1
|
Murakami H, Tokuda T, El-Agnaf OMA, Ohmichi T, Mori Y, Asano M, Kanemoto M, Baba Y, Tsukie T, Ikeuchi T, Ono K. IgG index of cerebrospinal fluid can reflect pathophysiology associated with Lewy bodies in Parkinson's disease. J Neurol Sci 2023; 452:120760. [PMID: 37544209 DOI: 10.1016/j.jns.2023.120760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/04/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Neuroinflammation is one of the pathophysiologies of Parkinson's disease (PD). Lewy bodies, the pathological hallmark of PD, emerge as a consequence of α-synuclein aggregation, and neuroinflammation is induced concurrently with this aggregation. Imaging and cerebrospinal fluid (CSF) biomarkers that reflect PD pathophysiology have been developed or are under investigation. The IgG index of CSF is a marker of inflammation, and may also reflect the pathophysiology of PD. AIM We examined if the IgG index reflects the pathophysiology of PD in drug-naïve PD patients. METHOD The subjects were 20 consecutive PD patients who underwent 123I-MIBG scintigraphy for assessment of the heart to mediastinum (H/M) ratio and wash out rate, 123I-Ioflupane SPECT for examination of the specific binding ratio in the striatum, and lumbar puncture before treatment. The CSF IgG index and levels of pathogenic proteins (total α-synuclein, oligomeric α-synuclein, total tau, phosphorylated tau and amyloid Aβ1-42) were determined. The IgG index was compared with the other parameters using Spearman correlation analysis. RESULTS The IgG index showed a significant correlation with the H/M ratio in early (r = -0.563, p = 0.010) and delayed (r = -0.466, p = 0.038) images in 123I-MIBG scintigraphy and with the CSF total tau level (r = -0.513, p = 0.021). CONCLUSION Neuroinflammation is involved in PD pathophysiology in some patients, and a higher IgG index indicates the presence of neuroinflammation accompanied by emergence of Lewy bodies.
Collapse
Affiliation(s)
| | - Takahiko Tokuda
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Japan
| | - Omar M A El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar
| | - Takuma Ohmichi
- Department of Neurology, Kyoto Prefectural University of Medicine, Japan
| | - Yukiko Mori
- Department of Neurology, Showa University School of Medicine, Japan
| | - Miki Asano
- Department of Neurology, Showa University School of Medicine, Japan
| | - Mizuki Kanemoto
- Department of Neurology, Showa University School of Medicine, Japan
| | - Yasuhiko Baba
- Department of Neurology, Showa University Fujigaoka Hospital, Japan
| | - Tamao Tsukie
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Japan
| | - Kenjiro Ono
- Department of Neurology, Graduate School of Medical Sciences, Kanazawa University, Japan.
| |
Collapse
|
2
|
Nabizadeh F, Pirahesh K, Ramezannezhad E. Longitudinal striatal dopamine transporter binding and cerebrospinal fluid alpha-synuclein, amyloid beta, total tau, and phosphorylated tau in Parkinson's disease. Neurol Sci 2023; 44:573-585. [PMID: 36227385 DOI: 10.1007/s10072-022-06440-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Previous studies investigated CSF levels of α-synuclein (α-syn), amyloid-β (Aβ1-42), total tau (t-tau), and phosphorylated tau (p-tau) with clinical progression of Parkinson's disease (PD). However, there is limited data on the association between CSF biomarkers and dopamine uptake status in PD. AIM In the current study, we aim to investigate the longitudinal association between striatal dopaminergic neuronal loss assessed by dopamine active transporter single photon emission computerized tomography (DaTSCAN) imaging with CSF α-syn, t-tau, p-tau, and Aβ1-42. METHODS A total of 413 early-stage PD patients and 187 healthy controls (HCs) from the PPMI. Striatal binding ratios (SBRs) of DaTSCAN images in caudate and putamen nuclei were calculated. We investigated the cross-sectional and longitudinal association between CSF biomarkers and dopamine uptake using partial correlation models adjusted for the effect of age, sex, and years of education over 24 months of follow-up. RESULTS The level of CSF α-syn, Aβ1-42, t-tau, and p-tau was significantly higher in HCs compared to PD groups at any time point. We found that higher CSF α-syn was associated with a higher SBR score in the left caudate at baseline (P = 0.038) and after 12 months (P = 0.012) in PD patients. Moreover, SBR scores in the left caudate and CSF Aβ1-42 were positively correlated at baseline (P = 0.021), 12 months (P = 0.006), and 24 months (P = 0.014) in patients with PD. Our findings demonstrated that change in CSF Aβ1-42 was positively correlated with change in SBR score in the left caudate after 24 months in the PD group (P = 0.043). CONCLUSION We found that cross-sectional levels of α-syn and Aβ1-42 could reflect the degree of dopaminergic neuron loss in the left caudate nucleus. Interestingly, longitudinal changes in CSF Aβ1-42 could predict the severity of left caudal dopaminergic neuron loss throughout the disease. This suggested that Aβ pathology might precede dopaminergic loss in striatal nuclei in this case left caudate and subsequently cognitive impairment in PD patients, although future studies are needed to confirm our results and expand the understanding of the pathophysiology of cognitive dysfunction in PD.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Kasra Pirahesh
