1
|
Zwama J, Rosenberg NM, Verheij VA, Raijmakers PGHM, Yaqub M, Botman E, de Ruiter RD, Garrelfs MR, Bökenkamp A, Micha D, Schwarte LA, Teunissen BP, Lammertsma AA, Boellaard R, Eekhoff EMW. [ 18F]NaF PET/CT as a Marker for Fibrodysplasia Ossificans Progressiva: From Molecular Mechanisms to Clinical Applications in Bone Disorders. Biomolecules 2024; 14:1276. [PMID: 39456213 PMCID: PMC11505869 DOI: 10.3390/biom14101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic bone disorder characterized by episodic flare-ups in connective tissue, which are frequently followed by the formation of heterotopic ossification. The absence of available plasma-soluble biomarkers for flare-ups or heterotopic bone formation poses severe challenges to the monitoring of disease activity to measure or predict disease progression. Recently, 18-fluor-sodium fluoride positron emission tomography/computed tomography ([18F]NaF PET/CT) was introduced as a potential marker for ossifying FOP activity. This review discusses the pharmacokinetics of [18F]NaF in relation to the pathophysiology of FOP, and its use as a marker of local bone metabolism in a variety of bone-related disorders. In addition, the review specifically addresses the applicability of [18F]NaF PET/CT imaging in FOP as a monitoring modality.
Collapse
Affiliation(s)
- Jolien Zwama
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Endocrinology and Metabolism, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
| | - Neeltje M. Rosenberg
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Endocrinology and Metabolism, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
| | - Vincent A. Verheij
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Endocrinology and Metabolism, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
| | - Pieter G. H. M. Raijmakers
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Maqsood Yaqub
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Esmée Botman
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Endocrinology and Metabolism, De Boelelaan 1117, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
| | - Ruben D. de Ruiter
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Endocrinology and Metabolism, De Boelelaan 1117, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Dijklander Hospital, Maelsonstraat 3, 1624 NP Hoorn, The Netherlands
| | - Mark R. Garrelfs
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Pediatric Endocrinology, Emma Children’s Hospital, Meibergdreef 9, Amsterdam, The Netherlands
| | - Arend Bökenkamp
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Pediatric Nephrology, Emma Children’s Hospital, Meibergdreef 9, Amsterdam, The Netherlands
| | - Dimitra Micha
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Lothar A. Schwarte
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anesthesiology, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Bernd P. Teunissen
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Adriaan A. Lammertsma
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ronald Boellaard
- Rare Bone Disease Centre, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Elisabeth M. W. Eekhoff
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Endocrinology and Metabolism, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Rare Bone Disease Centre, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Nogueira-Lima E, Alves T, Etchebehere E. 18F-Fluoride PET/CT-Updates. Semin Nucl Med 2024:S0001-2998(24)00083-7. [PMID: 39393951 DOI: 10.1053/j.semnuclmed.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
Sodium Fluoride-18 production started in the 1940s and was described clinically for the first time in 1962 as a bone-imaging agent. However, its use became dormant with the development of conventional bone scintigraphy, especially due to its low cost. Conventional bone scintigraphy has been the most utilized Nuclear Medicine technique for identifying osteoblastic bone metastases, especially in prostate and breast cancers for decades and is also employed to identify benign bone disease, especially in the orthopedic setting. While bone scintigraphy is highly sensitive, it lacks adequate specificity. With the advent of high-quality 3D Whole-Body Positron Emission Tomography combined with computed tomography (PET/CT), images, Sodium Fluoride-18 imaging with PET/CT (Fluoride PET/CT) re-emerged. This PET/CT bone-imaging agent provides higher sensitivity and specificity to detect bone lesions in both the oncological scenario as well as to identify benign bone and joint disorders. PET/CT bone-imaging provides a precise view of the bone metabolism remodeling processes at a molecular level, throughout the skeleton, and combines anatomical information, enhancing diagnostic specificity and accuracy. This article review will explore the updates on clinical applications of Fluoride PET/CT in oncology and benign conditions encompassing orthopedic, inflammatory and cardiovascular conditions and treatment response assessment.
Collapse
Affiliation(s)
- Ellen Nogueira-Lima
- Division of Nuclear Medicine, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Thiago Alves
- Division of Nuclear Medicine, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Elba Etchebehere
- Division of Nuclear Medicine, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
3
|
Huang J, Li J, Li Z, Qin J, Mu X, Fu W. Assessing osteoporosis and bone mineral density through 18F-NaF uptake at lumbar spine. Ann Nucl Med 2024:10.1007/s12149-024-01982-w. [PMID: 39317874 DOI: 10.1007/s12149-024-01982-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
OBJECTIVES The use of 18F-Sodium fluoride (NaF) PET/CT is established in the detection of metastatic bone disease, yet its utility in osteoporosis remains underexplored. This research aims to assess the variations in 18F-NaF uptake among individuals with differing bone mineral density (BMD) and to examine the relationship between 18F-NaF uptake and BMD. METHODS In this retrospective study, 199 patients (average age 56 ± 6, comprising 52 males and 147 females) with a history of cancer were analyzed. Each participant underwent both 18F-NaF PET/CT and lumbar dual-energy X-ray absorptiometry (DXA) scans within a span of 7 days. Based on DXA outcomes, patients and their lumbar vertebrae were categorized into normal BMD, osteopenia, and osteoporosis groups. The lumbar 18F-NaF uptake across these groups were compared, and to explore the association between lumbar standardized uptake values (SUV) values and BMD. The efficacy of 18F-NaF uptake in diagnosing osteoporosis or osteopenia was also evaluated. Analysis was conducted using Mann-Whitney U tests, Spearman regression, and receiver operating characteristic (ROC) curve analysis through GraphPad Prism 10.0. RESULTS A total of 796 lumbar vertebrae from 199 patients were measured. It was observed that osteoporotic patients had significantly lower 18F-NaF uptake than those with osteopenia and normal BMD across the L1-L4 lumbar vertebrae (P < 0.0001). In a vertebra-based analysis, normal BMD vertebrae exhibited the highest maximum SUV(SUVmax) compared to osteopenic (8.13 ± 1.28 vs. 6.61 ± 1.01, P < 0.0001) and osteoporotic vertebrae (8.13 ± 1.28 vs. 4.82 ± 1.01, P < 0.0001). There was a positive correlation between lumbar 18F-NaF uptake and BMD across all vertebrae, with correlation coefficients exceeding 0.5 (range: 0.57-0.8). The area under the ROC curve values were notably high, at 0.96 for osteoporosis and 0.83 for osteopenia diagnosis. CONCLUSION This study demonstrates distinct 18F-NaF uptake patterns among individuals with varying BMD levels, with a positive correlation between 18F-NaF uptake and BMD. These findings highlight the potential of 18F-NaF PET/CT as a supportive diagnostic method in the management of osteoporosis.
Collapse
Affiliation(s)
- Jinquan Huang
- Department of Nuclear Medicine, Affiliated Hospital of Guilin Medical University, No. 15 Lequn Road, 541001, Xiufeng District, Guilin, 541001, Guangxi Zhuang Autonomous Region, China
| | - Jingze Li
- Department of Nuclear Medicine, Affiliated Hospital of Guilin Medical University, No. 15 Lequn Road, 541001, Xiufeng District, Guilin, 541001, Guangxi Zhuang Autonomous Region, China
| | - Zuguo Li
- Department of Nuclear Medicine, Affiliated Hospital of Guilin Medical University, No. 15 Lequn Road, 541001, Xiufeng District, Guilin, 541001, Guangxi Zhuang Autonomous Region, China
| | - Jie Qin
- Department of Nuclear Medicine, Affiliated Hospital of Guilin Medical University, No. 15 Lequn Road, 541001, Xiufeng District, Guilin, 541001, Guangxi Zhuang Autonomous Region, China
| | - Xingyu Mu
- Department of Nuclear Medicine, Affiliated Hospital of Guilin Medical University, No. 15 Lequn Road, 541001, Xiufeng District, Guilin, 541001, Guangxi Zhuang Autonomous Region, China.
| | - Wei Fu
- Department of Nuclear Medicine, Affiliated Hospital of Guilin Medical University, No. 15 Lequn Road, 541001, Xiufeng District, Guilin, 541001, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
4
|
Graham R, Morland D, Cade S, Imbert L, Panagiotidis E, Kurth J, Paycha F, Van den Wyngaert T. EANM position paper on challenges and opportunities of full-ring 360° CZT bone imaging: it's time to let go of planar whole-body bone imaging. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06906-4. [PMID: 39259227 DOI: 10.1007/s00259-024-06906-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
The introduction of smaller footprint, more sensitive Cadmium-Zinc-Telluride (CZT)-based detectors with improved spatial and energy resolution has enabled the design of innovative full-ring 360° CZT SPECT/CT systems (e.g., VERITON® and StarGuide™). With this transformative technology now aiming to become mainstream in clinical practice, several critical questions need to be addressed. This EANM position paper provides practical recommendations on how to use these devices for routine bone SPECT/CT studies, facilitating the transition from traditional planar whole-body imaging and conventional SPECT/CT to these novel systems. In particular, initial guidance is provided on imaging acquisition and reporting workflows, image reconstruction, and CT acquisition parameters. Given the emerging nature of this technology, the available evidence base is still limited, and the proposed adaptations in workflows and scan protocols will likely evolve before being integrated into definitive guidelines. In the meantime, this EANM position paper serves as a comprehensive guide for integrating these advanced hybrid SPECT/CT imaging systems into clinical practice and outlining areas for further study.
