adverse effects. 99mTc-ADAPT6 cleared rapidly from the blood and most other tissues. The normal organs with the highest accumulation were the kidney, liver, and lung. Effective doses were 0.009 ± 0.002 and 0.010 ± 0.003 mSv/MBq for injected protein masses of 500 and 1,000 μg, respectively. Injection of 500 μg resulted in excellent discrimination between HER2-positive and HER2-negative tumors as early as 2 h after injection (tumor-to-contralateral breast ratio, 37 ± 19 vs. 5 ± 2; P < 0.01). The tumor-to-contralateral breast ratios for HER2-positive tumors were significantly (P < 0.05) higher for an injected mass of 500 μg than for either 250 or 1,000 μg. Conclusion: Injections of 99mTc-ADAPT6 are safe and associated with low absorbed and effective doses. A protein dose of 500 μg is preferable for discrimination between tumors with high and low expression of HER2. Further studies are justified to evaluate whether 99mTc-ADAPT6 can be used as an imaging probe to stratify patients for HER2-targeting therapy in areas where PET imaging is not readily available.
Collapse
Affiliation(s)
- Olga Bragina
- Department of Nuclear Medicine, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.,Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia
| | - Emma von Witting
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Javad Garousi
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Roman Zelchan
- Department of Nuclear Medicine, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.,Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia
| | - Mattias Sandström
- Radiology and Nuclear Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Anna Orlova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia.,Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden; and
| | - Anna Medvedeva
- Department of Nuclear Medicine, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Artem Doroshenko
- Department of General Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Anzhelika Vorobyeva
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia.,Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Sarah Lindbo
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jesper Borin
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Natalya Tarabanovskaya
- Department of General Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Jens Sörensen
- Radiology and Nuclear Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Sophia Hober
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Vladimir Chernov
- Department of Nuclear Medicine, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.,Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia
| | - Vladimir Tolmachev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia .,Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
6
|
Affibody Molecules as Targeting Vectors for PET Imaging. Cancers (Basel) 2020; 12:cancers12030651. [PMID: 32168760 PMCID: PMC7139392 DOI: 10.3390/cancers12030651] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
Affibody molecules are small (58 amino acids) engineered scaffold proteins that can be selected to bind to a large variety of proteins with a high affinity. Their small size and high affinity make them attractive as targeting vectors for molecular imaging. High-affinity affibody binders have been selected for several cancer-associated molecular targets. Preclinical studies have shown that radiolabeled affibody molecules can provide highly specific and sensitive imaging on the day of injection; however, for a few targets, imaging on the next day further increased the imaging sensitivity. A phase I/II clinical trial showed that 68Ga-labeled affibody molecules permit an accurate and specific measurement of HER2 expression in breast cancer metastases. This paper provides an overview of the factors influencing the biodistribution and targeting properties of affibody molecules and the chemistry of their labeling using positron emitters.
Collapse
|
7
|
Bala G, Crauwels M, Blykers A, Remory I, Marschall ALJ, Dübel S, Dumas L, Broisat A, Martin C, Ballet S, Cosyns B, Caveliers V, Devoogdt N, Xavier C, Hernot S. Radiometal-labeled anti-VCAM-1 nanobodies as molecular tracers for atherosclerosis - impact of radiochemistry on pharmacokinetics. Biol Chem 2019; 400:323-332. [PMID: 30240352 DOI: 10.1515/hsz-2018-0330] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022]
Abstract
Radiolabeling of nanobodies with radiometals by chelation has the advantage of being simple, fast and easy to implement in clinical routine. In this study, we validated 68Ga/111In-labeled anti-VCAM-1 nanobodies as potential radiometal-based tracers for molecular imaging of atherosclerosis. Both showed specific targeting of atherosclerotic lesions in ApoE-/- mice. Nevertheless, uptake in lesions and constitutively VCAM-1 expressing organs was lower than previously reported for the 99mTc-labeled analog. We further investigated the impact of different radiolabeling strategies on the in vivo biodistribution of nanobody-based tracers. Comparison of the pharmacokinetics between 68Ga-, 18F-, 111In- and 99mTc-labeled anti-VCAM-1 nanobodies showed highest specific uptake for 99mTc-nanobody at all time-points, followed by the 68Ga-, 111In- and 18F-labeled tracer. No correlation was found with the estimated number of radioisotopes per nanobody, and mimicking specific activity of other radiolabeling methods did not result in an analogous biodistribution. We also demonstrated specificity of the tracer using mice with a VCAM-1 knocked-down phenotype, while showing for the first time the in vivo visualization of a protein knock-down using intrabodies. Conclusively, the chosen radiochemistry does have an important impact on the biodistribution of nanobodies, in particular on the specific targeting, but differences are not purely due to the tracer's specific activity.
Collapse
Affiliation(s)
- Gezim Bala
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.,Department of Cardiology, UZBrussel, Laarbeeklaan 101, B-1090 Brussels, Belgium
| | - Maxine Crauwels
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.,Cellular and Molecular Immunology, CMIM, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Anneleen Blykers
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Isabel Remory
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.,Department of Anesthesiology, UZBrussel, Laarbeeklaan 101, B-1090 Brussels, Belgium
| | - Andrea L J Marschall
- Biotechnology and Bioinformatics, Institute of Biochemistry, Technische Universität Braunschweig, Spielmannstraβe 7, D-38106 Braunschweig, Germany
| | - Stefan Dübel
- Biotechnology and Bioinformatics, Institute of Biochemistry, Technische Universität Braunschweig, Spielmannstraβe 7, D-38106 Braunschweig, Germany
| | - Laurent Dumas
- Inserm U1039, LRB, Université Grenoble Alpes, Domaine de la Merci, F-38700 La Tonche, France
| | - Alexis Broisat
- Inserm U1039, LRB, Université Grenoble Alpes, Domaine de la Merci, F-38700 La Tonche, France
| | - Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Bernard Cosyns
- Department of Cardiology, UZBrussel, Laarbeeklaan 101, B-1090 Brussels, Belgium
| | - Vicky Caveliers
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.,Department of Nuclear Medicine, UZBrussel, Laarbeeklaan 101, B-1090 Brussels, Belgium
| | - Nick Devoogdt
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Catarina Xavier
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Sophie Hernot
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| |
Collapse
|
8
|
Wurzer A, Pollmann J, Schmidt A, Reich D, Wester HJ, Notni J. Molar Activity of Ga-68 Labeled PSMA Inhibitor Conjugates Determines PET Imaging Results. Mol Pharm 2018; 15:4296-4302. [PMID: 30011372 DOI: 10.1021/acs.molpharmaceut.8b00602] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Radiopharmaceuticals targeting the enzyme prostate-specific membrane antigen (PSMA; synonyms: glutamate carboxypeptidase II, NAALADase; EC 3.4.17.21) have recently emerged as powerful agents for diagnosis and therapy (theranostics) of prostate carcinoma (PCa). The radiation doses for therapeutic application of such compounds are limited by substantial uptakes in kidneys and salivary glands, with excess doses reportedly leading to radiotoxicity-related adverse effects, such as kidney insufficiency or xenostomia. On the basis of the triazacyclononane-triphosphinate (TRAP) chelator, monomeric to trimeric conjugates of the PSMA inhibitor motif lysine-urea-glutamic acid (KuE) were synthesized by means of Cu(I)-mediated (CuAAC) or 5-aza-dibenzocyclooctyne (DBCO)-driven, strain-promoted click chemistry (SPAAC), which were labeled with gallium-68 for application in positron emission tomography (PET), and characterized in terms of PSMA affinity (determined in cellular displacement assays against I-125-BA) and lipophilicity (expressed as log D). Using subcutaneous murine LNCaP (PSMA-positive human prostate carcinoma) xenografts, the influence of ligand multiplicity, affinity, polarity, and molar activity (i.e., mass dose) on the uptakes in tumor, kidney, salivary, and background (muscle) was analyzed by means of region-of-interest (ROI) based quantification of small-animal PET imaging data. As expected, trimerization of the KuE motif resulted in high PSMA affinities (IC50 ranging from 6.0-1.5 nM). Of all parameters, molar activity/cold mass had the most pronounced influence on PET uptakes. Because accumulation in nontumor tissues was effected to a larger extent than tumor uptakes, lower molar activities resulted in substantially better tumor-to-organ ratios. For example, for one trimer, 68Ga-AhxKuE3 (IC50 = 1.5 ± 0.3 nM, log D = -3.8 ± 0.1), a higher overall amount of active compound (12 pmol vs 2 nmol, equivalent to molar activities of 1200 and 8 MBq/nmol) resulted in a remarkable reduction of the kidney-to-tumor ratio from 11.4 to 1.4, respectively, at 60 min p.i. Our study suggests that, for PSMA-targeting radiopharmaceuticals, molar activity has a more pronounced influence on small-animal PET imaging results than structural or in vitro parameters.