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
3
|
Buzoianu AD, Sharma A, Muresanu DF, Feng L, Huang H, Chen L, Tian ZR, Nozari A, Lafuente JV, Wiklund L, Sharma HS. Nanodelivery of Histamine H3/H4 Receptor Modulators BF-2649 and Clobenpropit with Antibodies to Amyloid Beta Peptide in Combination with Alpha Synuclein Reduces Brain Pathology in Parkinson's Disease. ADVANCES IN NEUROBIOLOGY 2023; 32:55-96. [PMID: 37480459 DOI: 10.1007/978-3-031-32997-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Parkinson's disease (PD) in military personnel engaged in combat operations is likely to develop in their later lives. In order to enhance the quality of lives of PD patients, exploration of novel therapy based on new research strategies is highly warranted. The hallmarks of PD include increased alpha synuclein (ASNC) and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) leading to brain pathology. In addition, there are evidences showing increased histaminergic nerve fibers in substantia niagra pars compacta (SNpc), striatum (STr), and caudate putamen (CP) associated with upregulation of histamine H3 receptors and downregulation of H4 receptors in human brain. Previous studies from our group showed that modulation of potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist induces neuroprotection in PD brain pathology. Recent studies show that PD also enhances amyloid beta peptide (AβP) depositions in brain. Keeping these views in consideration in this review, nanowired delivery of monoclonal antibodies to AβP together with ASNC and H3/H4 modulator drugs on PD brain pathology is discussed based on our own observations. Our investigation shows that TiO2 nanowired BF-2649 (1 mg/kg, i.p.) or CLBPT (1 mg/kg, i.p.) once daily for 1 week together with nanowired delivery of monoclonal antibodies (mAb) to AβP and ASNC induced superior neuroprotection in PD-induced brain pathology. These observations are the first to show the modulation of histaminergic receptors together with antibodies to AβP and ASNC induces superior neuroprotection in PD. These observations open new avenues for the development of novel drug therapies for clinical strategies in PD.
Collapse
Affiliation(s)
- Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Chung CC, Chan L, Chen JH, Bamodu OA, Chiu HW, Hong CT. Plasma extracellular vesicles tau and β-amyloid as biomarkers of cognitive dysfunction of Parkinson's disease. FASEB J 2021; 35:e21895. [PMID: 34478572 DOI: 10.1096/fj.202100787r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/22/2021] [Accepted: 08/17/2021] [Indexed: 11/11/2022]
Abstract
The contribution of circulatory tau and β-amyloid in Parkinson's disease (PD), especially the cognitive function, remains inconclusive. Extracellular vesicles (EVs) cargo these proteins throughout the bloodstream after they are directly secreted from many cells, including neurons. The present study aims to investigate the role of the plasma EV-borne tau and β-amyloid as biomarkers for cognitive dysfunction in PD by investigating subjects with mild to moderate stage of PD (n = 116) and non-PD controls (n = 46). Plasma EVs were isolated, and immunomagnetic reduction-based immunoassay was used to assess the levels of α-synuclein, tau, and β-amyloid 1-42 (Aβ1-42) within the EVs. Artificial neural network (ANN) models were then applied to predict cognitive dysfunction. We observed no significant difference in plasma EV tau and Aβ1-42 between PD patients and controls. Plasma EV tau was significantly associated with cognitive function. Moreover, plasma EV tau and Aβ1-42 were significantly elevated in PD patients with cognitive impairment when compared to PD patients with optimal cognition. The ANN model used the plasma EV α-synuclein, tau, and Aβ1-42, as well as the patient's age and gender, as predicting factors. The model achieved an accuracy of 91.3% in identifying cognitive dysfunction in PD patients, and plasma EV tau and Aβ1-42 are the most valuable factors. In conclusion, plasma EV tau and Aβ1-42 are significant markers of cognitive function in PD patients. Combining with the plasma EV α-synuclein, age, and sex, plasma EV tau and Aβ1-42 can identify cognitive dysfunction in PD patients. This study corroborates the prognostic roles of plasma EV tau and Aβ1-42 in PD.