Collapse
Affiliation(s)
| | - David Morland
- Department of Nuclear Medicine, Institut Jean-Godinot, Reims, France
| | - Sarah Cade
- Department of Medical Physics, Royal United Hopital, Bath, UK
| | - Laetitia Imbert
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, Université de Lorraine, IADI, INSERM U1254, Nancy, France
| | | | - Jens Kurth
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany.
| | - Frédéric Paycha
- Department of Nuclear Medicine, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Tim Van den Wyngaert
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
- Faculty of Medicine and Health Sciences (MICA - IPPON), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
5
|
Alqahtani MM. Whole-Body SPECT/CT: Protocol Variation and Technical Consideration-A Narrative Review. Diagnostics (Basel) 2024; 14:1827. [PMID: 39202315 PMCID: PMC11353707 DOI: 10.3390/diagnostics14161827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Introducing a hybrid imaging approach, such as single-photon emission computerized tomography with X-ray computed tomography (SPECT)/CT, improves diagnostic accuracy and patient management. The ongoing advancement of SPECT hardware and software has resulted in the clinical application of novel approaches. For example, whole-body SPECT/CT (WB-SPECT/CT) studies cover multiple consecutive bed positions, similar to positron emission tomography-computed tomography (PET/CT). WB-SPECT/CT proves to be a helpful tool for evaluating bone metastases (BM), reducing equivocal findings, and enhancing user confidence, displaying effective performance in contrast to planar bone scintigraphy (PBS). Consequently, it is increasingly utilized and might substitute PBS, which leads to new questions and issues concerning the acquisition protocol, patient imaging time, and workflow process. Therefore, this review highlights various aspects of WB-SPECT/CT acquisition protocols that need to be considered to help understand WB-SPECT/CT workflow processes and optimize imaging protocols.
Collapse
Affiliation(s)
- Mansour M. Alqahtani
- Department of Radiology and Medical Imaging, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
- Discipline of Medical Imaging Science, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Riehakainen L, Mota-Silva E, Kusmic C, Panetta D, Petroni D, Fragnito D, Salvadori S, Menichetti L. Assessment of tissue response in vivo: PET-CT imaging of titanium and biodegradable magnesium implants. Acta Biomater 2024; 184:461-472. [PMID: 38871201 DOI: 10.1016/j.actbio.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
To study in vivo the bioactivity of biodegradable magnesium implants and other possible biomaterials, we are proposing a previously unexplored application of PET-CT imaging, using available tracers to follow soft tissue and bone remodelling and immune response in the presence of orthopaedic implants. Female Wistar rats received either implants (Ti6Al7Nb titanium or WE43 magnesium) or corresponding transcortical sham defects into the diaphyseal area of the femurs. Inflammatory response was followed with [18F]FDG and osteogenesis with [18F]NaF, over the period of 1.5 months after surgery. An additional pilot study with [68Ga]NODAGA-RGD tracer specific to αvβ3 integrin expression was performed to follow the angiogenesis for one month. [18F]FDG tracer uptake peaked on day 3 before declining in all groups, with Mg and Ti groups exhibiting overall higher uptake compared to sham. This suggests increased cellular activity and tissue response in the presence of Mg during the initial weeks, with Ti showing a subsequent increase in tracer uptake on day 45, indicating a foreign body reaction. [18F]NaF uptake demonstrated the superior osteogenic potential of Mg compared to Ti, with peak uptake on day 7 for all groups. [68Ga]NODAGA-RGD pilot study revealed differences in tracer uptake trends between groups, particularly the prolonged expression of αvβ3 integrin in the presence of implants. Based on the observed differences in the uptake trends of radiotracers depending on implant material, we suggest that PET-CT is a suitable modality for long-term in vivo assessment of orthopaedic biomaterial biocompatibility and underlying tissue reactions. STATEMENT OF SIGNIFICANCE: The study explores the novel use of positron emission tomography for the assessment of the influence that biomaterials have on the surrounding tissues. Previous related studies have mostly focused on material-related effects such as implant-associated infections or to follow the osseointegration in prosthetics, but the use of PET to evaluate the materials has not been reported before. The approach tests the feasibility of using repeated PET-CT imaging to follow the tissue response over time, potentially improving the methodology for adopting new biomaterials for clinical use.
Collapse
Affiliation(s)
- Leon Riehakainen
- The Sant'Anna School of Advanced Studies, Pisa, Italy; Institute of Clinical Physiology, National Research Council (IFC-CNR), Pisa, Italy.
| | - Eduarda Mota-Silva
- The Sant'Anna School of Advanced Studies, Pisa, Italy; Institute of Clinical Physiology, National Research Council (IFC-CNR), Pisa, Italy
| | - Claudia Kusmic
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Pisa, Italy
| | - Daniele Panetta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Pisa, Italy
| | - Debora Petroni
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Pisa, Italy
| | - Davide Fragnito
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Pisa, Italy
| | - Stefano Salvadori
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Pisa, Italy
| | - Luca Menichetti
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Pisa, Italy
| |
Collapse
|
7
|
Valero-Martínez C, Castillo-Morales V, Gómez-León N, Hernández-Pérez I, Vicente-Rabaneda EF, Uriarte M, Castañeda S. Application of Nuclear Medicine Techniques in Musculoskeletal Infection: Current Trends and Future Prospects. J Clin Med 2024; 13:1058. [PMID: 38398371 PMCID: PMC10889833 DOI: 10.3390/jcm13041058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Nuclear medicine has become an indispensable discipline in the diagnosis and management of musculoskeletal infections. Radionuclide tests serve as a valuable diagnostic tool for patients suspected of having osteomyelitis, spondylodiscitis, or prosthetic joint infections. The choice of the most suitable imaging modality depends on various factors, including the affected area, potential extra osseous involvement, or the impact of previous bone/joint conditions. This review provides an update on the use of conventional radionuclide imaging tests and recent advancements in fusion imaging scans for the differential diagnosis of musculoskeletal infections. Furthermore, it examines the role of radionuclide scans in monitoring treatment responses and explores current trends in their application. We anticipate that this update will be of significant interest to internists, rheumatologists, radiologists, orthopedic surgeons, rehabilitation physicians, and other specialists involved in musculoskeletal pathology.
Collapse
Affiliation(s)
- Cristina Valero-Martínez
- Rheumatology Service, Hospital Universitario de La Princesa, IIS-Princesa, 28006 Madrid, Spain; (C.V.-M.); (E.F.V.-R.); (M.U.)
| | - Valentina Castillo-Morales
- Nuclear Medicine Service, Hospital Universitario de La Princesa, IIS-Princesa, 28006 Madrid, Spain; (V.C.-M.); (I.H.-P.)
| | - Nieves Gómez-León
- Radiology Service, Hospital Universitario de La Princesa, IIS-Princesa, 28006 Madrid, Spain;
| | - Isabel Hernández-Pérez
- Nuclear Medicine Service, Hospital Universitario de La Princesa, IIS-Princesa, 28006 Madrid, Spain; (V.C.-M.); (I.H.-P.)
| | - Esther F. Vicente-Rabaneda
- Rheumatology Service, Hospital Universitario de La Princesa, IIS-Princesa, 28006 Madrid, Spain; (C.V.-M.); (E.F.V.-R.); (M.U.)
| | - Miren Uriarte
- Rheumatology Service, Hospital Universitario de La Princesa, IIS-Princesa, 28006 Madrid, Spain; (C.V.-M.); (E.F.V.-R.); (M.U.)
| | - Santos Castañeda
- Rheumatology Service, Hospital Universitario de La Princesa, IIS-Princesa, 28006 Madrid, Spain; (C.V.-M.); (E.F.V.-R.); (M.U.)