Collapse
Affiliation(s)
- Alexander Wurzer
- Pharmaceutical Radiochemistry , Technische Universität München , Walther-Meißner-Straße 3 , D-85748 Garching , Germany
| | - Julia Pollmann
- Pharmaceutical Radiochemistry , Technische Universität München , Walther-Meißner-Straße 3 , D-85748 Garching , Germany
| | - Alexander Schmidt
- Pharmaceutical Radiochemistry , Technische Universität München , Walther-Meißner-Straße 3 , D-85748 Garching , Germany
| | - Dominik Reich
- Pharmaceutical Radiochemistry , Technische Universität München , Walther-Meißner-Straße 3 , D-85748 Garching , Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry , Technische Universität München , Walther-Meißner-Straße 3 , D-85748 Garching , Germany
| | - Johannes Notni
- Pharmaceutical Radiochemistry , Technische Universität München , Walther-Meißner-Straße 3 , D-85748 Garching , Germany
| |
Collapse
|
9
|
Vorobyeva A, Westerlund K, Mitran B, Altai M, Rinne S, Sörensen J, Orlova A, Tolmachev V, Karlström AE. Development of an optimal imaging strategy for selection of patients for affibody-based PNA-mediated radionuclide therapy. Sci Rep 2018; 8:9643. [PMID: 29942011 PMCID: PMC6018533 DOI: 10.1038/s41598-018-27886-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/08/2018] [Indexed: 01/03/2023] Open
Abstract
Affibody molecules are engineered scaffold proteins, which demonstrated excellent binding to selected tumor-associated molecular abnormalities in vivo and highly sensitive and specific radionuclide imaging of Her2-expressing tumors in clinics. Recently, we have shown that peptide nucleic acid (PNA)-mediated affibody-based pretargeted radionuclide therapy using beta-emitting radionuclide 177Lu extended significantly survival of mice bearing human Her2-expressing tumor xenografts. In this study, we evaluated two approaches to use positron emission tomography (PET) for stratification of patients for affibody-based pretargeting therapy. The primary targeting probe ZHER2:342-SR-HP1 and the secondary probe HP2 (both conjugated with DOTA chelator) were labeled with the positron-emitting radionuclide 68Ga. Biodistribution of both probes was measured in BALB/C nu/nu mice bearing either SKOV-3 xenografts with high Her2 expression or DU-145 xenografts with low Her2 expression. 68Ga-HP2 was evaluated in the pretargeting setting. Tumor uptake of both probes was compared with the uptake of pretargeted 177Lu-HP2. The uptake of both 68Ga-ZHER2:342-SR-HP1 and 68Ga-HP2 depended on Her2-expression level providing clear discrimination of between tumors with high and low Her2 expression. Tumor uptake of 68Ga-HP2 correlated better with the uptake of 177Lu-HP2 than the uptake of 68Ga-ZHER2:342-SR-HP1. The use of 68Ga-HP2 as a theranostics counterpart would be preferable approach for clinical translation.
Collapse
Affiliation(s)
- Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kristina Westerlund
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Bogdan Mitran
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Mohamed Altai
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sara Rinne
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Jens Sörensen
- Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Amelie Eriksson Karlström
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
10
|
Lindbo S, Garousi J, Mitran B, Vorobyeva A, Oroujeni M, Orlova A, Hober S, Tolmachev V. Optimized Molecular Design of ADAPT-Based HER2-Imaging Probes Labeled with 111In and 68Ga. Mol Pharm 2018; 15:2674-2683. [PMID: 29865791 DOI: 10.1021/acs.molpharmaceut.8b00204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Radionuclide molecular imaging is a promising tool for visualization of cancer associated molecular abnormalities in vivo and stratification of patients for specific therapies. ADAPT is a new type of small engineered proteins based on the scaffold of an albumin binding domain of protein G. ADAPTs have been utilized to select and develop high affinity binders to different proteinaceous targets. ADAPT6 binds to human epidermal growth factor 2 (HER2) with low nanomolar affinity and can be used for its in vivo visualization. Molecular design of 111In-labeled anti-HER2 ADAPT has been optimized in several earlier studies. In this study, we made a direct comparison of two of the most promising variants, having either a DEAVDANS or a (HE)3DANS sequence at the N-terminus, conjugated with a maleimido derivative of DOTA to a GSSC amino acids sequence at the C-terminus. The variants (designated DOTA-C59-DEAVDANS-ADAPT6-GSSC and DOTA-C61-(HE)3DANS-ADAPT6-GSSC) were stably labeled with 111In for SPECT and 68Ga for PET. Biodistribution of labeled ADAPT variants was evaluated in nude mice bearing human tumor xenografts with different levels of HER2 expression. Both variants enabled clear discrimination between tumors with high and low levels of HER2 expression. 111In-labeled ADAPT6 derivatives provided higher tumor-to-organ ratios compared to 68Ga-labeled counterparts. The best performing variant was DOTA-C61-(HE)3DANS-ADAPT6-GSSC, which provided tumor-to-blood ratios of 208 ± 36 and 109 ± 17 at 3 h for 111In and 68Ga labels, respectively.
Collapse
Affiliation(s)
- Sarah Lindbo
- School of Engineering in Chemistry, Biotechnology and Health (CBH) , Division of Protein Science, KTH Royal Institute of Technology , SE-10691 Stockholm , Sweden
| | - Javad Garousi
- Department of Immunology, Genetics and Pathology , Uppsala University , 751 85 Uppsala , Sweden
| | - Bogdan Mitran
- Department of Medicinal Chemistry , Uppsala University , 751 23 Uppsala , Sweden
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology , Uppsala University , 751 85 Uppsala , Sweden
| | - Maryam Oroujeni
- Department of Immunology, Genetics and Pathology , Uppsala University , 751 85 Uppsala , Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry , Uppsala University , 751 23 Uppsala , Sweden
| | - Sophia Hober
- School of Engineering in Chemistry, Biotechnology and Health (CBH) , Division of Protein Science, KTH Royal Institute of Technology , SE-10691 Stockholm , Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology , Uppsala University , 751 85 Uppsala , Sweden
| |
Collapse
|
11
|
Kumar K, Ghosh A. 18F-AlF Labeled Peptide and Protein Conjugates as Positron Emission Tomography Imaging Pharmaceuticals. Bioconjug Chem 2018; 29:953-975. [PMID: 29463084 DOI: 10.1021/acs.bioconjchem.7b00817] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The clinical applications of positron emission tomography (PET) imaging pharmaceuticals have increased tremendously over the past several years since the approval of 18fluorine-fluorodeoxyglucose (18F-FDG) by the Food and Drug Administration (FDA). Numerous 18F-labeled target-specific potential imaging pharmaceuticals, based on small and large molecules, have been evaluated in preclinical and clinical settings. 18F-labeling of organic moieties involves the introduction of the radioisotope by C-18F bond formation via a nucleophilic or an electrophilic substitution reaction. However, biomolecules, such as peptides, proteins, and oligonucleotides, cannot be radiolabeled via a C-18F bond formation as these reactions involve harsh conditions, including organic solvents, high temperature, and nonphysiological conditions. Several approaches, including 18F-labeled prosthetic groups, silicon, boron, and aluminum fluoride acceptor chemistry, and click chemistry have been developed, in the past, for 18F labeling of biomolecules. Linear and macrocyclic polyaminocarboxylates and their analogs and derivatives form thermodynamically stable and kinetically inert aluminum chelates. Hence, macrocyclic polyaminocarboxylates have been used for conjugation with biomolecules, such as folate, peptides, affibodies, and protein fragments, followed by 18F-AlF chelation, and evaluation of their targeting abilities in preclinical and clinical environments. The goal of this report is to provide an overview of the 18F radiochemistry and 18F-labeling methodologies for small molecules and target-specific biomolecules, a comprehensive review of coordination chemistry of Al3+, 18F-AlF labeling of peptide and protein conjugates, and evaluation of 18F-labeled biomolecule conjugates as potential imaging pharmaceuticals.
Collapse
Affiliation(s)
- Krishan Kumar
- Laboratory for Translational Research in Imaging Pharmaceuticals, The Wright Center of Innovation in Biomedical Imaging, Department of Radiology , The Ohio State University , Columbus , Ohio 43212 , United States
| | - Arijit Ghosh
- Laboratory for Translational Research in Imaging Pharmaceuticals, The Wright Center of Innovation in Biomedical Imaging, Department of Radiology , The Ohio State University , Columbus , Ohio 43212 , United States
| |
Collapse
|
12
|
Aligholikhamseh N, Ahmadpour S, Khodadust F, Abedi SM, Hosseinimehr SJ. 99mTc-HYNIC-(Ser)3-LTVPWY peptide bearing tricine as co-ligand for targeting and imaging of HER2 overexpression tumor. RADIOCHIM ACTA 2018. [DOI: 10.1515/ract-2017-2868] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Human epidermal growth factor receptor 2 (HER2) is overexpressed in several cancers. Today’s tumor targeting is receiving more attention due to its specificity to target receptor-dependent cancers. The aim of this study was to evaluate the 99mTc-HYNIC-(tricine)-(Ser)3-LTVPWY peptide for tumor targeting and imaging with overexpression of HER2. HYNIC-(Ser)3-LTVPWY peptide was labeled with 99mTc using tricine as a co-ligand at room temperature. Specific binding of this radiolabeled peptide was assessed on four cancer cell lines with different levels of HER2 receptor expression. Also the affinity of 99mTc-HYNIC-(tricine)-(Ser)3-LTVPWY peptide to the HER2 receptor was evaluated in the SKOV-3 cell line. Biodistribution study of this radiolabeled peptide was performed in SKOV-3 tumor bearing nude mice. The HYNIC conjugated peptide was simply labeled with 99mTc radionuclide with high labeling efficiency about 98±1% showing favorable stability in normal saline and human serum. In the presence of unlabeled peptide as competitor, the HER2 binding capacity of the radiolabeled peptide reduced (approximately five-fold). The KD and Bmax values were found 2.6±0.5 nM and (2.6±0.1)×106, respectively. The tumor/muscle ratios for this radiotracer were determined 1.17±0.77, 1.15±0.32 and 2.65±0.32 at 1, 2 and 4 h after injection, respectively. Presaturation of HER2 receptors in SKOV-3 xenografted nude mice showed a reduction in the tumor/muscle ratio confirming in vivo specificity of the peptide. According to SPECT imaging, the tumor was visualized in mouse after 4 h postinjection of radiolabeled peptide. 99mTc-HYNIC-(tricine)-(Ser)3-LTVPWY peptide exhibited overexpressed HER2 tumor targeting.