Collapse
Affiliation(s)
- Chen-Chih Chung
- Department of Neurology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| | - Lung Chan
- Department of Neurology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jia-Hung Chen
- Department of Neurology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
| | - Oluwaseun Adebayo Bamodu
- Department of Urology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan.,Department of Medical Research & Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
| | - Hung-Wen Chiu
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan.,Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chien-Tai Hong
- Department of Neurology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
5
|
Cerebrospinal Fluid Levels of Autophagy-related Proteins Represent Potentially Novel Biomarkers of Early-Stage Parkinson's Disease. Sci Rep 2018; 8:16866. [PMID: 30442917 PMCID: PMC6237988 DOI: 10.1038/s41598-018-35376-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022] Open
Abstract
The roles of autophagy-related proteins as diagnostic or monitoring biomarkers in Parkinson's disease (PD) have not been clearly elucidated. We recruited 32 patients with early-stage PD and 28 control subjects, and evaluated parkinsonian motor symptoms and dopamine transporter imaging data. Cerebrospinal fluid (CSF) levels of LC3B, Beclin1, and LAMP-2 were estimated using ELISAs, and CSF levels of ATG5, ATG7, and p62 were examined by immunoblotting. Additionally, we also assessed the levels of α-synuclein, total tau, and phosphorylated tau in CSF using ELISAs. Significant differences in the levels of LC3B, LAMP-2, and Beclin1 were observed between the PD and control groups. Using 29.8 pg/mL as the cut-off value for a diagnostic biomarker of PD, CSF LC3B levels exhibited high sensitivity (96.9%) and specificity (89.3%) with an area under the curve of 0.982. Furthermore, LC3B was significantly correlated with the asymmetry index in the caudate and putamen, as estimated by a semi-quantitative analysis of [18F] N-(3-fluoropropyl)-2β-carbon ethoxy-3β-(4-iodophenyl) nortropane (FP-CIT) positron emission tomography (PET). CSF levels of LC3B represented a potential diagnostic and prognostic biomarker of early-stage PD in patients. Based on our findings, molecular biological changes in PD are associated with dysregulation of the lysosomal autophagy pathway.
Collapse
|
6
|
Ren P, Lo RY, Chapman BP, Mapstone M, Porsteinsson A, Lin F. Longitudinal Alteration of Intrinsic Brain Activity in the Striatum in Mild Cognitive Impairment. J Alzheimers Dis 2018; 54:69-78. [PMID: 27472880 DOI: 10.3233/jad-160368] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The striatum is a critical functional hub in understanding neurological disorders. However, the Alzheimer's disease (AD)-associated striatal change is unclear, as is the relationship between striatal change and AD pathology. Three-year resting-state fMRI data from 15 healthy control (HC) and 20 mild cognitive impairment (MCI) participants were obtained. We analyzed the amplitude of low-frequency fluctuations (ALFF) (0.01-0.08 Hz) and two subdivided bands (slow-4:0.027-0.073 Hz; slow-5:0.01-0.027 Hz). We calculated Aβ/pTau ratio using baseline cerebrospinal fluid pTau and Aβ1-42 to represent AD pathology. Compared to HC, MCI participants showed greater decline in right putaminal ALFF, including the slow-4 band. Greater decline of ALFF in the right putamen was significantly related to the memory decline over time and lower baseline Aβ/pTau ratio regardless of age or group. The slow-4 band, relative to slow-5 band, showed a stronger correlation between Aβ/pTau ratio and decline of ALFF in the right putamen. The results suggest that the putaminal function declines early in the AD-associated neurodegeneration. The continuous decline in putaminal ALFF, especially slow-4 band, may be a sensitive marker of AD pathology such as Aβ/pTau ratio regardless of clinical diagnosis.