- Cathedra UAM-Roche, EPID-Future, Department of Medicine, Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| |
Collapse
|
8
|
Nappi C, Zampella E, Gaudieri V, Volpe F, Piscopo L, Vallone C, Pace L, Ponsiglione A, Maurea S, Nicolai E, Cuocolo A, Klain M. Tumor Burden of Iodine-Avid Bone Metastatic Thyroid Cancer Identified via 18F-Sodium Fluoride PET/CT Imaging. J Clin Med 2024; 13:569. [PMID: 38276075 PMCID: PMC10816004 DOI: 10.3390/jcm13020569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Patients with differentiated thyroid cancer (DTC) are referred to radioactive 131I (RAI) therapy and post-therapy 131I whole-body scintigraphy (WBS) to identify local and/or remote metastases. Positron emission tomography (PET)/computed tomography (CT) imaging with 18F-fluoro-D-glucose (FDG) or 18F-sodium fluoride (NaF) may also be used with these patients for the evaluation of bone metastases. We compared the role of 18F-NaF PET/CT and 18F-FDG-PET/CT in patients with DTC and documented bone metastases at post-therapy WBS. METHODS Ten consecutive DTC patients with iodine avid bone metastasis at post-therapy WBS referred to 18F-NaF PET/CT and 18F-FDG PET/CT were studied. The findings of the three imaging procedures were compared for abnormal detection rates and concordance. RESULTS At post-therapy 131I WBS, all patients had skeletal involvement with a total of 21 bone iodine avid lesions. At 18F-FDG PET/TC, 19 bone lesions demonstrated increased tracer uptake and CT pathological alterations, while 2 lesions did not show any pathological finding. At 18F-NaF PET/CT, the 19 bone lesions detected at 18F-FDG PET/TC also demonstrated abnormal tracer uptake, and the other 2 bone iodine avid foci did not show any pathological finding. CONCLUSIONS In patients with DTC, 18F-NaF PET/CT did not obtain more information on the metastatic skeletal involvement than post-therapy 131I WBS and 18F-FDG PET/CT.
Collapse
Affiliation(s)
- Carmela Nappi
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy (V.G.); (L.P.); (C.V.); (A.C.); (M.K.)
| | - Emilia Zampella
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy (V.G.); (L.P.); (C.V.); (A.C.); (M.K.)
| | - Valeria Gaudieri
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy (V.G.); (L.P.); (C.V.); (A.C.); (M.K.)
| | - Fabio Volpe
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy (V.G.); (L.P.); (C.V.); (A.C.); (M.K.)
| | - Leandra Piscopo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy (V.G.); (L.P.); (C.V.); (A.C.); (M.K.)
| | - Carlo Vallone
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy (V.G.); (L.P.); (C.V.); (A.C.); (M.K.)
| | - Leonardo Pace
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy;
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy (V.G.); (L.P.); (C.V.); (A.C.); (M.K.)
| | - Simone Maurea
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy (V.G.); (L.P.); (C.V.); (A.C.); (M.K.)
| | | | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy (V.G.); (L.P.); (C.V.); (A.C.); (M.K.)
| | - Michele Klain
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy (V.G.); (L.P.); (C.V.); (A.C.); (M.K.)
| |
Collapse
|
9
|
Mohseninia N, Zamani-Siahkali N, Harsini S, Divband G, Pirich C, Beheshti M. Bone Metastasis in Prostate Cancer: Bone Scan Versus PET Imaging. Semin Nucl Med 2024; 54:97-118. [PMID: 37596138 DOI: 10.1053/j.semnuclmed.2023.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 08/20/2023]
Abstract
Prostate cancer is the second most common cause of malignancy among men, with bone metastasis being a significant source of morbidity and mortality in advanced cases. Detecting and treating bone metastasis at an early stage is crucial to improve the quality of life and survival of prostate cancer patients. This objective strongly relies on imaging studies. While CT and MRI have their specific utilities, they also possess certain drawbacks. Bone scintigraphy, although cost-effective and widely available, presents high false-positive rates. The emergence of PET/CT and PET/MRI, with their ability to overcome the limitations of standard imaging methods, offers promising alternatives for the detection of bone metastasis. Various radiotracers targeting cell division activity or cancer-specific membrane proteins, as well as bone seeking agents, have been developed and tested. The use of positron-emitting isotopes such as fluorine-18 and gallium-68 for labeling allows for a reduced radiation dose and unaffected biological properties. Furthermore, the integration of artificial intelligence (AI) and radiomics techniques in medical imaging has shown significant advancements in reducing interobserver variability, improving accuracy, and saving time. This article provides an overview of the advantages and limitations of bone scan using SPECT and SPECT/CT and PET imaging methods with different radiopharmaceuticals and highlights recent developments in hybrid scanners, AI, and radiomics for the identification of prostate cancer bone metastasis using molecular imaging.
Collapse
Affiliation(s)
- Nasibeh Mohseninia
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Nazanin Zamani-Siahkali
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Department of Nuclear Medicine, Research center for Nuclear Medicine and Molecular Imaging, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Harsini
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | | | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
10
|
Zhang-Yin J, Panagiotidis E. Role of 18F-NaF PET/CT in bone metastases. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2023; 67:249-258. [PMID: 37750848 DOI: 10.23736/s1824-4785.23.03534-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The use of 18F sodium fluoride (18F-NaF) in positron emission tomography (PET/CT) is increasing. This resurgence of an old tracer has been driven by several factors, including its superior diagnostic performance over standard 99mTc-based bone scintigraphy (BS), availability of PET/CT imaging systems, a shortened examination time and an increase in the number of regional commercial PET radiotracer distribution. In this special article, we aimed to highlight the current place of the 18F-NaF PET/CT in the imaging of bone metastases (BM) in a variety of malignancies. A special focus is given to the following ones: breast cancer (BC), prostate cancer (PCa). Also, other malignancies such as bladder cancer, lung cancer, thyroid cancer, multiple myeloma, head and neck cancer, hepatocellular carcinoma have been addressed. At last, we summarize the advantages and limits of the 18F-NaF PET/CT compared to other imaging modalities in these settings.
Collapse
|
11
|
Moretti R, Meffe G, Annunziata S, Capotosti A. Innovations in imaging modalities: a comparative review of MRI, long-axial field-of-view PET, and full-ring CZT-SPECT in detecting bone metastases. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2023; 67:259-270. [PMID: 37870526 DOI: 10.23736/s1824-4785.23.03537-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
The accurate diagnosis of bone metastasis, a condition in which cancer cells have spread to the bone, is essential for optimal patient care and outcome. This review provides a detailed overview of the current medical imaging techniques used to detect and diagnose this critical condition focusing on three cardinal imaging modalities: positron emission tomography (PET), single photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). Each of these techniques has unique advantages: PET/CT combines functional imaging with anatomical imaging, allowing precise localization of metabolic abnormalities; the SPECT/CT offers a wider range of radiopharmaceuticals for visualizing specific receptors and metabolic pathways; MRI stands out for its unparalleled ability to produce high-resolution images of bone marrow structures. However, as this paper shows, each modality has its own limitations. The comprehensive analysis does not stop at the technical aspects, but ventures into the wider implications of these techniques in a clinical setting. By understanding the synergies and shortcomings of these modalities, healthcare professionals can make diagnostic and therapeutic decisions. Furthermore, at a time when medical technology is evolving at a breakneck pace, this review casts a speculative eye towards future advances in the field of bone metastasis imaging, bridging the current state with future possibilities. Such insights are essential for both clinicians and researchers navigating the complex landscape of bone metastasis diagnosis.