Collapse
Affiliation(s)
- Nazan Aligholikhamseh
- Department of Radiopharmacy, Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran
| | - Sajjad Ahmadpour
- Department of Radiopharmacy, Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran
| | - Fatemeh Khodadust
- Department of Radiopharmacy, Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran
| | - Seyed Mohammad Abedi
- Department of Radiology, Faculty of Medicine , Mazandaran University of Medical Sciences , Sari , Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy , Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran , Tel./Fax: +98-11- 33543083, E-mail:
| |
Collapse
|
13
|
Wurzer A, Seidl C, Morgenstern A, Bruchertseifer F, Schwaiger M, Wester H, Notni J. Dual-Nuclide Radiopharmaceuticals for Positron Emission Tomography Based Dosimetry in Radiotherapy. Chemistry 2018; 24:547-550. [PMID: 28833667 PMCID: PMC5813229 DOI: 10.1002/chem.201702335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Indexed: 01/15/2023]
Abstract
Improvement of the accuracy of dosimetry in radionuclide therapy has the potential to increase patient safety and therapeutic outcomes. Although positron emission tomography (PET) is ideally suited for acquisition of dosimetric data because PET is inherently quantitative and offers high sensitivity and spatial resolution, it is not directly applicable for this purpose because common therapeutic radionuclides lack the necessary positron emission. This work reports on the synthesis of dual-nuclide labeled radiopharmaceuticals with therapeutic and PET functionality, which are based on common and widely available metal radionuclides. Dual-chelator conjugates, featuring interlinked cyclen- and triazacyclononane-based polyphosphinates DOTPI and TRAP, allow for strictly regioselective complexation of therapeutic (e.g., 177 Lu, 90 Y, or 213 Bi) and PET (e.g., 68 Ga) radiometals in the same molecular framework by exploiting the orthogonal metal ion selectivity of these chelators (DOTPI: large cations, such as lanthanide(III) ions; TRAP: small trivalent ions, such as GaIII ). Such DOTPI-TRAP conjugates were decorated with 3 Gly-urea-Lys (KuE) motifs for targeting prostate-specific membrane antigen (PSMA), employing Cu-catalyzed (CuAAC) as well as strain-promoted (SPAAC) click chemistry. These were labeled with 177 Lu or 213 Bi and 68 Ga and used for in vivo imaging of LNCaP (human prostate carcinoma) tumor xenografts in SCID mice by PET, thus proving practical applicability of the concept.
Collapse
Affiliation(s)
- Alexander Wurzer
- Pharmaceutical RadiochemistryTechnische Universität MünchenWalther-Meißner-Strasse 385748GarchingGermany
| | - Christof Seidl
- Department of Nuclear MedicineTechnische Universität MünchenGermany
- Department of Obstetrics and GynecologyTechnische Universität MünchenGermany
| | - Alfred Morgenstern
- European Commission, Joint Research CentreDirectorate for Nuclear Safety and SecurityKarlsruheGermany
| | - Frank Bruchertseifer
- European Commission, Joint Research CentreDirectorate for Nuclear Safety and SecurityKarlsruheGermany
| | - Markus Schwaiger
- Department of Nuclear MedicineTechnische Universität MünchenGermany
| | - Hans‐Jürgen Wester
- Pharmaceutical RadiochemistryTechnische Universität MünchenWalther-Meißner-Strasse 385748GarchingGermany
| | - Johannes Notni
- Pharmaceutical RadiochemistryTechnische Universität MünchenWalther-Meißner-Strasse 385748GarchingGermany
| |
Collapse
|
14
|
|
15
|
González Trotter DE, Meng X, McQuade P, Rubins D, Klimas M, Zeng Z, Connolly BM, Miller PJ, O'Malley SS, Lin SA, Getty KL, Fayadat-Dilman L, Liang L, Wahlberg E, Widmark O, Ekblad C, Frejd FY, Hostetler ED, Evelhoch JL. In Vivo Imaging of the Programmed Death Ligand 1 by 18F PET. J Nucl Med 2017; 58:1852-1857. [PMID: 28588151 DOI: 10.2967/jnumed.117.191718] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/26/2017] [Indexed: 01/04/2023] Open
Abstract
Programmed death ligand 1 (PD-L1) is an immune regulatory ligand that binds to the T-cell immune check point programmed death 1. Tumor expression of PD-L1 is correlated with immune suppression and poor prognosis. It is also correlated with therapeutic efficacy of programmed death 1 and PD-L1 inhibitors. In vivo imaging may enable real-time follow-up of changing PD-L1 expression and heterogeneity evaluation of PD-L1 expression across tumors in the same subject. We have radiolabeled the PD-L1-binding Affibody molecule NOTA-ZPD-L1_1 with 18F and evaluated its in vitro and in vivo binding affinity, targeting, and specificity. Methods: The affinity of the PD-L1-binding Affibody ligand ZPD-L1_1 was evaluated by surface plasmon resonance. Labeling was accomplished by maleimide coupling of NOTA to a unique cysteine residue and chelation of 18F-AlF. In vivo studies were performed in PD-L1-positive, PD-L1-negative, and mixed tumor-bearing severe combined immunodeficiency mice. Tracer was injected via the tail vein, and dynamic PET scans were acquired for 90 min, followed by γ-counting biodistribution. Immunohistochemical staining with an antibody specific for anti-PD-L1 (22C3) was used to evaluate the tumor distribution of PD-L1. Immunohistochemistry results were then compared with ex vivo autoradiographic images obtained from adjacent tissue sections. Results: NOTA-ZPD-L1_1 was labeled, with a radiochemical yield of 15.1% ± 5.6%, radiochemical purity of 96.7% ± 2.0%, and specific activity of 14.6 ± 6.5 GBq/μmol. Surface plasmon resonance showed a NOTA-conjugated ligand binding affinity of 1 nM. PET imaging demonstrated rapid uptake of tracer in the PD-L1-positive tumor, whereas the PD-L1-negative control tumor showed little tracer retention. Tracer clearance from most organs and blood was quick, with biodistribution showing prominent kidney retention, low liver uptake, and a significant difference between PD-L1-positive (percentage injected dose per gram [%ID/g] = 2.56 ± 0.33) and -negative (%ID/g = 0.32 ± 0.05) tumors (P = 0.0006). Ex vivo autoradiography showed excellent spatial correlation with immunohistochemistry in mixed tumors. Conclusion: Our results show that Affibody ligands can be effective at targeting tumor PD-L1 in vivo, with good specificity and rapid clearance. Future studies will explore methods to reduce kidney activity retention and further increase tumor uptake.
Collapse
Affiliation(s)
| | - Xiangjun Meng
- Translational Biomarkers Department, Merck & Co., Inc., West Point, Pennsylvania
| | - Paul McQuade
- Translational Biomarkers Department, Merck & Co., Inc., West Point, Pennsylvania
| | - Daniel Rubins
- Translational Biomarkers Department, Merck & Co., Inc., West Point, Pennsylvania
| | - Michael Klimas
- Translational Biomarkers Department, Merck & Co., Inc., West Point, Pennsylvania
| | - Zhizhen Zeng
- Translational Biomarkers Department, Merck & Co., Inc., West Point, Pennsylvania
| | - Brett M Connolly
- Translational Biomarkers Department, Merck & Co., Inc., West Point, Pennsylvania
| | - Patricia J Miller
- Translational Biomarkers Department, Merck & Co., Inc., West Point, Pennsylvania
| | - Stacey S O'Malley
- Translational Biomarkers Department, Merck & Co., Inc., West Point, Pennsylvania
| | - Shu-An Lin
- Translational Biomarkers Department, Merck & Co., Inc., West Point, Pennsylvania
| | - Krista L Getty
- Screening and Protein Sciences Department, Merck & Co., Inc., West Point, Pennsylvania
| | | | - Linda Liang
- Biologics Discovery, Merck & Co., Inc., Palo Alto, California
| | | | | | | | - Fredrik Y Frejd
- Affibody AB, Solna, Sweden; and.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Eric D Hostetler
- Translational Biomarkers Department, Merck & Co., Inc., West Point, Pennsylvania
| | - Jeffrey L Evelhoch
- Translational Biomarkers Department, Merck & Co., Inc., West Point, Pennsylvania
| |
Collapse
|
16
|
Comparative Evaluation of Anti-HER2 Affibody Molecules Labeled with 64Cu Using NOTA and NODAGA. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:8565802. [PMID: 29097939 PMCID: PMC5612711 DOI: 10.1155/2017/8565802] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/08/2017] [Indexed: 01/04/2023]
Abstract
Imaging using affibody molecules enables discrimination between breast cancer metastases with high and low expression of HER2, making appropriate therapy selection possible. This study aimed to evaluate if the longer half-life of 64Cu (T1/2 = 12.7 h) would make 64Cu a superior nuclide compared to 68Ga for PET imaging of HER2 expression using affibody molecules. The synthetic ZHER2:S1 affibody molecule was conjugated with the chelators NOTA or NODAGA and labeled with 64Cu. The tumor-targeting properties of 64Cu-NOTA-ZHER2:S1 and 64Cu-NODAGA-ZHER2:S1 were evaluated and compared with the targeting properties of 68Ga-NODAGA-ZHER2:S1 in mice. Both 64Cu-NOTA-ZHER2:S1 and 64Cu-NODAGA-ZHER2:S1 demonstrated specific targeting of HER2-expressing xenografts. At 2 h after injection of 64Cu-NOTA-ZHER2:S1, 64Cu-NODAGA-ZHER2:S1, and 68Ga-NODAGA-ZHER2:S1, tumor uptakes did not differ significantly. Renal uptake of 64Cu-labeled conjugates was dramatically reduced at 6 and 24 h after injection. Notably, radioactivity uptake concomitantly increased in blood, lung, liver, spleen, and intestines, which resulted in decreased tumor-to-organ ratios compared to 2 h postinjection. Organ uptake was lower for 64Cu-NODAGA-ZHER2:S1. The most probable explanation for this biodistribution pattern was the release and redistribution of renal radiometabolites. In conclusion, monoamide derivatives of NOTA and NODAGA may be suboptimal chelators for radiocopper labeling of anti-HER2 affibody molecules and, possibly, other scaffold proteins with high renal uptake.
