1
|
Wang L. Deep Learning Techniques to Diagnose Lung Cancer. Cancers (Basel) 2022; 14:5569. [PMID: 36428662 PMCID: PMC9688236 DOI: 10.3390/cancers14225569] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022] Open
Abstract
Medical imaging tools are essential in early-stage lung cancer diagnostics and the monitoring of lung cancer during treatment. Various medical imaging modalities, such as chest X-ray, magnetic resonance imaging, positron emission tomography, computed tomography, and molecular imaging techniques, have been extensively studied for lung cancer detection. These techniques have some limitations, including not classifying cancer images automatically, which is unsuitable for patients with other pathologies. It is urgently necessary to develop a sensitive and accurate approach to the early diagnosis of lung cancer. Deep learning is one of the fastest-growing topics in medical imaging, with rapidly emerging applications spanning medical image-based and textural data modalities. With the help of deep learning-based medical imaging tools, clinicians can detect and classify lung nodules more accurately and quickly. This paper presents the recent development of deep learning-based imaging techniques for early lung cancer detection.
Collapse
Affiliation(s)
- Lulu Wang
- Biomedical Device Innovation Center, Shenzhen Technology University, Shenzhen 518118, China
| |
Collapse
|
2
|
Sun X, Chen T, Xie C, Liu L, Lei B, Wang L, Ruan M, Yan H, Zhang Q, Chang C, Xie W. Relationships between SUVmax of lung adenocarcinoma and different T stages, histological grades and pathological subtypes: a retrospective cohort study in China. BMJ Open 2022; 12:e056804. [PMID: 35580966 PMCID: PMC9114855 DOI: 10.1136/bmjopen-2021-056804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Cancer cell has aberrant metabolism. The purpose of this study aimed to investigate relationships between maximum standard uptake value (SUVmax)of 18fluoro-2-deoxy-d-glucose and T stages, histological grades and pathological subtypes of lung adenocarcinoma. DESIGN Retrospective cohort study, employing the Kruskal-Wallis, Bonferroni-Dunn and Mann-Whitney tests to compare SUVmax of different T stages, histological grades and pathological subtypes of lung adenocarcinoma. SETTING The outpatients who had aberrant positron emission tomography/CT (PET/CT) images in chest were enrolled this study from August 2016 to November 2018 in Shanghai, China. PARTICIPANT Initial 11 270 patients with suspected lung cancer who underwent PET/CT examinations were surveyed. A total of 1454 patients who were diagnosed as lung adenocarcinoma by pathologist were included in this project. PRIMARY OUTCOME MEASURES SUVmax value at different tumour-node-metastasis stages of lung adenocarcinoma before surgery. RESULTS The mean SUVmax of patients with lung adenocarcinoma was significantly elevated with the increase in T stages. There were significant evident differences in SUVmax among T1a-T1c (p<0.05). However, after the staging of patients was more than T1 stage, SUVmax of T2a, T2b, T2 visceral pleural invasion, T3 and T4 had not dramatic changes. SUVmax value of lung adenocarcinoma in the same T stage group was the highest in patients with the high grade of malignancy and solid-predominant invasive adenocarcinoma. CONCLUSIONS SUVmax value was significantly associated with T stages, grades of malignancy and pathological subtypes of lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Tianxiang Chen
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China, Shanghai, China
| | - Chun Xie
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bei Lei
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lihua Wang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Maomei Ruan
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Yan
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Zhang
- Department of Nuclear Medicine, Anhui Chest Hospital, Anhui, China
| | - Cheng Chang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhui Xie
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Zhao Y, Hubbard L, Malkasian S, Abbona P, Molloi S. Contrast timing optimization of a two-volume dynamic CT pulmonary perfusion technique. Sci Rep 2022; 12:8212. [PMID: 35581304 PMCID: PMC9114423 DOI: 10.1038/s41598-022-12016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/21/2022] [Indexed: 11/12/2022] Open
Abstract
The purpose of this study is to develop and validate an optimal timing protocol for a low-radiation-dose CT pulmonary perfusion technique using only two volume scans. A total of 24 swine (48.5 ± 14.3 kg) underwent contrast-enhanced dynamic CT. Multiple contrast injections were made under different pulmonary perfusion conditions, resulting in a total of 141 complete pulmonary arterial input functions (AIFs). Using all the AIF curves, an optimal contrast timing protocol was developed for a first-pass, two-volume dynamic CT perfusion technique (one at the base and the other at the peak of AIF curve). A subset of swine was used to validate the prospective two-volume pulmonary perfusion technique. The prospective two-volume perfusion measurements were quantitatively compared to the previously validated retrospective perfusion measurements with t-test, linear regression, and Bland–Altman analysis. As a result, the pulmonary artery time-to-peak (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${T}_{PA}$$\end{document}TPA) was related to one-half of the contrast injection duration (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\frac{{T}_{Inj}}{2}$$\end{document}TInj2) by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${T}_{PA}=1.01\frac{{T}_{Inj}}{2}+1.01$$\end{document}TPA=1.01TInj2+1.01 (r = 0.95). The prospective two-volume perfusion measurements (PPRO) were related to the retrospective measurements (PRETRO) by PPRO = 0.87PRETRO + 0.56 (r = 0.88). The CT dose index and size-specific dose estimate of the two-volume CT technique were estimated to be 28.4 and 47.0 mGy, respectively. The optimal timing protocol can enable an accurate, low-radiation-dose two-volume dynamic CT perfusion technique.