Collapse
Affiliation(s)
- Roberto Moretti
- Department of Diagnostic Imaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Guenda Meffe
- Department of Diagnostic Imaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Salvatore Annunziata
- Department of Diagnostic Imaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Amedeo Capotosti
- Department of Diagnostic Imaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy -
| |
Collapse
|
12
|
Mézquita AJV, Biavati F, Falk V, Alkadhi H, Hajhosseiny R, Maurovich-Horvat P, Manka R, Kozerke S, Stuber M, Derlin T, Channon KM, Išgum I, Coenen A, Foellmer B, Dey D, Volleberg RHJA, Meinel FG, Dweck MR, Piek JJ, van de Hoef T, Landmesser U, Guagliumi G, Giannopoulos AA, Botnar RM, Khamis R, Williams MC, Newby DE, Dewey M. Clinical quantitative coronary artery stenosis and coronary atherosclerosis imaging: a Consensus Statement from the Quantitative Cardiovascular Imaging Study Group. Nat Rev Cardiol 2023; 20:696-714. [PMID: 37277608 DOI: 10.1038/s41569-023-00880-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 06/07/2023]
Abstract
The detection and characterization of coronary artery stenosis and atherosclerosis using imaging tools are key for clinical decision-making in patients with known or suspected coronary artery disease. In this regard, imaging-based quantification can be improved by choosing the most appropriate imaging modality for diagnosis, treatment and procedural planning. In this Consensus Statement, we provide clinical consensus recommendations on the optimal use of different imaging techniques in various patient populations and describe the advances in imaging technology. Clinical consensus recommendations on the appropriateness of each imaging technique for direct coronary artery visualization were derived through a three-step, real-time Delphi process that took place before, during and after the Second International Quantitative Cardiovascular Imaging Meeting in September 2022. According to the Delphi survey answers, CT is the method of choice to rule out obstructive stenosis in patients with an intermediate pre-test probability of coronary artery disease and enables quantitative assessment of coronary plaque with respect to dimensions, composition, location and related risk of future cardiovascular events, whereas MRI facilitates the visualization of coronary plaque and can be used in experienced centres as a radiation-free, second-line option for non-invasive coronary angiography. PET has the greatest potential for quantifying inflammation in coronary plaque but SPECT currently has a limited role in clinical coronary artery stenosis and atherosclerosis imaging. Invasive coronary angiography is the reference standard for stenosis assessment but cannot characterize coronary plaques. Finally, intravascular ultrasonography and optical coherence tomography are the most important invasive imaging modalities for the identification of plaques at high risk of rupture. The recommendations made in this Consensus Statement will help clinicians to choose the most appropriate imaging modality on the basis of the specific clinical scenario, individual patient characteristics and the availability of each imaging modality.
Collapse
Affiliation(s)
| | - Federico Biavati
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research) Partner Site, Berlin, Germany
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Hatem Alkadhi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reza Hajhosseiny
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Pál Maurovich-Horvat
- Department of Radiology, Medical Imaging Center, Semmelweis University, Budapest, Hungary
| | - Robert Manka
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, ETH Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Stuber
- Department of Radiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Keith M Channon
- Radcliffe Department of Medicine, University of Oxford and Oxford University Hospitals, Oxford, UK
| | - Ivana Išgum
- Department of Biomedical Engineering and Physics, Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Adriaan Coenen
- Department of Radiology, Erasmus University, Rotterdam, Netherlands
| | - Bernhard Foellmer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Damini Dey
- Departments of Biomedical Sciences and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rick H J A Volleberg
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Felix G Meinel
- Department of Radiology, University Medical Centre Rostock, Rostock, Germany
| | - Marc R Dweck
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Jan J Piek
- Department of Clinical and Experimental Cardiology and Cardiovascular Sciences, Amsterdam UMC, Heart Center, University of Amsterdam, Amsterdam, Netherlands
| | - Tim van de Hoef
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ulf Landmesser
- DZHK (German Centre for Cardiovascular Research) Partner Site, Berlin, Germany
- Department of Cardiology, Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Giulio Guagliumi
- Division of Cardiology, IRCCS Galeazzi Sant'Ambrogio Hospital, Milan, Italy
| | - Andreas A Giannopoulos
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| | - Ramzi Khamis
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - David E Newby
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Marc Dewey
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research) Partner Site, Berlin, Germany.
- Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Berlin Institute of Health, Campus Charité Mitte, Berlin, Germany.
| |
Collapse
|
13
|
Vaz SC, Oliveira C, Teixeira R, Arias-Bouda LMP, Cardoso MJ, de Geus-Oei LF. The current role of nuclear medicine in breast cancer. Br J Radiol 2023; 96:20221153. [PMID: 37097285 PMCID: PMC10461286 DOI: 10.1259/bjr.20221153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 04/26/2023] Open
Abstract
Breast cancer is the most common cancer in females worldwide. Nuclear medicine plays an important role in patient management, not only in initial staging, but also during follow-up. Radiopharmaceuticals to study breast cancer have been used for over 50 years, and several of these are still used in clinical practice, according to the most recent guideline recommendations.In this critical review, an overview of nuclear medicine procedures used during the last decades is presented. Current clinical indications of each of the conventional nuclear medicine and PET/CT examinations are the focus of this review, and are objectively provided. Radionuclide therapies are also referred, mainly summarising the methods to palliate metastatic bone pain. Finally, recent developments and future perspectives in the field of nuclear medicine are discussed. In this context, the promising potential of new radiopharmaceuticals not only for diagnosis, but also for therapy, and the use of quantitative imaging features as potential biomarkers, are addressed.Despite the long way nuclear medicine has gone through, it looks like it will continue to benefit clinical practice, paving the way to improve healthcare provided to patients with breast cancer.
Collapse
Affiliation(s)
| | - Carla Oliveira
- Nuclear Medicine-Radiopharmacology, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - Ricardo Teixeira
- Nuclear Medicine-Radiopharmacology, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | | | | | | |
Collapse
|
14
|
Savisto N, Grönroos TJ, Oikonen V, Rajander J, Löyttyniemi E, Bergman J, Forsback S, Solin O, Haaparanta-Solin M. [ 18F]Fluoride uptake in various bone types and soft tissues in rat. EJNMMI Res 2023; 13:21. [PMID: 36913049 PMCID: PMC10011276 DOI: 10.1186/s13550-023-00969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/19/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND In the development of new 18F-labelled tracers, it is important to assess the amount of released [18F]fluoride taken up in the bones of experimental animals because all 18F-labelled PET-tracers are prone, to lesser or higher degree, to undergo defluorination, with subsequent release of [18F]fluoride during scanning. However, the pharmacokinetics of [18F]fluoride in bones and other organs of healthy rats have not been well documented in a comprehensive manner. We aimed to study pharmacokinetics of [18F]NaF in rats in order to increase our understanding of the biodistribution of [18F]fluoride originating from defluorination of 18F-labelled tracers. We studied [18F]fluoride uptake in Sprague Dawley rat bones, including the epiphyseal parts of the tibia and radius, the mandible, ilium, lumbar vertebrae, costochondral joints, tibia, radius, and ribs, with 60-min in vivo PET/CT imaging. Kinetic parameters, K1, Ki, Ki/K1, and k3 were calculated with a three-compartment model. In addition, separate groups of male and female rats were studied with ex vivo bone and soft tissue harvesting and gamma counting over a 6-h period. RESULTS [18F]fluoride perfusion and uptake varied among the different bones. [18F]fluoride uptake was higher in trabecular bones, due to high perfusion and osteoblastic activity, compared to cortical bones. In soft tissues, the organ-to-blood uptake ratios increased over time in the eyes, lungs, brain, testes, and ovaries during the 6 h study period. CONCLUSION Understanding the pharmacokinetics of [18F]fluoride in various bones and soft tissues is highly useful for assessing 18F-labelled radiotracers that release [18F]fluoride.
Collapse
Affiliation(s)
- Nina Savisto
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, 20520, Turku, Finland
| | - Tove J Grönroos
- PET Preclinical Imaging, Turku PET Centre, University of Turku, 20520, Turku, Finland.,MediCity Research Laboratories, University of Turku, 20520, Turku, Finland.,Department of Oncology and Radiotherapy, Turku University Hospital, 20520, Turku, Finland
| | - Vesa Oikonen
- Turku PET Centre, University of Turku, 20520, Turku, Finland
| | - Johan Rajander
- Accelerator Laboratory, Åbo Akademi University, 20520, Turku, Finland
| | | | - Jörgen Bergman
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, 20520, Turku, Finland
| | - Sarita Forsback
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, 20520, Turku, Finland.,Department of Chemistry, University of Turku, 20500, Turku, Finland
| | - Olof Solin
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, 20520, Turku, Finland.,Accelerator Laboratory, Åbo Akademi University, 20520, Turku, Finland.,Department of Chemistry, University of Turku, 20500, Turku, Finland
| | - Merja Haaparanta-Solin
- PET Preclinical Imaging, Turku PET Centre, University of Turku, 20520, Turku, Finland. .,MediCity Research Laboratories, University of Turku, 20520, Turku, Finland. .,PET Preclinical Laboratory/MediCity, University of Turku, Tykistökatu 6 A, 20520, Turku, Finland.