Collapse
|
17
|
Da Pieve C, Allott L, Martins CD, Vardon A, Ciobota DM, Kramer-Marek G, Smith G. Efficient [(18)F]AlF Radiolabeling of ZHER3:8698 Affibody Molecule for Imaging of HER3 Positive Tumors. Bioconjug Chem 2016; 27:1839-49. [PMID: 27357023 DOI: 10.1021/acs.bioconjchem.6b00259] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human epidermal growth factor receptor 3 (HER3) is overexpressed in several cancers, being linked to a more resistant phenotype and hence leading to poor patient prognosis. Imaging HER3 is challenging owing to the modest receptor number (<50000 receptors/cell) in overexpressing cancer cells. Therefore, to image HER3 in vivo, high target affinity PET probes need to be developed. This work describes two different [(18)F]AlF radiolabeling strategies of the ZHER3:8698 affibody molecule specifically targeting HER3. The one-pot radiolabeling of ZHER3:8698 performed at 100 °C and using 1,4,7-triazanonane-1,4,7-triacetate (NOTA) as chelator resulted in radiolabeled products with variable purity attributed to radioconjugate thermolysis. An alternative approach based on the inverse electron demand Diels-Alder (IEDDA) reaction between a novel tetrazine functionalized 1,4,7-triazacyclononane-1,4-diacetate (NODA) chelator and the trans-cyclooctene (TCO) functionalized affibody molecule was also investigated. This method enabled the radiolabeling of the protein at room temperature. The [(18)F]AlF-NOTA-ZHER3:8698 and [(18)F]AlF-NODA-ZHER3:8698 conjugates showed a specific uptake at 1 h after injection in high HER3-expressing MCF-7 tumors of 4.36 ± 0.92% ID/g and 4.96 ± 0.65% ID/g, respectively. The current results are encouraging for further investigation of [(18)F]AlF-NOTA-ZHER3:8698 as a HER3 imaging agent.
Collapse
Affiliation(s)
- Chiara Da Pieve
- Division of Radiotherapy and Imaging, The Institute of Cancer Research , 123 Old Brompton Road, London SW7 3RP, U.K
| | - Louis Allott
- Division of Radiotherapy and Imaging, The Institute of Cancer Research , 123 Old Brompton Road, London SW7 3RP, U.K
| | - Carlos D Martins
- Division of Radiotherapy and Imaging, The Institute of Cancer Research , 123 Old Brompton Road, London SW7 3RP, U.K
| | - Andrew Vardon
- Division of Radiotherapy and Imaging, The Institute of Cancer Research , 123 Old Brompton Road, London SW7 3RP, U.K
| | - Daniela M Ciobota
- Division of Radiotherapy and Imaging, The Institute of Cancer Research , 123 Old Brompton Road, London SW7 3RP, U.K
| | - Gabriela Kramer-Marek
- Division of Radiotherapy and Imaging, The Institute of Cancer Research , 123 Old Brompton Road, London SW7 3RP, U.K
| | - Graham Smith
- Division of Radiotherapy and Imaging, The Institute of Cancer Research , 123 Old Brompton Road, London SW7 3RP, U.K
| |
Collapse
|
18
|
Kondo N, Temma T, Shimizu Y, Ono M, Saji H. Radioiodinated Peptidic Imaging Probes for in Vivo Detection of Membrane Type-1 Matrix Metalloproteinase in Cancers. Biol Pharm Bull 2016; 38:1375-82. [PMID: 26328493 DOI: 10.1248/bpb.b15-00314] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Membrane type-1 matrix metalloproteinase (MT1-MMP) plays pivotal roles in tumor progression and metastasis, and holds great promise as an early biomarker for malignant tumors. Therefore, the ability to evaluate MT1-MMP expression could be valuable for molecular biological and clinical studies. For this purpose, we aimed to develop short peptide-based nuclear probes because of their facile radiosynthesis, chemically uniform structures, and high specific activity, as compared to antibody-based probes, which could allow them to be more effective for in vivo MT1-MMP imaging. To the best of our knowledge, there have been no reports of radiolabeled peptide probes for the detection of MT1-MMP in cancer tissues. In this study, we designed and prepared four probes which consist of a MT1-MMP-specific binding peptide sequence (consisting of L or D amino acid isomers) and an additional cysteine (at the N or C-terminus) for conjugation with N-(m-[(123/125)I]iodophenyl) maleimide. We investigated probe affinity, probe stability in mice plasma, and probe biodistribution in tumor-bearing mice. Finally, in vivo micro single photon emission computed tomography (SPECT) imaging and ex vivo autoradiography were performed. Consequently, [(123)I]I-DC, a D-form peptide probe radioiodinated at the C-terminus, demonstrated greater than 1000-fold higher specific activity than previously reported antibody probes, and revealed comparably moderate binding affinity. [(125)I]I-DC showed higher stability as expected, and [(123)I]I-DC successfully identified MT1-MMP expressing tumor tissue by SPECT imaging. Furthermore, ex vivo autoradiographic analysis revealed that the radioactivity distribution profiles corresponded to MT1-MMP-positive areas. These findings suggest that [(123)I]I-DC is a promising peptide probe for the in vivo detection of MT1-MMP in cancers.
Collapse
Affiliation(s)
- Naoya Kondo
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University
| | | | | | | | | |
Collapse
|
19
|
Gebhart G, Flamen P, De Vries EGE, Jhaveri K, Wimana Z. Imaging Diagnostic and Therapeutic Targets: Human Epidermal Growth Factor Receptor 2. J Nucl Med 2016; 57 Suppl 1:81S-8S. [PMID: 26834107 DOI: 10.2967/jnumed.115.157941] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Since the approval of trastuzumab, a humanized monoclonal antibody against the extracellular domain of human epidermal growth factor receptor 2 (HER2), 3 other HER2-targeting agents have gained regulatory approval: lapatinib, pertuzumab, and trastuzumab-emtansine. These agents have revolutionized the management of HER2-positive breast cancer, highlighting the concept that targeted therapies are successful when patients exhibit tumor-selective expression of a molecular target-in this case, HER2. However, response prediction and innate or acquired resistance remain serious concerns. Predictive biomarkers of a response-which could help in the selection of patients who might benefit from a selected targeted therapy-are currently lacking. Molecular imaging with anti-HER2 probes allows the noninvasive, whole-body assessment of HER2 tumor burden and has the potential to improve patient selection, optimize the dose and schedule, and rationalize assessment of the response to anti-HER2 therapies. Furthermore, unlike biopsy-based HER2 assessment, this approach can reveal inter- or intratumoral heterogeneity as well as variations in HER2 expression over time. This review summarizes the available literature and the current status of molecular imaging as a tool for the assessment of HER2 (target) expression or the prediction of an early treatment response in early and advanced HER2-positive breast cancer.
Collapse
Affiliation(s)
- Geraldine Gebhart
- Department of Nuclear Medicine, Institut Jules Bordet-Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Patrick Flamen
- Department of Nuclear Medicine, Institut Jules Bordet-Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Elisabeth G E De Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Komal Jhaveri
- Breast Medicine Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zena Wimana
- Department of Nuclear Medicine, Institut Jules Bordet-Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
20
|
Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design. Sci Rep 2016; 6:25424. [PMID: 27147293 PMCID: PMC4857130 DOI: 10.1038/srep25424] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/15/2016] [Indexed: 12/21/2022] Open
Abstract
Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared – non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.