Collapse
Affiliation(s)
- Ping Ren
- School of Nursing, University of Rochester Medical Center, Rochester, NY, USA
| | - Raymond Y Lo
- Department of Neurology, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Benjamin P Chapman
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA.,Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Mark Mapstone
- Department of Neurology, University of California-Irvine, Irvine, CA, USA
| | - Anton Porsteinsson
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Feng Lin
- School of Nursing, University of Rochester Medical Center, Rochester, NY, USA.,Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA.,Department of Brain and Cognitive Science, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|
7
|
Abstract
Dementia is a frequent problem encountered in advanced stages of Parkinson disease (PD). In recent years, research has focused on the pre-dementia stages of cognitive impairment in PD, including mild cognitive impairment (MCI). Several longitudinal studies have shown that MCI is a harbinger of dementia in PD, although the course is variable, and stabilization of cognition - or even reversal to normal cognition - is not uncommon. In addition to limbic and cortical spread of Lewy pathology, several other mechanisms are likely to contribute to cognitive decline in PD, and a variety of biomarker studies, some using novel structural and functional imaging techniques, have documented in vivo brain changes associated with cognitive impairment. The evidence consistently suggests that low cerebrospinal fluid levels of amyloid-β42, a marker of comorbid Alzheimer disease (AD), predict future cognitive decline and dementia in PD. Emerging genetic evidence indicates that in addition to the APOE*ε4 allele (an established risk factor for AD), GBA mutations and SCNA mutations and triplications are associated with cognitive decline in PD, whereas the findings are mixed for MAPT polymorphisms. Cognitive enhancing medications have some effect in PD dementia, but no convincing evidence that progression from MCI to dementia can be delayed or prevented is available, although cognitive training has shown promising results.
Collapse
|
8
|
Brockmann K, Schulte C, Deuschle C, Hauser AK, Heger T, Gasser T, Maetzler W, Berg D. Neurodegenerative CSF markers in genetic and sporadic PD: Classification and prediction in a longitudinal study. Parkinsonism Relat Disord 2015; 21:1427-34. [DOI: 10.1016/j.parkreldis.2015.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/02/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022]
|
9
|
Stefani A, Olivola E, Liguori C, Hainsworth AH, Saviozzi V, Angileri G, D'Angelo V, Galati S, Pierantozzi M. Catecholamine-Based Treatment in AD Patients: Expectations and Delusions. Front Aging Neurosci 2015; 7:67. [PMID: 25999852 PMCID: PMC4418272 DOI: 10.3389/fnagi.2015.00067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/17/2015] [Indexed: 11/16/2022] Open
Abstract
In Alzheimer disease, the gap between excellence of diagnostics and efficacy of therapy is wide. Despite sophisticated imaging and biochemical markers, the efficacy of available therapeutic options is limited. Here we examine the possibility that assessment of endogenous catecholamine levels in cerebrospinal fluid (CSF) may fuel new therapeutic strategies. In reviewing the available literature, we consider the effects of levodopa, monoamine oxidase inhibitors, and noradrenaline (NE) modulators, showing disparate results. We present a preliminary assessment of CSF concentrations of dopamine (DA) and NE, determined by HPLC, in a small dementia cohort of either Alzheimer’s disease (AD) or frontotemporal dementia patients, compared to control subjects. Our data reveal detectable levels of DA, NE in CSF, though we found no significant alterations in the dementia population as a whole. AD patients exhibit a small impairment of the DA axis and a larger increase of NE concentration, likely to represent a compensatory mechanism. While waiting for preventive strategies, a pragmatic approach to AD may re-evaluate catecholamine modulation, possibly stratified to dementia subtypes, as part of the therapeutic armamentarium.