| |
Collapse
|
15
|
Review of the role of MRI and 18 F-sodium fluoride PET/computed tomography in the characterisation of spinal bone metastases in a cohort of patients with breast cancer. Nucl Med Commun 2023; 44:219-225. [PMID: 36592000 DOI: 10.1097/mnm.0000000000001659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE The purpose of the study was to compare the diagnostic accuracy and relative usefulness of MRI and 18 F-NaF (sodium fluoride) PET/computed tomography (CT) for detection of spinal bone metastases in a cohort of patients with high-risk breast cancer (BrCa). METHODS A retrospective study was conducted of patient and lesion-based analyses on 66 consecutive patients (median age, 62.5 years; age range, 33-91 years) who underwent Spinal MRI as well as 18 F-NaF PET-CT for restaging of newly diagnosed recurrent BrCa with no previous bone metastases. Both scans were performed within 20 days of each other. Review of prior images, clinical decisions, multi-disciplinary team discussions and decisions as well as follow-up information including scans and definitive tests was performed at least 12 months after the initial scans. RESULTS Of the 66 patients reviewed, 26 patients had documented spinal bone metastases on one or both modalities, while 40 patients were considered bone disease free on both modalities and this was confirmed on follow-up. On lesion-based analysis, the findings of 18 F-NaF PET-CT and spinal MRI were concordant in 51 patients (77.3%). In the remaining patients, 18 F-NaF PET/CT detected more lesions in 4 patients (7.6%) and MRI detected more lesions in 10 patients (15.1%). Interestingly, there was a very high, 97 % concordance (64 patients) between spinal MRI and 18 F-NaF PET-CT when staging of spinal bone metastasis was taken into consideration. In one patient MRI identified two spinal bone metastases which were not seen on 18 F-NaF PET/CT; and, in one patient 18 F-NaF PET/CT showed few spinal bone metastases when no lesion was seen on MRI. CONCLUSIONS Our study showed a high level of concordance between 18 F NaF PET-CT and spinal MRI within the setting of detection of bone lesions in the spine in a cohort of patients with high-risk BrCa. In our opinion, this high level of concordance negates the need to perform both tests although each test may be indicated for slightly different reasons. Further longitudinal studies across a longer duration and more centres may provide more definitive answers.
Collapse
|
16
|
Review of the role of bone-SPECT/CT in tarsal coalitions. Nucl Med Commun 2023; 44:115-130. [PMID: 36630216 DOI: 10.1097/mnm.0000000000001643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tarsal coalition (TC) is a congenital abnormal connection (fibrous, cartilaginous, or osseous) between two or more bones in the hind and midfoot, mostly consisting of calcaneonavicular or talocalcaneal coalition, and is often asymptomatic. However, TCs may result in foot motion limitation and pain with or without flatfoot (pes planus), arising in adolescents and young adults. Appropriate imaging is needed to pinpoint foot pain in the (suspected) TC, starting with plain radiographs. Still, normal radiographs do not exclude TCs. Computed tomography (CT) and MRI are frequently used advanced imaging techniques. CT alone has known limited sensitivity in cartilaginous and fibrous TCs and correlation between CT abnormalities and pain may be challenging, as solely anatomical changes in TCs are often asymptomatic. MRI can depict soft tissue abnormalities in TC with high accuracy. Nonetheless, after the implantation of metallic osteosynthesis material, MRI is often limited due to image distortion, signal loss, and misregistration. Bone scintigraphy with [99mTc]Tc-diphosphonate single photon emission computed tomography/CT (bone-SPECT/CT) is a known sensitive tool to detect osteoblastic bone pathology. However, the literature concerning bone-SPECT/CT in TC patients is limited. This article reviews bone-SPECT/CT patterns in TCs, how it complements other imaging techniques and their relation to clinical complaints. Bone-SPECT/CT excels in accurate bone pathology characterization in TC, confidently excluding synchronous lesions elsewhere, and offering optimal insight into osseous structures and 3D-localization of bone metabolism for surgery planning. Furthermore, even with implanted osteosynthesis material, bone-SPECT/CT can pinpoint the culprit pain generator, where MRI is either contra-indicated or considerably hampered.
Collapse
|
17
|
NaF-PET Imaging of Atherosclerosis Burden. J Imaging 2023; 9:jimaging9020031. [PMID: 36826950 PMCID: PMC9966512 DOI: 10.3390/jimaging9020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The method of 18F-sodium fluoride (NaF) positron emission tomography/computed tomography (PET/CT) of atherosclerosis was introduced 12 years ago. This approach is particularly interesting because it demonstrates microcalcification as an incipient sign of atherosclerosis before the development of arterial wall macrocalcification detectable by CT. However, this method has not yet found its place in the clinical routine. The more exact association between NaF uptake and future arterial calcification is not fully understood, and it remains unclear to what extent NaF-PET may replace or significantly improve clinical cardiovascular risk scoring. The first 10 years of publications in the field were characterized by heterogeneity at multiple levels, and it is not clear how the method may contribute to triage and management of patients with atherosclerosis, including monitoring effects of anti-atherosclerosis intervention. The present review summarizes findings from the recent 2¾ years including the ability of NaF-PET imaging to assess disease progress and evaluate response to treatment. Despite valuable new information, pertinent questions remain unanswered, not least due to a pronounced lack of standardization within the field and of well-designed long-term studies illuminating the natural history of atherosclerosis and effects of intervention.
Collapse
|
18
|
Bénard F, Harsini S, Wilson D, Zukotynski K, Abikhzer G, Turcotte E, Cossette M, Metser U, Romsa J, Martin M, Mar C, Saad F, Soucy JP, Eigl BJ, Black P, Krauze A, Burrell S, Nichol A, Tardif JC. Intra-individual comparison of 18F-sodium fluoride PET-CT and 99mTc bone scintigraphy with SPECT in patients with prostate cancer or breast cancer at high risk for skeletal metastases (MITNEC-A1): a multicentre, phase 3 trial. Lancet Oncol 2022; 23:1499-1507. [PMID: 36343655 DOI: 10.1016/s1470-2045(22)00642-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Detection of skeletal metastases in patients with prostate cancer or breast cancer remains a major clinical challenge. We aimed to compare the diagnostic performance of 99mTc-methylene diphosphonate (99mTc-MDP) single-photon emission CT (SPECT) and 18F-sodium fluoride (18F-NaF) PET-CT for the detection of osseous metastases in patients with high-risk prostate or breast cancer. METHODS MITNEC-A1 was a prospective, multicentre, single-cohort, phase 3 trial conducted in ten hospitals across Canada. Patients aged 18 years or older with breast or prostate cancer with a WHO performance status of 0-2 and with high risk or clinical suspicion for bone metastasis, but without previously documented bone involvement, were eligible. 18F-NaF PET-CT and 99mTc-MDP SPECT were done within 14 days of each other for each participant. Two independent reviewers interpreted each modality without knowledge of other imaging findings. The primary endpoint was the overall accuracy of 99mTc-MDP SPECT and 18F-NaF PET-CT scans for the detection of bone metastases in the per-protocol population. A combination of histopathological, clinical, and imaging follow-up for up to 24 months was used as the reference standard to assess the imaging results. Safety was assessed in all enrolled participants. This study is registered with ClinicalTrials.gov, NCT01930812, and is complete. FINDINGS Between July 11, 2014, and March 3, 2017, 290 patients were screened, 288 of whom were enrolled (64 participants with breast cancer and 224 with prostate cancer). 261 participants underwent both 18F-NaF PET-CT and 99mTc-MDP SPECT and completed the required follow-up for statistical analysis. Median follow-up was 735 days (IQR 727-750). Based on the reference methods used, 109 (42%) of 261 patients had bone metastases. In the patient-based analysis, 18F-NaF PET-CT was more accurate than 99mTc-MDP SPECT (84·3% [95% CI 79·9-88·7] vs 77·4% [72·3-82·5], difference 6·9% [95% CI 1·3-12·5]; p=0·016). No adverse events were reported for the 288 patients recruited. INTERPRETATION 18F-NaF has the potential to displace 99mTc-MDP as the bone imaging radiopharmaceutical of choice in patients with high-risk prostate or breast cancer. FUNDING Canadian Institutes of Health Research.