Collapse
|
21
|
Notni J, Steiger K, Hoffmann F, Reich D, Schwaiger M, Kessler H, Wester HJ. Variation of Specific Activities of 68Ga-Aquibeprin and 68Ga-Avebetrin Enables Selective PET Imaging of Different Expression Levels of Integrins α5β1 and αvβ3. J Nucl Med 2016; 57:1618-1624. [DOI: 10.2967/jnumed.116.173948] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/29/2016] [Indexed: 12/22/2022] Open
|
22
|
Westerlund K, Honarvar H, Norrström E, Strand J, Mitran B, Orlova A, Eriksson Karlström A, Tolmachev V. Increasing the Net Negative Charge by Replacement of DOTA Chelator with DOTAGA Improves the Biodistribution of Radiolabeled Second-Generation Synthetic Affibody Molecules. Mol Pharm 2016; 13:1668-78. [PMID: 27010700 DOI: 10.1021/acs.molpharmaceut.6b00089] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A promising strategy to enable patient stratification for targeted therapies is to monitor the target expression in a tumor by radionuclide molecular imaging. Affibody molecules (7 kDa) are nonimmunoglobulin scaffold proteins with a 25-fold smaller size than intact antibodies. They have shown an apparent potential as molecular imaging probes both in preclinical and clinical studies. Earlier, we found that hepatic uptake can be reduced by the incorporation of negatively charged purification tags at the N-terminus of Affibody molecules. We hypothesized that liver uptake might similarly be reduced by positioning the chelator at the N-terminus, where the chelator-radionuclide complex will provide negative charges. To test this hypothesis, a second generation synthetic anti-HER2 ZHER2:2891 Affibody molecule was synthesized and labeled with (111)In and (68)Ga using DOTAGA and DOTA chelators. The chelators were manually coupled to the N-terminus of ZHER2:2891 forming an amide bond. Labeling DOTAGA-ZHER2:2891 and DOTA-ZHER2:2891 with (68)Ga and (111)In resulted in stable radioconjugates. The tumor-targeting and biodistribution properties of the (111)In- and (68)Ga-labeled conjugates were compared in SKOV-3 tumor-bearing nude mice at 2 h postinjection. The HER2-specific binding of the radioconjugates was verified both in vitro and in vivo. Using the DOTAGA chelator gave significantly lower radioactivity in liver and blood for both radionuclides. The (111)In-labeled conjugates showed more rapid blood clearance than the (68)Ga-labeled conjugates. The most pronounced influence of the chelators was found when they were labeled with (68)Ga. The DOTAGA chelator gave significantly higher tumor-to-blood (61 ± 6 vs 23 ± 5, p < 0.05) and tumor-to-liver (10.4 ± 0.6 vs 4.5 ± 0.5, p < 0.05) ratios than the DOTA chelator. This study demonstrated that chelators may be used to alter the uptake of Affibody molecules, and most likely other scaffold-based imaging probes, for improvement of imaging contrast.
Collapse
Affiliation(s)
- Kristina Westerlund
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center , 106 91 Stockholm, Sweden
| | - Hadis Honarvar
- Institute for Immunology, Genetics and Pathology, Uppsala University , 751 05 Uppsala, Sweden
| | - Emily Norrström
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center , 106 91 Stockholm, Sweden
| | - Joanna Strand
- Institute for Immunology, Genetics and Pathology, Uppsala University , 751 05 Uppsala, Sweden
| | - Bogdan Mitran
- Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University , 751 05 Uppsala, Sweden
| | - Anna Orlova
- Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University , 751 05 Uppsala, Sweden
| | - Amelie Eriksson Karlström
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center , 106 91 Stockholm, Sweden
| | - Vladimir Tolmachev
- Institute for Immunology, Genetics and Pathology, Uppsala University , 751 05 Uppsala, Sweden
| |
Collapse
|
23
|
Mizuno Y, Uehara T, Hanaoka H, Endo Y, Jen CW, Arano Y. Purification-Free Method for Preparing Technetium-99m-Labeled Multivalent Probes for Enhanced in Vivo Imaging of Saturable Systems. J Med Chem 2016; 59:3331-9. [PMID: 26999587 DOI: 10.1021/acs.jmedchem.6b00024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metallic radionuclides provide target-specific radiolabeled probes for molecular imaging in radiochemical yields sufficient for administration to subjects without purification. However, unlabeled ligands in the injectate can compete for targeted molecules with radiolabeled probes, which eventually necessitates postlabeling purification. Herein we describe a "1 to 3" design to circumvent the issue by taking advantage of inherent coordination properties of technetium-99m ((99m)Tc). A monovalent RGD ligand possessing an isonitrile as a coordinating moiety (CN-RGD) was reacted with [(99m)Tc(CO)3(OH2)3](+) to prepare [(99m)Tc(CO)3(CN-RGD)3](+) in over 95% radiochemical yields. This complex exhibited higher integrin αvβ3 binding affinity than its unlabeled monovalent ligand, primarily due to its multivalency. This compound visualized a murine tumor without removing unlabeled ligands, while a (99m)Tc-labeled monovalent probe derived from a monovalent ligand could not. The metal coordination-mediated synthesis of radiolabeled multivalent probes thereby can be a useful approach for preparing ready-to-use target-specific probes labeled with (99m)Tc and other metallic radionuclides of interest.
Collapse
Affiliation(s)
- Yuki Mizuno
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| | - Tomoya Uehara
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| | - Hirofumi Hanaoka
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| | - Yota Endo
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| | - Chun-Wei Jen
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| | - Yasushi Arano
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| |
Collapse
|
24
|
Mac JT, Nuñez V, Burns JM, Guerrero YA, Vullev VI, Anvari B. Erythrocyte-derived nano-probes functionalized with antibodies for targeted near infrared fluorescence imaging of cancer cells. BIOMEDICAL OPTICS EXPRESS 2016; 7:1311-22. [PMID: 27446657 PMCID: PMC4929643 DOI: 10.1364/boe.7.001311] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/02/2016] [Accepted: 03/10/2016] [Indexed: 05/20/2023]
Abstract
Constructs derived from mammalian cells are emerging as a new generation of nano-scale platforms for clinical imaging applications. Herein, we report successful engineering of hybrid nano-structures composed of erythrocyte-derived membranes doped with FDA-approved near infrared (NIR) chromophore, indocyanine green (ICG), and surface-functionalized with antibodies to achieve molecular targeting. We demonstrate that these constructs can be used for targeted imaging of cancer cells in vitro. These erythrocyte-derived optical nano-probes may provide a potential platform for clinical translation, and enable molecular imaging of cancer biomarkers.
Collapse
Affiliation(s)
- Jenny T. Mac
- Department of Biochemistry, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Vicente Nuñez
- Department of Bioengineering, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Joshua M. Burns
- Department of Bioengineering, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Yadir A. Guerrero
- Department of Bioengineering, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Valentine I. Vullev
- Department of Biochemistry, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
- Department of Bioengineering, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Bahman Anvari
- Department of Biochemistry, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
- Department of Bioengineering, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
| |
Collapse
|
25
|
Sandström M, Lindskog K, Velikyan I, Wennborg A, Feldwisch J, Sandberg D, Tolmachev V, Orlova A, Sörensen J, Carlsson J, Lindman H, Lubberink M. Biodistribution and Radiation Dosimetry of the Anti-HER2 Affibody Molecule 68Ga-ABY-025 in Breast Cancer Patients. J Nucl Med 2016; 57:867-71. [DOI: 10.2967/jnumed.115.169342] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/21/2016] [Indexed: 11/16/2022] Open
|
26
|
Sörensen J, Velikyan I, Sandberg D, Wennborg A, Feldwisch J, Tolmachev V, Orlova A, Sandström M, Lubberink M, Olofsson H, Carlsson J, Lindman H. Measuring HER2-Receptor Expression In Metastatic Breast Cancer Using [68Ga]ABY-025 Affibody PET/CT. Theranostics 2016; 6:262-71. [PMID: 26877784 PMCID: PMC4729774 DOI: 10.7150/thno.13502] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/02/2015] [Indexed: 12/31/2022] Open
Abstract
Purpose: Positron Emission Tomography (PET) imaging of HER2 expression could potentially be used to select patients for HER2-targed therapy, predict response based on uptake and be used for monitoring. In this phase I/II study the HER2-binding Affibody molecule ABY-025 was labeled with 68Ga-gallium ([68Ga]ABY-025) for PET to study effect of peptide mass, test-retest variability and correlation of quantified uptake in tumors to histopathology. Experimental design: Sixteen women with known metastatic breast cancer and on-going treatment were included and underwent FDG PET/CT to identify viable metastases. After iv injection of 212±46 MBq [68Ga]ABY-025 whole-body PET was performed at 1, 2 and 4 h. In the first 10 patients (6 with HER2-positive and 4 with HER2-negative primary tumors), [68Ga]ABY-025 PET/CT with two different doses of injected peptide was performed one week apart. In the last six patients (5 HER2-positive and 1 HER2-negative primary tumors), repeated [68Ga]ABY-025 PET were performed one week apart as a test-retest of uptake in individual lesions. Biopsies from 16 metastases in 12 patients were collected for verification of HER2 expression by immunohistochemistry and in-situ hybridization. Results: Imaging 4h after injection with high peptide content discriminated HER2-positive metastases best (p<0.01). PET SUV correlated with biopsy HER2-scores (r=0.91, p<0.001). Uptake was five times higher in HER2-positive than in HER2-negative lesions with no overlap (p=0.005). The test-retest intra-class correlation was r=0.996. [68Ga]ABY-025 PET correctly identified conversion and mixed expression of HER2 and targeted treatment was changed in 3 of the 16 patients. Conclusion: [68Ga]ABY-025 PET accurately quantifies whole-body HER2-receptor status in metastatic breast cancer.