Collapse
Affiliation(s)
- Yixiao Zhao
- Department of Radiological Sciences, Medical Sciences I, B-140, University of California, Irvine, Irvine, CA, 92697, USA
| | - Logan Hubbard
- Department of Radiological Sciences, Medical Sciences I, B-140, University of California, Irvine, Irvine, CA, 92697, USA
| | - Shant Malkasian
- Department of Radiological Sciences, Medical Sciences I, B-140, University of California, Irvine, Irvine, CA, 92697, USA
| | - Pablo Abbona
- Department of Radiological Sciences, Medical Sciences I, B-140, University of California, Irvine, Irvine, CA, 92697, USA
| | - Sabee Molloi
- Department of Radiological Sciences, Medical Sciences I, B-140, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
4
|
Johnson GB, Harms HJ, Johnson DR, Jacobson MS. PET Imaging of Tumor Perfusion: A Potential Cancer Biomarker? Semin Nucl Med 2020; 50:549-561. [PMID: 33059824 DOI: 10.1053/j.semnuclmed.2020.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Perfusion, as measured by imaging, is considered a standard of care biomarker for the evaluation of many tumors. Measurements of tumor perfusion may be used in a number of ways, including improving the visual detection of lesions, differentiating malignant from benign findings, assessing aggressiveness of tumors, identifying ischemia and by extension hypoxia within tumors, and assessing treatment response. While most clinical perfusion imaging is currently performed with CT or MR, a number of methods for PET imaging of tumor perfusion have been described. The inert PET radiotracer 15O-water PET represents the recognized gold standard for absolute quantification of tissue perfusion in both normal tissue and a variety of pathological conditions including cancer. Other cancer PET perfusion imaging strategies include the use of radiotracers with high first-pass uptake, analogous to those used in cardiac perfusion PET. This strategy produces more visually pleasing high-contrast images that provide relative rather than absolute perfusion quantification. Lastly, multiple timepoint imaging of PET tracers such as 18F-FDG, are not specifically optimized for perfusion, but have advantages related to availability, convenience, and reimbursement. Multiple obstacles have thus far blocked the routine use of PET imaging for tumor perfusion, including tracer production and distribution, image processing, patient body coverage, clinical validation, regulatory approval and reimbursement, and finally feasible clinical workflows. Fortunately, these obstacles are being overcome, especially within larger imaging centers, opening the door for PET imaging of tumor perfusion to become standard clinical practice. In the foreseeable future, it is possible that whole-body PET perfusion imaging with 15O-water will be able to be performed in a single imaging session concurrent with standard PET imaging techniques such as 18F-FDG-PET. This approach could establish an efficient clinical workflow. The resultant ability to measure absolute tumor blood flow in combination with glycolysis will provide important complementary information to inform prognosis and clinical decisions.
Collapse
Affiliation(s)
- Geoffrey B Johnson
- Department of Radiology, Mayo Clinic, Rochester, MNDepartment of Neurology, Mayo Clinic, Rochester, MN; Department of Immunology, Mayo Clinic, Rochester, MN.