Collapse
Affiliation(s)
- François Bénard
- BC Cancer Research Institute, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada.
| | - Sara Harsini
- BC Cancer Research Institute, Vancouver, BC, Canada
| | - Don Wilson
- BC Cancer Research Institute, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Eric Turcotte
- Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Mariève Cossette
- Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - Ur Metser
- University Health Network, Toronto, ON, Canada
| | - Jonathan Romsa
- Division of Nuclear Medicine, London Health Sciences Centre, London, ON, Canada; St Joseph's Health Care, London, ON, Canada; Western University, London, ON, Canada
| | - Montgomery Martin
- BC Cancer Research Institute, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Colin Mar
- BC Cancer Research Institute, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Fred Saad
- Division of Urology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Jean-Paul Soucy
- Department of Radiology, McGill University, Montreal, QC, Canada
| | | | - Peter Black
- Department of Urological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Andra Krauze
- BC Cancer Research Institute, Vancouver, BC, Canada
| | - Steven Burrell
- Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada
| | - Alan Nichol
- BC Cancer Research Institute, Vancouver, BC, Canada
| | | |
Collapse
|
19
|
Paricalcitol in the treatment of MHD with secondary hyperparathyroidism and bone pain. Int Urol Nephrol 2022; 55:1385-1388. [PMID: 36445655 DOI: 10.1007/s11255-022-03421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022]
|
20
|
Raynor WY, Borja AJ, Zhang V, Kothekar E, Lau HC, Ng SJ, Seraj SM, Rojulpote C, Taghvaei R, Jin KY, Werner TJ, Høilund-Carlsen PF, Alavi A, Revheim ME. Assessing Coronary Artery and Aortic Calcification in Patients with Prostate Cancer Using 18F-Sodium Fluoride PET/Computed Tomography. PET Clin 2022; 17:653-659. [DOI: 10.1016/j.cpet.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
The Efficacy of Trabecular Titanium Cages to Induce Reparative Bone Activity after Lumbar Arthrodesis Studied through the 18f-Naf PET/CT Scan: Observational Clinical In-Vivo Study. Diagnostics (Basel) 2022; 12:diagnostics12102296. [PMID: 36291986 PMCID: PMC9600853 DOI: 10.3390/diagnostics12102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Titanium trabecular cages (TTCs) are emerging implants designed to achieve immediate and long-term spinal fixation with early osseointegration. However, a clear radiological and clinical demonstration of their efficacy has not yet been obtained. The purpose of this study was to evaluate the reactive bone activity of adjacent plates after insertion of custom-made titanium trabecular cages for the lumbar interbody with positron emission tomography (PET)/computed tomography (CT) 18F sodium fluoride (18F-NaF). Methods: This was an observational clinical study that included patients who underwent surgery for degenerative disease with lumbar interbody fusion performed with custom-made TTCs. Data related to the metabolic-reparative reaction following the surgery and its relationship with clinical follow-up from PET/CT performed at different weeks were evaluated. PET/CTs provided reliable data, such as areas showing abnormally high increases in uptake using a volumetric region of interest (VOI) comprising the upper (UP) and lower (DOWN) limits of the cage. Results: A total of 15 patients was selected for PET examination. Timing of PET/CTs ranged from one week to a maximum of 100 weeks after surgery. The analysis showed a negative correlation between the variables SUVmaxDOWN/time (r = −0.48, p = 0.04), ratio-DOWN/time (r = −0.53, p = 0.02), and ratio-MEAN/time (r = −0.5, p = 0.03). Shapiro−Wilk normality tests showed significant results for the variables ratio-DOWN (p = 0.002), ratio-UP (0.013), and ratio-MEAN (0.002). Conclusions: 18F-NaF PET/CT has proven to be a reliable tool for investigating the metabolic-reparative reaction following implantation of TTCs, demonstrating radiologically how this type of cage can induce reparative osteoblastic activity at the level of the vertebral endplate surface. This study further confirms how electron-beam melting (EBM)-molded titanium trabecular cages represent a promising material for reducing hardware complication rates and promoting fusion.
Collapse
|
22
|
Wang D, Li H, Guo C, Huang S, Guo X, Xiao J. The value of 18F-NaF PET/CT in the diagnosis of bone metastases in patients with nasopharyngeal carcinoma using visual and quantitative analyses. Front Bioeng Biotechnol 2022; 10:949480. [PMID: 36091460 PMCID: PMC9449352 DOI: 10.3389/fbioe.2022.949480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
To assess the diagnostic value of 18F-NaF PET/CT in diagnosing bone metastases in patients with nasopharyngeal carcinoma (NPC) using visual and quantitative analyses. 164 patients with NPC who underwent 18F-NaF PET/CT between 2017 and 2021 were included. The sensitivity, specificity, and accuracy were calculated. All bone lesions were divided into metastatic bone lesion group and benign lesion group; the benign lesion group was further subdivided into benign lesion without osteophyte and fracture group (CT images showing no osteophyte, no fracture), and benign lesion with osteophyte and fracture group (CT images showing typical osteophytes and fractures), the differences in maximum standardized uptake value (SUVmax) were compared between every two groups, and the diagnostic cut-off values were derived from receiver operating characteristic curves (ROC). Quantitative data were expressed as mean ± SD, multiple continuous variables were compared using one-way analysis of variance (ANOVA), and multiple comparisons among more than two groups were made using the Bonferroni method. The sensitivity, specificity, and overall accuracy of 18F-NaF PET/CT for the diagnosis of bone metastases in NPC were 97.1%, 94.6%, and 95.1% based on the patient level and 99.5%, 91.5%, and 96.4% based on the lesion level, respectively. The SUVmax was significantly different between the metastatic bone lesion group and the benign lesion without osteophyte and fracture group (p < 0.05); the area under the curve was 0.865, the threshold was 12.5, the sensitivity was 0.912, and the specificity was 0.656. Visual analysis of 18F-NaF PET/CT has high sensitivity and specificity for diagnosing bone metastases in NPC. After excluding osteophytes and fracture lesions based on CT findings, using SUVmax ≥12.5 as the threshold can be an important reference for the differential diagnosis of bone metastases and benign bone lesions in patients with NPC.
Collapse
Affiliation(s)
- Dong Wang
- Department of Nuclear Medicine (PET-CT center), Affiliated Hospital of Guangdong Medical University, ZhangJiang, China
| | - HaiWen Li
- Cancer Center, Affiliated Hospital of Guangdong Medical University, ZhangJiang, China
| | - ChengMao Guo
- Department of Nuclear Medicine (PET-CT center), Affiliated Hospital of Guangdong Medical University, ZhangJiang, China
| | - Shisang Huang
- Department of Nuclear Medicine (PET-CT center), Affiliated Hospital of Guangdong Medical University, ZhangJiang, China
| | - XuFeng Guo
- Department of Nuclear Medicine (PET-CT center), Affiliated Hospital of Guangdong Medical University, ZhangJiang, China
| | - JingXing Xiao
- Department of Nuclear Medicine (PET-CT center), Affiliated Hospital of Guangdong Medical University, ZhangJiang, China
- *Correspondence: JingXing Xiao,
| |
Collapse
|
23
|
Usmani S, Ahmed N, Gnanasegaran G, Al Kandari F, Marafi F, Bani-Mustafa A, Musbah A, Jassem Almashmoum M, Van den Wyngaert T. Prospective study of Na[ 18F]F PET/CT for cancer staging in morbidly obese patients compared with [ 99mTc]Tc-MDP whole-body planar, SPECT and SPECT/CT. Acta Oncol 2022; 61:1230-1239. [PMID: 35862646 DOI: 10.1080/0284186x.2022.2101899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE This prospective study aims to assess the diagnostic test characteristics of Na[18F]F PET/CT for the skeletal staging of cancer in morbidly obese patients compared with 99mTc-methylene diphosphonate (MDP), whole-body planar (WBS), SPECT, and SPECT/CT acquisitions. MATERIAL AND METHODS One hundred seventeen obese patients (BMI 46.5 ± 6.1 kg/m2 and mean age, 59.0 years; range 32-89 years) with BMI > 40 kg/m2 were prospectively enrolled and underwent [99mTc]Tc-MDP WBS, SPECT, SPECT/CT, and Na[18F]F PET/CT within two weeks for the osseous staging of a malignancy. Images were assessed qualitatively using a 3-point scale. Patient and lesion-based diagnostic test characteristics were estimated using an optimistic and pessimistic dichotomization method. RESULTS Bone metastases were confirmed in 44 patients. Patient-based optimistic diagnostic test characteristics were (sensitivity, specificity, overall accuracy): Na[18F]F PET/CT (95.5%, 95.9%, 95.7%), [99mTc]Tc-MDP WBS (52.3%, 71.2%, 64.1%), SPECT (61.4%, 80.8%, 73.5%) and SPECT/CT (65.9%, 91.8%, 82.1%). Lesion-based optimistic diagnostic test characteristics were: Na[18F]F PET/CT (97.7%, 97.9%, 97.7%), [99mTc]Tc-MDP WBS (39%, 67%, 48.9%), SPECT (52.9%, 93.6%, 67.3%) and SPECT/CT (65.9%, 91.8%, 82.1%). There was no significant difference in the specificity of Na[18F]F and SPECT/CT. All other pairwise comparisons were significant (p<.001). ROC curve analysis showed a high overall accuracy of Na[18F]F with significantly higher AUCs for Na[18F]F PET/CT compared to [99mTc]Tc-MDP WBS, SPECT, and SPECT/CT on both patient and lesion-based analysis (p<.001). Moreover, Na[18F]F PET/CT changed patient management in 38% of patients. CONCLUSIONS Na[18F]F PET/CT may be the preferred imaging modality for skeletal staging in morbidly obese patients. The technique provides excellent diagnostic test characteristics superior to [99mTc]Tc-MDP bone scan (including SPECT/CT), impacts patient management, has an acceptable radiation exposure profile, and is well-tolerated. Further cost-effectiveness evaluations are warranted.