Collapse
|
27
|
Altai M, Perols A, Tsourma M, Mitran B, Honarvar H, Robillard M, Rossin R, ten Hoeve W, Lubberink M, Orlova A, Karlström AE, Tolmachev V. Feasibility of Affibody-Based Bioorthogonal Chemistry-Mediated Radionuclide Pretargeting. J Nucl Med 2015; 57:431-6. [PMID: 26659353 DOI: 10.2967/jnumed.115.162248] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Affibody molecules constitute a new class of probes for radionuclide tumor targeting. The small size of Affibody molecules is favorable for rapid localization in tumors and clearance from circulation. However, high renal reabsorption of Affibody molecules prevents the use of residualizing radiometals, including several promising low-energy β- and α-emitters, for radionuclide therapy. We tested a hypothesis that Affibody-based pretargeting mediated by a bioorthogonal interaction between trans-cyclooctene (TCO) and tetrazine would provide higher accumulation of radiometals in tumor xenografts than in the kidneys. METHODS TCO was conjugated to the anti-human epidermal growth factor receptor 2 (HER2) Affibody molecule Z2395. DOTA-tetrazine was labeled with (111)In and (177)Lu. In vitro pretargeting was studied in HER2-expressing SKOV-3 and BT474 cell lines. In vivo studies were performed on BALB/C nu/nu mice bearing SKOV-3 xenografts. RESULTS (125)I-Z2395-TCO bound specifically to HER2-expressing cells in vitro with an affinity of 45 ± 16 pM. (111)In-tetrazine bound specifically and selectively to Z2395-TCO pretreated cells. In vivo studies demonstrated HER2-specific (125)I-Z2395-TCO accumulation in xenografts. TCO-mediated (111)In-tetrazine localization was shown in tumors, when the radiolabeled tracer was injected 4 h after an injection of Z2395-TCO. At 1 h after injection, the tumor uptake of (111)In-tetrazine and (177)Lu-tetrazine was approximately 2-fold higher than the renal uptake. Pretargeting provided more than a 56-fold reduction of renal uptake of (111)In in comparison with direct targeting. CONCLUSION The feasibility of Affibody-based bioorthogonal chemistry-mediated pretargeting was demonstrated. The use of pretargeting provides a substantial reduction of radiometal accumulation in kidneys, creating preconditions for palliative radionuclide therapy.
Collapse
Affiliation(s)
- Mohamed Altai
- Institute for Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anna Perols
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Maria Tsourma
- Institute for Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Bogdan Mitran
- Department of Medicinal Chemistry, Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | - Hadis Honarvar
- Institute for Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | | | | | - Mark Lubberink
- Institute for Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | - Amelie Eriksson Karlström
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Vladimir Tolmachev
- Institute for Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Guerrero YA, Bahmani B, Singh SP, Vullev VI, Kundra V, Anvari B. Virus-resembling nano-structures for near infrared fluorescence imaging of ovarian cancer HER2 receptors. NANOTECHNOLOGY 2015; 26:435102. [PMID: 26443474 DOI: 10.1088/0957-4484/26/43/435102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ovarian cancer remains the dominant cause of death due to malignancies of the female reproductive system. The capability to identify and remove all tumors during intraoperative procedures may ultimately reduce cancer recurrence, and lead to increased patient survival. The objective of this study is to investigate the effectiveness of an optical nano-structured system for targeted near infrared (NIR) imaging of ovarian cancer cells that over-express the human epidermal growth factor receptor 2 (HER2), an important biomarker associated with ovarian cancer. The nano-structured system is comprised of genome-depleted plant-infecting brome mosaic virus doped with NIR chromophore, indocyanine green, and functionalized at the surface by covalent attachment of monoclonal antibodies against the HER2 receptor. We use absorption and fluorescence spectroscopy, and dynamic light scattering to characterize the physical properties of the constructs. Using fluorescence imaging and flow cytometry, we demonstrate the effectiveness of these nano-structures for targeted NIR imaging of HER2 receptors in vitro. These functionalized nano-materials may provide a platform for NIR imaging of ovarian cancer.
Collapse
Affiliation(s)
- Yadir A Guerrero
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | |
Collapse
|
29
|
Rosestedt M, Andersson KG, Mitran B, Tolmachev V, Löfblom J, Orlova A, Ståhl S. Affibody-mediated PET imaging of HER3 expression in malignant tumours. Sci Rep 2015; 5:15226. [PMID: 26477646 PMCID: PMC4609989 DOI: 10.1038/srep15226] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/17/2015] [Indexed: 01/02/2023] Open
Abstract
Human epidermal growth factor receptor 3 (HER3) is involved in the progression of various cancers and in resistance to therapies targeting the HER family. In vivo imaging of HER3 expression would enable patient stratification for anti-HER3 immunotherapy. Key challenges with HER3-targeting are the relatively low expression in HER3-positive tumours and HER3 expression in normal tissues. The use of positron-emission tomography (PET) provides advantages of high resolution, sensitivity and quantification accuracy compared to SPECT. Affibody molecules, imaging probes based on a non-immunoglobulin scaffold, provide high imaging contrast shortly after injection. The aim of this study was to evaluate feasibility of PET imaging of HER3 expression using (68)Ga-labeled affibody molecules. The anti-HER3 affibody molecule HEHEHE-Z08698-NOTA was successfully labelled with (68)Ga with high yield, purity and stability. The agent bound specifically to HER3-expressing cancer cells in vitro and in vivo. At 3 h pi, uptake of (68)Ga-HEHEHE-Z08698-NOTA was significantly higher in xenografts with high HER3 expression (BT474, BxPC-3) than in xenografts with low HER3 expression (A431). In xenografts with high expression, tumour-to-blood ratios were >20, tumour-to-muscle >15, and tumour-to-bone >7. HER3-positive xenografts were visualised using microPET 3 h pi. In conclusion, PET imaging of HER3 expression is feasible using (68)Ga-HEHEHE-Z08698-NOTA shortly after administration.
Collapse
Affiliation(s)
- Maria Rosestedt
- Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | - Ken G Andersson
- Division of Protein Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Bogdan Mitran
- Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - John Löfblom
- Division of Protein Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anna Orlova
- Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | - Stefan Ståhl
- Division of Protein Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
30
|
Garousi J, Lindbo S, Nilvebrant J, Åstrand M, Buijs J, Sandström M, Honarvar H, Orlova A, Tolmachev V, Hober S. ADAPT, a Novel Scaffold Protein-Based Probe for Radionuclide Imaging of Molecular Targets That Are Expressed in Disseminated Cancers. Cancer Res 2015; 75:4364-71. [PMID: 26297736 DOI: 10.1158/0008-5472.can-14-3497] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 07/23/2015] [Indexed: 11/16/2022]
Abstract
Small engineered scaffold proteins have attracted attention as probes for radionuclide-based molecular imaging. One class of these imaging probes, termed ABD-Derived Affinity Proteins (ADAPT), has been created using the albumin-binding domain (ABD) of streptococcal protein G as a stable protein scaffold. In this study, we report the development of a clinical lead probe termed ADAPT6 that binds HER2, an oncoprotein overexpressed in many breast cancers that serves as a theranostic biomarker for several approved targeting therapies. Surface-exposed amino acids of ABD were randomized to create a combinatorial library enabling selection of high-affinity binders to various proteins. Furthermore, ABD was engineered to enable rapid purification, to eradicate its binding to albumin, and to enable rapid blood clearance. Incorporation of a unique cysteine allowed site-specific conjugation to a maleimido derivative of a DOTA chelator, enabling radionuclide labeling, ¹¹¹In for SPECT imaging and ⁶⁸Ga for PET imaging. Pharmacologic studies in mice demonstrated that the fully engineered molecule (111)In/⁶⁸Ga-DOTA-(HE)3-ADAPT6 was specifically bound and taken up by HER2-expressing tumors, with a high tumor-to-normal tissue ratio in xenograft models of human cancer. Unbound tracer underwent rapid renal clearance followed by high renal reabsorption. HER2-expressing xenografts were visualized by gamma-camera or PET at 1 hour after infusion. PET experiments demonstrated feasibility for discrimination of xenografts with high or low HER2 expression. Our results offer a preclinical proof of concept for the use of ADAPT probes for noninvasive in vivo imaging.