| | - Hendrik J Harms
- Department of Surgical Sciences, Nuclear Medicine, PET and Radiology, Uppsala University, Uppsala Sweden
| | - Derek R Johnson
- Department of Radiology, Mayo Clinic, Rochester, MNDepartment of Neurology, Mayo Clinic, Rochester, MN
| | - Mark S Jacobson
- Department of Radiology, Mayo Clinic, Rochester, MNDepartment of Neurology, Mayo Clinic, Rochester, MN
| |
Collapse
|
5
|
Zhao K, Wang C, Mao Q, Shang D, Huang Y, Ma L, Yu J, Li M. The flow-metabolism ratio might predict treatment response and survival in patients with locally advanced esophageal squamous cell carcinoma. EJNMMI Res 2020; 10:57. [PMID: 32472227 PMCID: PMC7260309 DOI: 10.1186/s13550-020-00647-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/17/2020] [Indexed: 02/07/2023] Open
Abstract
Background Perfusion CT can offer functional information about tumor angiogenesis, and 18F-FDG PET/CT quantifies the glucose metabolic activity of tumors. This prospective study aims to investigate the value of biologically relevant imaging biomarkers for predicting treatment response and survival outcomes in patients with locally advanced esophageal squamous cell cancer (LA ESCC). Methods Twenty-seven patients with pathologically proven ESCC were included. All patients had undergone perfusion CT and 18F-FDG PET/CT using separate imaging systems before receiving definitive chemoradiotherapy (dCRT). The perfusion parameters included blood flow (BF), blood volume (BV), and time to peak (TTP), and the metabolic parameters included maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG). The flow-metabolism ratio (FMR) was defined as BF divided by SUVmax. Statistical methods used included Spearman’s rank correlation, Mann–Whitney U test or two-sample t test, receiver operating characteristic (ROC) curve analysis, the Kaplan–Meier method, and Cox proportional hazards models. Results The median overall survival (OS) and progression-free survival (PFS) were 18 and 11.6 months, respectively. FMR was significantly positively correlated with BF (r = 0.886, p < 0.001) and negatively correlated with SUVmax (r = − 0.547, p = 0.003) and TTP (r = − 0.462, p = 0.015) in the tumors. However, there was no significant correlation between perfusion and PET parameters. After dCRT, 14 patients (51.9%) were identified as responders, and another 13 were nonresponders. The BF and FMR of the responders were significantly higher than those of the nonresponders (42.05 ± 16.47 vs 27.48 ± 8.55, p = 0.007; 3.18 ± 1.15 vs 1.84 ± 0.65, p = 0.001). The ROC curves indicated that the FMR [area under the curve (AUC) = 0.846] was a better biomarker for predicting treatment response than BF (AUC = 0.802). Univariable Cox analysis revealed that of all imaging parameters, only the FMR was significantly correlated with overall survival (OS) (p = 0.015) and progression-free survival (PFS) (p = 0.017). Specifically, patients with a lower FMR had poorer survival. Multivariable analysis showed that after adjusting for age, clinical staging, and treatment response, the FMR remained an independent predictor of OS (p = 0.026) and PFS (p = 0.014). Conclusions The flow-metabolism mismatch demonstrated by a low FMR shows good potential in predicting chemoradiotherapy sensitivity and prognosis in ESCC.
Collapse
Affiliation(s)
- Kewei Zhao
- School of Medicine, Shandong University, Wenhua West Road 44, Jinan, 250012, Shandong Province, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong Province, China
| | - Chunsheng Wang
- Department of Radiation Oncology, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Qingfeng Mao
- Department of Radiation Oncology, Jiangxi Cancer Hospital Affiliated to Nanchang University, Nanchang, China
| | - Dongping Shang
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yong Huang
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Li Ma
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- School of Medicine, Shandong University, Wenhua West Road 44, Jinan, 250012, Shandong Province, China. .,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong Province, China.
| | - Minghuan Li
- School of Medicine, Shandong University, Wenhua West Road 44, Jinan, 250012, Shandong Province, China. .,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong Province, China.
| |
Collapse
|
6
|
Calandriello L, Larici AR, Leccisotti L, del Ciello A, Sica G, Infante A, Congedo MT, Poscia A, Giordano A, Bonomo L. Multifunctional Assessment of Non–Small Cell Lung Cancer. Clin Nucl Med 2018; 43:e18-e24. [DOI: 10.1097/rlu.0000000000001888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Wang L. Screening and Biosensor-Based Approaches for Lung Cancer Detection. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2420. [PMID: 29065541 PMCID: PMC5677261 DOI: 10.3390/s17102420] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023]
Abstract
Early diagnosis of lung cancer helps to reduce the cancer death rate significantly. Over the years, investigators worldwide have extensively investigated many screening modalities for lung cancer detection, including computerized tomography, chest X-ray, positron emission tomography, sputum cytology, magnetic resonance imaging and biopsy. However, these techniques are not suitable for patients with other pathologies. Developing a rapid and sensitive technique for early diagnosis of lung cancer is urgently needed. Biosensor-based techniques have been recently recommended as a rapid and cost-effective tool for early diagnosis of lung tumor markers. This paper reviews the recent development in screening and biosensor-based techniques for early lung cancer detection.
Collapse
Affiliation(s)
- Lulu Wang
- School of Instrument Science and Opto-electronics Engineering, Hefei University of Technology, Hefei 230009, China.