Collapse
Affiliation(s)
- Sharjeel Usmani
- Department of Nuclear Medicine, Kuwait Cancer Control Centre, Shuwaikh, Kuwait.,Jaber Al-Ahmad Molecular Imaging Center, Kuwait, Kuwait.,Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Najeeb Ahmed
- Jack Brignall PET/CT Centre, Castle Hill Hosptial, Cottingham, UK
| | | | - Fareeda Al Kandari
- Department of Nuclear Medicine, Kuwait Cancer Control Centre, Shuwaikh, Kuwait
| | - Fahad Marafi
- Jaber Al-Ahmad Molecular Imaging Center, Kuwait, Kuwait
| | - Ahmed Bani-Mustafa
- Department of Mathematics and Physics, Australian University of Kuwait, Kuwait
| | - Ahmed Musbah
- Department of Nuclear Medicine, Kuwait Cancer Control Centre, Shuwaikh, Kuwait
| | | | - Tim Van den Wyngaert
- Antwerp University Hospital, Edegem, Belgium.,Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
24
|
Zacho HD, Ravn S, Ejlersen JA, Fledelius J, Dolliner P, Nygaard ST, Holdgaard PC, Lauridsen JF, Haarmark C, Hendel HW, Petersen LJ. Observer experience and accuracy of 18F-sodium-fluoride PET/CT for the diagnosis of bone metastases in prostate cancer. Nucl Med Commun 2022; 43:680-686. [PMID: 35362691 DOI: 10.1097/mnm.0000000000001550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate the diagnostic accuracy of observers with different levels of experience in reading 18F-sodium fluoride (NaF) PET/CT images for the diagnosis of bone metastases in prostate cancer (PCa) patients. METHODS Nine observers with varying NaF PET/CT experience, ranging from no experience to 2000+ examinations, evaluated 211 NaF PET/CT scans from PCa patients participating in one of four prospective trials. Each observer evaluated each NaF PET/CT on a patient level using a trichotomous scale: M0 (no bone metastases), Me (equivocal for bone metastases) and M1 (bone metastases). Subsequently, a dichotomous evaluation was conducted (M0/M1). The final diagnosis was retrieved from the original study. For each observer, ROC curves and the diagnostic accuracy were calculated based on dichotomous and trichotomous scales; in the latter case, Me was first regarded as M1 and then M0. RESULTS Across all experience levels, the sensitivity, specificity and accuracy using the dichotomous scale ranged from 0.81 to 0.89, 0.93 to 1.00 and 0.91 to 0.94, respectively. Employing the trichotomous scale, novice and experienced observers chose Me in up to 20 vs. 10% of cases, respectively. Considering Me as M0, the sensitivity, specificity and accuracy ranged from 0.78 to 0.89, 0.95 to 1.00 and 0.91 to 0.95, respectively. Considering Me as M1, the sensitivity, specificity and accuracy ranged from 0.86 to 0.92, 0.71 to 0.96 and 0.77 to 0.94, respectively. CONCLUSION Novice observers used the equivocal option more frequently than observers with NaF PET/CT experience. However, on the dichotomous scale, all observers exhibited high and satisfactory accuracy for the detection of bone metastases, making NaF PET/CT an effective imaging modality even in unexperienced hands.
Collapse
Affiliation(s)
- Helle D Zacho
- Department of Nuclear Medicine, Clinical Cancer Research Center, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University
| | - Søren Ravn
- Department of Nuclear Medicine, Clinical Cancer Research Center, Aalborg University Hospital
| | - June A Ejlersen
- Department of Nuclear Medicine, Regional Hospital West Jutland
- Department of Clinical Physiology, Region Hospital Viborg
| | - Joan Fledelius
- Department of Nuclear Medicine, Regional Hospital West Jutland
- Department of Nuclear Medicine, Aarhus University Hospital
| | - Peter Dolliner
- Department of Nuclear Medicine, Lillebaelt Hospital - University Hospital of Southern Denmark, Vejle
| | - Sofie T Nygaard
- Department of Nuclear Medicine, Lillebaelt Hospital - University Hospital of Southern Denmark, Vejle
| | - Paw C Holdgaard
- Department of Nuclear Medicine, Lillebaelt Hospital - University Hospital of Southern Denmark, Vejle
| | - Jeppe F Lauridsen
- Department of Nuclear Medicine, Lillebaelt Hospital - University Hospital of Southern Denmark, Vejle
| | - Christian Haarmark
- Department of Nuclear Medicine, Herlev and Gentofte Hospital
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Helle W Hendel
- Department of Nuclear Medicine, Herlev and Gentofte Hospital
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lars J Petersen
- Department of Nuclear Medicine, Clinical Cancer Research Center, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University
| |
Collapse
|
25
|
van den Wyngaert T, de Schepper S, Elvas F, Seyedinia SS, Beheshti M. Positron emission tomography-magnetic resonance imaging as a research tool in musculoskeletal conditions. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2022; 66:15-30. [PMID: 35005878 DOI: 10.23736/s1824-4785.22.03434-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Compared to positron emission tomography/computed tomography (PET/CT), the uptake of PET- magnetic resonance imaging (MRI) has been slow, even more so in clinical practice compared to the (pre-)clinical research setting. However, for applications in musculoskeletal (MSK) research, the combination of PET and MRI into a single modality offers attractive advantages over other imaging modalities. Most importantly, MRI has exquisite soft-tissue detail without the use of contrast agents or ionizing radiation, superior bone marrow visualization, and an extensive spectrum of distinct multiparametric assessment methods. In the preclinical setting, the introduction of PET inserts for small-animal MRI machines has proven to be a successful concept in bringing this technology to the lab. Initial hurdles in quantification have been mainly overcome in this setting. In parallel, a promising range of radiochemistry techniques has been developed to create multimodality probes that offer the possibility of simultaneously querying different metabolic pathways. Not only will these applications help in elucidating disease mechanisms, but they can also facilitate drug development. The clinical applications of PET/MRI in MSK are still limited, but encouraging initial results with novel radiotracers suggest a high potential for use in various MSK conditions, including osteoarthritis, rheumatoid arthritis, ankylosing spondylitis and inflammation and infection. Further innovations will be required to bring down the cost of PET/MRI to justify a broader clinical implementation, and remaining issues with quality control and standardization also need to be addressed. Nevertheless, PET/MRI is a powerful platform for MSK research with distinct qualities that are not offered by other techniques.
Collapse
Affiliation(s)
- Tim van den Wyngaert
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium -
- Faculty of Medicine and Health Sciences (MICA), University of Antwerp, Wilrijk, Belgium -
- Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium -
| | - Stijn de Schepper
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
- Faculty of Medicine and Health Sciences (MICA), University of Antwerp, Wilrijk, Belgium
| | - Filipe Elvas
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
- Faculty of Medicine and Health Sciences (MICA), University of Antwerp, Wilrijk, Belgium
| | - Seyedeh S Seyedinia
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine and Endocrinology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine and Endocrinology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
26
|
Therapy-induced bone changes in oncology imaging with 18F-sodium fluoride (NaF) PET-CT. Ann Nucl Med 2022; 36:329-339. [PMID: 35218508 DOI: 10.1007/s12149-022-01730-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/13/2022] [Indexed: 11/01/2022]
Abstract
18F-Sodium fluoride (18F-NaF) is a PET tracer that is mostly used in the evaluation of bone metastasis in oncology cases. Recently, 18F-NaF PET/CT is gaining wide popularity owing to its higher sensitivity over the other conventional bone tracer with higher and rapid single-pass extraction, negligible plasma protein binding, rapid blood, and renal clearance. In the era of constant evolution of cancer therapy regimens, considerable bone health impact is seen in the form of avascular necrosis, insufficiency fractures, among others. A significant number of these therapy-induced changes show high bone turnover and thereby 18F-NaF accumulation, mimicking metastatic lesions. This article summarizes and illustrates the pattern and morphological features of 18F-NaF PET/CT findings in these changes in the context of clinical and therapeutic history.