Collapse
Affiliation(s)
- Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sarah Lindbo
- Department of Protein Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Johan Nilvebrant
- Department of Protein Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mikael Åstrand
- Department of Protein Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jos Buijs
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mattias Sandström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hadis Honarvar
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anna Orlova
- Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Sophia Hober
- Department of Protein Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
31
|
EGFR-expression in primary urinary bladder cancer and corresponding metastases and the relation to HER2-expression. On the possibility to target these receptors with radionuclides. Radiol Oncol 2015; 49:50-8. [PMID: 25810701 PMCID: PMC4362606 DOI: 10.2478/raon-2014-0015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 03/24/2014] [Indexed: 12/31/2022] Open
Abstract
Background There is limited effect of tyrosine kinase inhibitors or “naked” antibodies binding EGFR or HER2 for therapy of metastasized urinary bladder cancer and these methods are therefore not routinely used. Targeting radio-nuclides to the extracellular domain of the receptors is potentially a better possibility. Methods EGFR- and HER2-expression was analyzed for primary tumors and corresponding metastases from 72 patients using immunohistochemistry and the internationally recommended HercepTest. Intracellular mutations were not analyzed since only the receptors were considered as targets and intracellular abnormalities should have minor effect on radiation dose. Results EGFR was positive in 71% of the primary tumors and 69% of corresponding metastases. Local and distant metastases were EGFR-positive in 75% and 66% of the cases, respectively. The expression frequency of HER2 in related lesions was slightly higher (data from previous study). The EGFR-positive tumors expressed EGFR in metastases in 86% of the cases. The co-expression of EGFR and HER2 was 57% for tumors and 53% for metastases. Only 3% and 10% of the lesions were negative for both receptors in tumors and metastases, respectively. Thus, targeting these receptors with radionuclides might be applied for most patients. Conclusions At least one of the EGFR- or HER2-receptors was present in most cases and co-expressed in more than half the cases. It is therefore interesting to deliver radionuclides for whole-body receptor-analysis, dosimetry and therapy. This can hopefully compensate for resistance to other therapies and more patients can hopefully be treated with curative instead of palliative intention.
Collapse
|
32
|
Bahmani B, Guerrero Y, Bacon D, Kundra V, Vullev VI, Anvari B. Functionalized polymeric nanoparticles loaded with indocyanine green as theranostic materials for targeted molecular near infrared fluorescence imaging and photothermal destruction of ovarian cancer cells. Lasers Surg Med 2014; 46:582-92. [DOI: 10.1002/lsm.22269] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Baharak Bahmani
- Department of Bioengineering; University of California; Riverside California 92521
| | - Yadir Guerrero
- Department of Bioengineering; University of California; Riverside California 92521
| | - Danielle Bacon
- Department of Bioengineering; University of California; Riverside California 92521
| | - Vikas Kundra
- Department of Diagnostic Radiology; The University of Texas, MD Anderson Cancer Center; Houston Texas 77030
| | - Valentine I. Vullev
- Department of Bioengineering; University of California; Riverside California 92521
| | - Bahman Anvari
- Department of Bioengineering; University of California; Riverside California 92521
| |
Collapse
|
33
|
Sörensen J, Sandberg D, Sandström M, Wennborg A, Feldwisch J, Tolmachev V, Åström G, Lubberink M, Garske-Román U, Carlsson J, Lindman H. First-in-human molecular imaging of HER2 expression in breast cancer metastases using the 111In-ABY-025 affibody molecule. J Nucl Med 2014; 55:730-5. [PMID: 24665085 DOI: 10.2967/jnumed.113.131243] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
UNLABELLED The expression status of human epidermal growth factor receptor type 2 (HER2) predicts the response of HER2-targeted therapy in breast cancer. ABY-025 is a small reengineered Affibody molecule targeting a unique epitope of the HER2 receptor, not occupied by current therapeutic agents. This study evaluated the distribution, safety, dosimetry, and efficacy of (111)In-ABY-025 for determining the HER2 status in metastatic breast cancer. METHODS Seven patients with metastatic breast cancer and HER2-positive (n = 5) or -negative (n = 2) primary tumors received an intravenous injection of approximately 100 μg (∼ 140 MBq) of (111)In-ABY-025. Planar γ-camera imaging was performed after 30 min, followed by SPECT/CT after 4, 24, and 48 h. Blood levels of radioactivity, antibodies, shed serum HER2, and toxicity markers were evaluated. Lesional HER2 status was verified by biopsies. The metastases were located by (18)F-FDG PET/CT 5 d before (111)In-ABY-025 imaging. RESULTS Injection of (111)In-ABY-025 yielded a mean effective dose of 0.15 mSv/MBq and was safe, well tolerated, and without drug-related adverse events. Fast blood clearance allowed high-contrast HER2 images within 4-24 h. No anti-ABY-025 antibodies were observed. When metastatic uptake at 24 h was normalized to uptake at 4 h, the ratio increased in HER2-positive metastases and decreased in negative ones (P < 0.05), with no overlap and confirmation by biopsies. In 1 patient, with HER2-positive primary tumor, (111)In-ABY-025 imaging correctly suggested a HER2-negative status of the metastases. The highest normal-tissue uptake was in the kidneys, followed by the liver and spleen. CONCLUSION (111)In-ABY-025 appears safe for use in humans and is a promising noninvasive tool for discriminating HER2 status in metastatic breast cancer, regardless of ongoing HER2-targeted antibody treatment.
Collapse
Affiliation(s)
- Jens Sörensen
- Nuclear Medicine and PET, Department of Radiology, Oncology, and Radiation Sciences, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Orlova A, Malm M, Rosestedt M, Varasteh Z, Andersson K, Selvaraju RK, Altai M, Honarvar H, Strand J, Ståhl S, Tolmachev V, Löfblom J. Imaging of HER3-expressing xenografts in mice using a (99m)Tc(CO) 3-HEHEHE-Z HER3:08699 affibody molecule. Eur J Nucl Med Mol Imaging 2014; 41:1450-9. [PMID: 24622956 DOI: 10.1007/s00259-014-2733-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 02/17/2014] [Indexed: 11/28/2022]
Abstract
PURPOSE Human epidermal growth factor receptor type 3 (HER3) is a transmembrane receptor tyrosine kinase belonging to the HER (ErbB) receptor family. Membranous expression of HER3 is associated with trastuzumab resistance in breast cancer and the transition to androgen independence in prostate cancer. Imaging of HER3 expression in malignant tumors may provide important diagnostic information that can influence patient management. Affibody molecules with low picomolar affinity to HER3 were recently selected. The aim of this study was to investigate the feasibility of HER3 imaging using radiolabeled Affibody molecules. METHODS A HER3-binding Affibody molecule, Z08699, with a HEHEHE-tag on N-terminus was labeled with (99m)Tc(CO)3 using an IsoLink kit. In vitro and in vivo binding specificity and the cellular processing of the labeled binder were evaluated. Biodistribution of (99m)Tc(CO)3-HEHEHE-Z08699 was studied over time in mice bearing HER3-expressing xenografts. RESULTS HEHEHE-Z08699 was labeled with (99m)Tc(CO)3 with an isolated yield of >80 % and a purity of >99 %. Binding of (99m)Tc(CO)3-HEHEHE-Z08699 was specific to BT474 and MCF7 (breast cancer), and LS174T (colon cancer) cells. Cellular processing showed rapid binding and relatively quick internalization of the receptor/Affibody molecule complex (70 % of cell-associated radioactivity was internalized after 24 h). The tumor targeting was receptor mediated and the excretion was predominantly renal. Receptor-mediated uptake was also found in the liver, lung, stomach, intestine, and salivary glands. At 4 h pi, tumor-to-blood ratios were 7 ± 3 for BT474, and 6 ± 2 for LS174T xenografts. LS174T tumors were visualized by microSPECT 4 h pi. CONCLUSIONS The results of this study suggest the feasibility of HER3-imaging in malignant tumors using Affibody molecules.
Collapse
Affiliation(s)
- Anna Orlova
- Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Heskamp S, van Laarhoven HWM, van der Graaf WTA, Oyen WJG, Boerman OC. Radionuclide imaging of drug delivery for patient selection in targeted therapy. Expert Opin Drug Deliv 2014; 11:175-85. [DOI: 10.1517/17425247.2014.870552] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Tolmachev V, Varasteh Z, Honarvar H, Hosseinimehr SJ, Eriksson O, Jonasson P, Frejd FY, Abrahmsen L, Orlova A. Imaging of platelet-derived growth factor receptor β expression in glioblastoma xenografts using affibody molecule 111In-DOTA-Z09591. J Nucl Med 2014; 55:294-300. [PMID: 24408895 DOI: 10.2967/jnumed.113.121814] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
UNLABELLED The overexpression and excessive signaling of platelet-derived growth factor receptor β (PDGFRβ) has been detected in cancers, atherosclerosis, and a variety of fibrotic diseases. Radionuclide in vivo visualization of PDGFRβ expression might help to select PDGFRβ targeting treatment for these diseases. The goal of this study was to evaluate the feasibility of in vivo radionuclide imaging of PDGFRβ expression using an Affibody molecule, a small nonimmunoglobulin affinity protein. METHODS The PDGFRβ-binding Z09591 Affibody molecule was site-specifically conjugated with a maleimido derivative of DOTA and labeled with (111)In. Targeting of the PDGFRβ-expressing U-87 MG glioblastoma cell line using (111)In-DOTA-Z09591 was evaluated in vitro and in vivo. RESULTS DOTA-Z09591 was stably labeled with (111)In with preserved specific binding to PDGFRβ-expressing cells in vitro. The dissociation constant for (111)In-DOTA-Z09591 binding to U-87 MG cells was determined to be 92 ± 10 pM. In mice bearing U-87 MG xenografts, the tumor uptake of (111)In-DOTA-Z09591 was 7.2 ± 2.4 percentage injected dose per gram and the tumor-to-blood ratio was 28 ± 14 at 2 h after injection. In vivo receptor saturation experiments demonstrated that targeting of U-87 MG xenografts in mice was PDGFRβ-specific. U-87 MG xenografts were clearly visualized using small-animal SPECT/CT at 3 h after injection. CONCLUSION This study demonstrates the feasibility of in vivo visualization of PDGFRβ-expressing xenografts using an Affibody molecule. Further development of radiolabeled Affibody molecules might provide a useful clinical imaging tool for PDGFRβ expression during various pathologic conditions.