- Institute of Biomedical Technologies, Auckland University of Technology, Auckland 1142, New Zealand.
| |
Collapse
|
8
|
Tumor stage, tumor site and HPV dependent correlation of perfusion CT parameters and [18F]-FDG uptake in head and neck squamous cell carcinoma. Radiother Oncol 2015; 117:125-31. [DOI: 10.1016/j.radonc.2015.09.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 08/24/2015] [Accepted: 09/17/2015] [Indexed: 12/31/2022]
|
9
|
Image-derived biomarkers and multimodal imaging strategies for lung cancer management. Eur J Nucl Med Mol Imaging 2015; 42:634-43. [DOI: 10.1007/s00259-014-2974-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 12/14/2022]
|
10
|
Starikova EG, Tashireva LA, Novitsky VV, Ryazantseva NV. Nitric oxide donor NOC-5 increases XIAP and Aven level in Jurkat cells. Cell Biol Int 2014; 38:799-802. [PMID: 24677341 DOI: 10.1002/cbin.10262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/27/2014] [Indexed: 11/06/2022]
Abstract
Mitochondrial permeabilisation after NO donor application did not activate caspase-9. We have studied the X-linked apoptosis inhibitor (XIAP) and Aven protein content in NO-treated Jurkat cells. The level of both proteins increased in NO-treated cells. Thus the increase in XIAP and Aven content could be the cause of the lack of caspase-9 activity after mitochondrial permeabilisation in NO-treated Jurkat cells.
Collapse
Affiliation(s)
- Elena G Starikova
- Siberian State Medical University of the Ministry of Health Care of the Russian Federation, 634055, Tomsk, Russia
| | | | | | | |
Collapse
|
11
|
Huellner MW, Collen TD, Gut P, Winterhalder R, Pauli C, Diebold J, Seifert B, Strobel K, Veit-Haibach P. Multiparametric PET/CT-perfusion does not add significant additional information for initial staging in lung cancer compared with standard PET/CT. EJNMMI Res 2014; 4:6. [PMID: 24450990 PMCID: PMC3901766 DOI: 10.1186/2191-219x-4-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/17/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The purpose of this study was to assess the relationship of CT-perfusion (CTP), 18F-FDG-PET/CT and histological parameters, and the possible added value of CTP to FDG-PET/CT in the initial staging of lung cancer. METHODS Fifty-four consecutive patients (median age 65 years, 15 females, 39 males) with suspected lung cancer were evaluated prospectively by CT-perfusion scan and 18F-FDG-PET/CT scan. Overall, 46 tumors were identified. CTP parameters blood flow (BF), blood volume (BV), and mean transit time (MTT) of the tumor tissue were calculated. Intratumoral microvessel density (MVD) was assessed quantitatively. Differences in CTP parameters concerning tumor type, location, PET positivity of lymph nodes, TNM status, and UICC stage were analyzed. Spearman correlation analyses between CTP and 18F-FDG-PET/CT parameters (SUVmax, SUVmean, PETvol, and TLG), MVD, tumor size, and tumor stage were performed. RESULTS The mean BF (mL/100 mL min-1), BV (mL/100 mL), and MTT (s) was 35.5, 8.4, and 14.2, respectively. The BF and BV were lower in tumors with PET-positive lymph nodes (p = 0.02). However, the CTP values were not significantly different among the N stages. The CTP values were not different, depending on tumor size and location. No significant correlation was found between CTP parameters and MVD. CONCLUSIONS Overall, the CTP information showed only little additional information for the initial staging compared with standard FDG-PET/CT. Low perfusion in lung tumors might possibly be associated with metabolically active regional lymph nodes. Apart from that, both CTP and 18F-FDG-PET/CT parameter sets may reflect different pathophysiological mechanisms in lung cancer.