Collapse
Affiliation(s)
- Alessandro Stefani
- Department of System Medicine, Università di Roma Tor Vergata , Rome , Italy ; IRCCS Fondazione Santa Lucia , Rome , Italy
| | - Enrica Olivola
- Department of System Medicine, Università di Roma Tor Vergata , Rome , Italy
| | | | | | - Valentina Saviozzi
- Department of System Medicine, Università di Roma Tor Vergata , Rome , Italy
| | - Giacoma Angileri
- Department of System Medicine, Università di Roma Tor Vergata , Rome , Italy
| | - Vincenza D'Angelo
- Department of System Medicine, Università di Roma Tor Vergata , Rome , Italy
| | | | | |
Collapse
|
10
|
CSF tau and tau/Aβ42 predict cognitive decline in Parkinson's disease. Parkinsonism Relat Disord 2015; 21:271-6. [PMID: 25596881 DOI: 10.1016/j.parkreldis.2014.12.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/06/2014] [Accepted: 12/28/2014] [Indexed: 01/24/2023]
Abstract
INTRODUCTION A substantial proportion of patients with Parkinson's disease (PD) have concomitant cognitive dysfunction. Identification of biomarker profiles that predict which PD patients have a greater likelihood for progression of cognitive symptoms is pressingly needed for future treatment and prevention approaches. METHODS Subjects were drawn from the Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism (DATATOP) study, a large clinical trial that enrolled initially untreated PD patients. For the current study, Phase One encompassed trial baseline until just prior to levodopa administration (n = 403), and Phase Two spanned the initiation of levodopa treatment until the end of cognitive follow-up (n = 305). Correlations and linear mixed models were performed to determine cross-sectional and longitudinal associations between baseline amyloid β1-42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) in cerebrospinal fluid (CSF) and measures of memory and executive function. Analyses also considered APOE genotype and tremor- vs. rigidity-dominant phenotype. RESULTS No association was found between baseline CSF biomarkers and cognitive test performance during Phase One. However, once levodopa treatment was initiated, higher p-tau and p-tau/Aβ42 predicted subsequent decline on cognitive tasks involving both memory and executive functions. The interactions between biomarkers and cognition decline did not appear to be influenced by levodopa dosage, APOE genotype or motor phenotype. CONCLUSIONS The current study has, for the first time, demonstrated the possible involvement of tau species, whose gene (MAPT) has been consistently linked to the risk of PD by genome-wide association studies, in the progression of cognitive symptoms in PD.
Collapse
|
11
|
Do CSF levels of t-Tau, p-Tau and β₁₋₄₂ amyloid correlate with dopaminergic system impairment in patients with a clinical diagnosis of Parkinson disease? A ¹²³I-FP-CIT study in the early stages of the disease. Eur J Nucl Med Mol Imaging 2014; 41:2137-43. [PMID: 25007849 DOI: 10.1007/s00259-014-2841-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/16/2014] [Indexed: 12/12/2022]
Abstract
PURPOSE To investigate the relationships among cerebrospinal fluid (CSF) levels of t-Tau, p-Tau and Aβ₁₋₄₂ amyloid peptide and (123)I-FP-CIT uptake. METHODS The study included 58 subjects (31 men and 27 women, age 67 ± 9 years) with a clinical diagnosis of Parkinson disease diagnosed according to the United Kingdom Parkinson Disease Society Brain Bank criteria. All subjects underwent a CSF assay 28 ± 3 days before (123)I-FP-CIT SPECT scanning. The relationships were evaluated by means of linear regression analysis and Pearson correlation. RESULTS Striatal (123)I-FP-CIT was positively related to both t-Tau and p-Tau CSF values with low levels of t-Tau and p-Tau being related to a low uptake of (123)I-FP-CIT. In particular, differences with higher statistical significance were found for the striatum that is contralateral to theside mainly affected on clinical examination (P<0.001) [corrected].No significant relationships were found between Aβ₁₋₄₂ amyloid peptide and (123)I-FP-CIT binding. CONCLUSION The results of our study suggest that the presynaptic dopaminergic system is more involved in Parkinson disease patients with lower t-Tau and p-Tau CSF values while values of Aβ₁₋₄₂ amyloid peptide seems not to be related to nigrostriatal degeneration in our series.
Collapse
|