Collapse
Affiliation(s)
- Vladimir Tolmachev
- Division of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Glaser M, Iveson P, Hoppmann S, Indrevoll B, Wilson A, Arukwe J, Danikas A, Bhalla R, Hiscock D. Three Methods for 18F Labeling of the HER2-Binding Affibody Molecule ZHER2:2891 Including Preclinical Assessment. J Nucl Med 2013; 54:1981-8. [DOI: 10.2967/jnumed.113.122465] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
38
|
Altai M, Strand J, Rosik D, Selvaraju RK, Eriksson Karlström A, Orlova A, Tolmachev V. Influence of nuclides and chelators on imaging using affibody molecules: comparative evaluation of recombinant affibody molecules site-specifically labeled with ⁶⁸Ga and ¹¹¹In via maleimido derivatives of DOTA and NODAGA. Bioconjug Chem 2013; 24:1102-9. [PMID: 23705574 DOI: 10.1021/bc300678y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Accurate detection of cancer-associated molecular abnormalities in tumors could make cancer treatment more personalized. Affibody molecules enable high contrast imaging of tumor-associated protein expression shortly after injection. The use of the generator-produced positron-emitting radionuclide (68)Ga should increase sensitivity of HER2 imaging. The chemical nature of radionuclides and chelators influences the biodistribution of Affibody molecules, providing an opportunity to further increase the imaging contrast. The aim of the study was to compare maleimido derivatives of DOTA and NODAGA for site-specific labeling of a recombinant ZHER2:2395 HER2-binding Affibody molecule with (68)Ga. DOTA and NODAGA were site-specifically conjugated to the ZHER2:2395 Affibody molecule having a C-terminal cysteine and labeled with (68)Ga and (111)In. All labeled conjugates retained specificity to HER2 in vitro. Most of the cell-associated activity was membrane-bound with a minor difference in internalization rate. All variants demonstrated specific targeting of xenografts and a high tumor uptake. The xenografts were clearly visualized using all conjugates. The influence of chelator on the biodistribution and targeting properties was much less pronounced for (68)Ga than for (111)In. The tumor uptake of (68)Ga-NODAGA-ZHER2:2395 and (68)Ga-DOTA-ZHER2:2395 and tumor-to-blood ratios at 2 h p.i. did not differ significantly. However, the tumor-to-liver ratio was significantly higher for (68)Ga-NODAGA- ZHER2:2395 (8 ± 2 vs 5.0 ± 0.3) offering the advantage of better liver metastases visualization. In conclusion, influence of chelators on biodistribution of Affibody molecules depends on the radionuclides and reoptimization of labeling chemistry is required when a radionuclide label is changed.
Collapse
Affiliation(s)
- Mohamed Altai
- Division of Biomedical Radiation Sciences, Department of Medicinal Chemistry, Uppsala University, Sweden
| | | | | | | | | | | | | |
Collapse
|
39
|
Wållberg H, Grafström J, Cheng Q, Lu L, Martinsson Ahlzén HS, Samén E, Thorell JO, Johansson K, Dunås F, Olofsson MH, Stone-Elander S, Arnér ES, Ståhl S. HER2-Positive Tumors Imaged Within 1 Hour Using a Site-Specifically 11C-Labeled Sel-Tagged Affibody Molecule. J Nucl Med 2012; 53:1446-53. [DOI: 10.2967/jnumed.111.102194] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
40
|
Heskamp S, Laverman P, Rosik D, Boschetti F, van der Graaf WTA, Oyen WJG, van Laarhoven HWM, Tolmachev V, Boerman OC. Imaging of human epidermal growth factor receptor type 2 expression with 18F-labeled affibody molecule ZHER2:2395 in a mouse model for ovarian cancer. J Nucl Med 2011; 53:146-53. [PMID: 22173842 DOI: 10.2967/jnumed.111.093047] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED Affibody molecules are small (7 kDa) proteins with subnanomolar targeting affinity. Previous SPECT studies in xenografts have shown that the Affibody molecule (111)In-DOTA-Z(HER2)(:2395) can discriminate between high and low human epidermal growth factor receptor type 2 (HER2)-expressing tumors, indicating that radiolabeled Affibody molecules have potential for patient selection for HER2-targeted therapy. Compared with SPECT, PET with positron-emitting radionuclides, such as (18)F, may improve imaging of HER2 expression because of higher sensitivity and improved quantification of PET. The aim of the present study was to determine whether the (18)F-labeled NOTA-conjugated Affibody molecule Z(HER2)(:2395) is a suitable agent for imaging of HER2 expression. The tumor-targeting properties of (18)F-labeled Z(HER2)(:2395) were compared with (111)In- and (68)Ga-labeled Z(HER2)(:2395) in mice with HER2-expressing SK-OV-3 xenografts. METHODS Z(HER2)(:2395) was conjugated with NOTA and radiolabeled with (18)F, (68)Ga, and (111)In. Radiolabeling with (18)F was based on the complexation of Al(18)F by NOTA. The 50% inhibitory concentration values for NOTA-Z(HER2)(:2395) labeled with (19)F, (69)Ga, and (115)In were determined in a competitive cell-binding assay using SK-OV-3 cells. Mice bearing subcutaneous SK-OV-3 xenografts were injected intravenously with radiolabeled NOTA-Z(HER2)(:2395). One and 4 h after injection, PET/CT or SPECT/CT images were acquired, and the biodistribution was determined by ex vivo measurement. RESULTS The 50% inhibitory concentration values for (19)F-, (69)Ga-, and (115)In-NOTA-Z(HER2)(:2395) were 5.0, 6.3, and 5.3 nM, respectively. One hour after injection, tumor uptake was 4.4 ± 0.8 percentage injected dose per gram (%ID/g), 5.6 ± 1.6 %ID/g, and 7.1 ± 1.4 %ID/g for (18)F-, (68)Ga-, and (111)In-NOTA-Z(HER2)(:2395), respectively, and the respective tumor-to-blood ratios were 7.4 ± 1.8, 8.0 ± 1.3, and 4.8 ± 1.3. Tumor uptake was specific, because uptake could be blocked efficiently by coinjection of an excess of unlabeled Z(HER2)(:2395). PET/CT and SPECT/CT images clearly visualized HER2-expressing SK-OV-3 xenografts. CONCLUSION This study showed that (18)F-NOTA-Z(HER2)(:2395) is a promising new imaging agent for HER2 expression in tumors. Affibody molecules were successfully labeled with (18)F within 30 min, based on the complexation of Al(18)F by NOTA. Further research is needed to determine whether this technique can be used for patient selection for HER2-targeted therapy.
Collapse
Affiliation(s)
- Sandra Heskamp
- Department of Medical Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Direct comparison of 111In-labelled two-helix and three-helix Affibody molecules for in vivo molecular imaging. Eur J Nucl Med Mol Imaging 2011; 39:693-702. [DOI: 10.1007/s00259-011-2016-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/22/2011] [Indexed: 02/08/2023]
|
42
|
Malmberg J, Sandström M, Wester K, Tolmachev V, Orlova A. Comparative biodistribution of imaging agents for in vivo molecular profiling of disseminated prostate cancer in mice bearing prostate cancer xenografts: focus on 111In- and 125I-labeled anti-HER2 humanized monoclonal trastuzumab and ABY-025 Affibody. Nucl Med Biol 2011; 38:1093-102. [DOI: 10.1016/j.nucmedbio.2011.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/12/2011] [Accepted: 04/15/2011] [Indexed: 01/28/2023]
|
43
|
Abstract
Recent advances in genome inspired target discovery, small molecule screens, development of biological and nanotechnology have led to the introduction of a myriad of new differently sized agents into the clinic. The differences in small and large molecule delivery are becoming increasingly important in combination therapies as well as the use of drugs that modify the physiology of tumors such as anti-angiogenic treatment. The complexity of targeting has led to the development of mathematical models to facilitate understanding, but unfortunately, these studies are often only applicable to a particular molecule, making pharmacokinetic comparisons difficult. Here we develop and describe a framework for categorizing primary pharmacokinetics of drugs in tumors. For modeling purposes, we define drugs not by their mechanism of action but rather their rate-limiting step of delivery. Our simulations account for variations in perfusion, vascularization, interstitial transport, and non-linear local binding and metabolism. Based on a comparison of the fundamental rates determining uptake, drugs were classified into four categories depending on whether uptake is limited by blood flow, extravasation, interstitial diffusion, or local binding and metabolism. Simulations comparing small molecule versus macromolecular drugs show a sharp difference in distribution, which has implications for multi-drug therapies. The tissue-level distribution differs widely in tumors for small molecules versus macromolecular biologic drugs, and this should be considered in the design of agents and treatments. An example using antibodies in mouse xenografts illustrates the different in vivo behavior. This type of transport analysis can be used to aid in model development, experimental data analysis, and imaging and therapeutic agent design.
Collapse
|