Collapse
Affiliation(s)
- Martin W Huellner
- Department of Radiology and Nuclear Medicine, Lucerne Cantonal Hospital, Spitalstrasse 1, Lucerne CH-6004, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
van Elmpt W, Das M, Hüllner M, Sharifi H, Zegers K, Reymen B, Lambin P, Wildberger JE, Troost EGC, Veit-Haibach P, De Ruysscher D. Characterization of tumor heterogeneity using dynamic contrast enhanced CT and FDG-PET in non-small cell lung cancer. Radiother Oncol 2013; 109:65-70. [PMID: 24044795 DOI: 10.1016/j.radonc.2013.08.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/12/2013] [Accepted: 08/16/2013] [Indexed: 11/19/2022]
Abstract
PURPOSE Dynamic contrast-enhanced CT (DCE-CT) quantifies vasculature properties of tumors, whereas static FDG-PET/CT defines metabolic activity. Both imaging modalities are capable of showing intra-tumor heterogeneity. We investigated differences in vasculature properties within primary non-small cell lung cancer (NSCLC) tumors measured by DCE-CT and metabolic activity from FDG-PET/CT. METHODS Thirty three NSCLC patients were analyzed prior to treatment. FDG-PET/CT and DCE-CT were co-registered. The tumor was delineated and metabolic activity was segmented on the FDG-PET/CT in two regions: low (<50% maximum SUV) and high (≥50% maximum SUV) metabolic uptake. Blood flow, blood volume and permeability were calculated using a maximum slope, deconvolution algorithm and a Patlak model. Correlations were assessed between perfusion parameters for the regions of interest. RESULTS DCE-CT provided additional information on vasculature and tumor heterogeneity that was not correlated to metabolic tumor activity. There was no significant difference between low and high metabolic active regions for any of the DCE-CT parameters. Furthermore, only moderate correlations between maximum SUV and DCE-CT parameters were observed. CONCLUSIONS No direct correlation was observed between FDG-uptake and parameters extracted from DCE-CT. DCE-CT may provide complementary information to the characterization of primary NSCLC tumors over FDG-PET/CT imaging.
Collapse
Affiliation(s)
- W van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - M Das
- Department of Radiology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Martin Hüllner
- Department of Radiology, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - H Sharifi
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - K Zegers
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - B Reymen
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - P Lambin
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - J E Wildberger
- Department of Radiology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - E G C Troost
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - P Veit-Haibach
- Department of Radiology, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - D De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
- Radiation Oncology, University Hospitals Leuven/ KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Zhang Y, Yang D, Weng L, Wang L. Early lung cancer diagnosis by biosensors. Int J Mol Sci 2013; 14:15479-509. [PMID: 23892596 PMCID: PMC3759869 DOI: 10.3390/ijms140815479] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/29/2013] [Accepted: 07/04/2013] [Indexed: 12/20/2022] Open
Abstract
Lung cancer causes an extreme threat to human health, and the mortality rate due to lung cancer has not decreased during the last decade. Prognosis or early diagnosis could help reduce the mortality rate. If microRNA and tumor-associated antigens (TAAs), as well as the corresponding autoantibodies, can be detected prior to clinical diagnosis, such high sensitivity of biosensors makes the early diagnosis and prognosis of cancer realizable. This review provides an overview of tumor-associated biomarker identifying methods and the biosensor technology available today. Laboratorial researches utilizing biosensors for early lung cancer diagnosis will be highlighted.
Collapse
Affiliation(s)
- Yuqian Zhang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; E-Mails: (Y.Z.); (D.Y.)
| | - Dongliang Yang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; E-Mails: (Y.Z.); (D.Y.)
| | - Lixing Weng
- College of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; E-Mails: (Y.Z.); (D.Y.)
| |
Collapse
|
14
|
Czernin J, Allen-Auerbach M, Nathanson D, Herrmann K. PET/CT in Oncology: Current Status and Perspectives. CURRENT RADIOLOGY REPORTS 2013; 1:177-190. [PMID: 24883234 PMCID: PMC4034170 DOI: 10.1007/s40134-013-0016-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery of the Warburg effect in the early twentieth century followed by the development of the fluorinated glucose analogue 18F-fluorodeoxyglucose (18F-FDG) and the invention of positron emission tomographs laid the foundation of clinical PET/CT. This review discusses the challenges and obstacles in clinical adoption of this technique. We then discuss advances in instrumentation, including the critically important introduction of PET/CT and current PET/CT protocols. Moreover, we provide evidence for the clinical utility of PET/CT for patient management and its potential impact on patient outcome, and address its cost and cost-effectiveness. Although this review largely focuses on 18F-FDG imaging, we also discuss a variety of additional molecular imaging approaches that can be used for cancer phenotyping with PET. Throughout this review we emphasize the critical contributions of CT to the strength of PET/CT.
Collapse
Affiliation(s)
- Johannes Czernin
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, Room AR-23-222 CHS, Los Angeles, CA 90095-1782 USA
| | - Martin Allen-Auerbach
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, Room AR-23-222 CHS, Los Angeles, CA 90095-1782 USA
| | - David Nathanson
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, Room AR-23-222 CHS, Los Angeles, CA 90095-1782 USA
| | - Ken Herrmann
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, Room AR-23-222 CHS, Los Angeles, CA 90095-1782 USA
- Department of Nuclear Medicine, Universitätsklinikum Würzburg, Würzburg, Germany
| |
Collapse
|