Collapse
|
27
|
Menendez MI, Moore RR, Abdel-Rasoul M, Wright CL, Fernandez S, Jackson RD, Knopp MV. [ 18F] Sodium Fluoride Dose Reduction Enabled by Digital Photon Counting PET/CT for Evaluation of Osteoblastic Activity. Front Med (Lausanne) 2022; 8:725118. [PMID: 35096851 PMCID: PMC8789749 DOI: 10.3389/fmed.2021.725118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022] Open
Abstract
The aim of the study was to assess the quality and reproducibility of reducing the injected [18F] sodium fluoride ([18F]NaF) dose while maintaining diagnostic imaging quality in bone imaging in a preclinical skeletal model using digital photon counting PET (dPET) detector technology. Beagles (n = 9) were administered three different [18F]NaF doses: 111 MBq (n = 5), 20 MBq (n = 5), and 1.9 MBq (n = 9). Imaging started ≃45 min post-injection for ≃30 min total acquisition time. Images were reconstructed using Time-of-Flight, ultra-high definition (voxel size of 1 × 1 × 1 mm3), with 3 iterations and 3 subsets. Point spread function was modeled and Gaussian filtering was applied. Skeleton qualitative and quantitative molecular image assessment was performed. The overall diagnostic quality of all images scored excellent (61%) and acceptable (39%) by all the reviewers. [18F]NaF SUVmean showed no statistically significant differences among the three doses in any of the region of interest assessed. This study demonstrated that a 60-fold [18F]NaF dose reduction was not significantly different from the highest dose, and it had not significant effect on overall image quality and quantitative accuracy. In the future, ultra-low dose [18F]NaF dPET/CT imaging may significantly decrease PET radiation exposure to preclinical subjects and personnel.
Collapse
Affiliation(s)
- Maria I Menendez
- Department of Radiology, The Wright Center of Innovation in Biomedical Imaging, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Richard R Moore
- Department of Radiology, The Wright Center of Innovation in Biomedical Imaging, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mahmoud Abdel-Rasoul
- Center for Biostatistics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Chadwick L Wright
- Department of Radiology, The Wright Center of Innovation in Biomedical Imaging, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Soledad Fernandez
- Center for Biostatistics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Rebecca D Jackson
- Department of Internal Medicine, Endocrinology, Diabetes and Metabolism, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Michael V Knopp
- Department of Radiology, The Wright Center of Innovation in Biomedical Imaging, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
28
|
Patient preparation for PET studies. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Bebbington NA, Zacho HD, Holdgaard PC. Lesion detection in 18F-sodium fluoride bone imaging: a comparison of attenuation-corrected versus nonattenuation-corrected PET reconstructions from modern PET-CT systems. Nucl Med Commun 2022; 43:78-85. [PMID: 34887371 DOI: 10.1097/mnm.0000000000001487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES An earlier study demonstrated comparable lesion detection between attenuation-corrected (AC) and nonattenuation-corrected (NAC) 18F-sodium fluoride (NaF) PET images, which is relevant for computed tomography (CT) radiation dose-saving. However, this finding may not be applicable to newer systems. The aim was to compare lesion detection between AC and NAC NaF PET images on modern PET-CT systems. METHODS One expert and one nonexpert observer retrospectively surveyed NaF PET data in 25 breast cancer patients. At both lesion and patient level, each observer classified bone abnormalities as malignant, equivocal or benign, from NAC and AC PET images in the absence of CT. Expert interpretation of NaF PET-CT with the review of all diagnostic imaging/pathology reports for at least the subsequent 12 months provided reference standard metastases status at the patient level. Two-tailed Wilcoxon signed-rank tests measured statistically significant differences in total lesion detection between AC and NAC PET. Quadratic-weighted kappa score measured agreement in patient metastases status between observers. RESULTS On a lesion-basis, AC PET images showed significantly more lesions than NAC for both the expert (122 versus 96; P = 0.002) and nonexpert (146 versus 132; P = 0.036) observers, with a large number of patients demonstrating disparity between AC and NAC images. For metastases status at the patient level without CT, NAC PET showed slightly better diagnostic accuracy than AC due to fewer false-positive results, as fewer lesions were identified. CONCLUSION AC PET data provided superior lesion detection to NAC in NaF bone examinations and are thus required for clinical interpretation.
Collapse
Affiliation(s)
- Natalie Anne Bebbington
- Molecular Imaging, Siemens Healthcare A/S, Bredskifte Alle, Aarhus
- Department of Clinical Medicine, Aalborg University, Aalborg
| | - Helle Damgaard Zacho
- Department of Clinical Medicine, Aalborg University, Aalborg
- Department of Nuclear Medicine, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg
| | | |
Collapse
|
30
|
Assiri R, Knapp K, Fulford J, Chen J. Correlation of the quantitative methods for the measurement of bone uptake and plasma clearance of 18F-NaF using positron emission tomography. Systematic review and meta-analysis. Eur J Radiol 2021; 146:110081. [PMID: 34911006 DOI: 10.1016/j.ejrad.2021.110081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/16/2021] [Accepted: 11/27/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE 18F-NaF PET is valuable for detecting bone metabolism through osteoblastic activity in the assessment of bone disease. Hawkins, Patlak, and standardised uptake value (SUV) are the most common quantitative measurements used to evaluate bone metabolism. This systematic review evaluates the correlation between quantitative positron emission tomography (PET) methods and to compare their precision. METHODS A systematic search in Medline, PubMed, SCOPUS, and Web of Science was undertaken to find relevant papers published from 2000. All studies with human adults undergoing 18F-NaF PET, PET/CT, or PET/MRI were included except for subjects diagnosed with non-diffuse metabolic bone disease or malignancy. Quality Assessment Tool for Studies of Diverse Designs (QATSDD) was used to assess risk of bias. A qualitative review and meta-analysis using Hedges random-effect model was used producing summary size effects of the correlation between methods in healthy and unhealthy bone sites and assessing study heterogeneity. RESULTS 228 healthy and unhealthy participants were included across 12 studies resulted from the systematic search. One-third of studies had a moderate quality percentage while the rest had relatively high quality. The pooled correlation coefficient in meta-analysis showed a high correlation of more than 0.88 (0.71-1.05. 95 %CI) between SUV and Hawkins and more than 0.96 (0.88-1.03. 95 %CI) between Patlak and Hawkins within all subgroups, suggesting all methods yield similar results in healthy and unhealthy bone sites. SUV has the lowest precision error followed by Patlak while Hawkins method showed the highest precision error. CONCLUSION Patlak is the best within research and SUV is better within clinical practice.
Collapse
Affiliation(s)
- Rajeh Assiri
- Department of Radiological Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
| | - Karen Knapp
- Department of Medical Imaging, Medical School, The University of Exeter, South Cloisters, University of Exeter, St Luke's Campus, Heavitree Road, Exeter EX1 2LU, UK.
| | - Jon Fulford
- Medical School, The University of Exeter, Medical School Building, St Luke's Campus, Magdalen Road, Exeter EX1 2LU, UK.
| | - Junning Chen
- College of Engineering, Mathematics and Physical Sciences, The University of Exeter, UK.
| |
Collapse
|
31
|
Lu CH, Chen YA, Ke CC, Chiu SJ, Jeng FS, Chen CC, Hsieh YJ, Yang BH, Chang CW, Wang FS, Liu RS. Multiplexed Molecular Imaging Strategy Integrated with RNA Sequencing in the Assessment of the Therapeutic Effect of Wharton's Jelly Mesenchymal Stem Cell-Derived Extracellular Vesicles for Osteoporosis. Int J Nanomedicine 2021; 16:7813-7830. [PMID: 34880610 PMCID: PMC8646890 DOI: 10.2147/ijn.s335757] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction Osteoporosis is a result of an imbalance in bone remodeling. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been considered as a potentially promising treatment for osteoporosis. However, the therapeutic effect, genetic alterations, and in vivo behavior of exogenous EVs for osteoporosis in mice models remain poorly understood. Methods A multiplexed molecular imaging strategy was constructed by micro-positron emission tomography (µPET)/computed tomography (CT), µCT, and optical imaging modality which reflected the osteoblastic activity, microstructure, and in vivo behavior of EVs, respectively. RNA sequencing was used to analyze the cargo of EVs, and the bone tissues of ovariectomized (OVX) mice post EV treatment. Results The result of [18F]NaF µPET showed an increase in osteoblastic activity in the distal femur of EV-treated mice, and the bone structural parameters derived from µCT were also improved. In terms of in vivo behavior of exogenous EVs, fluorescent dye-labeled EVs could target the distal femur of mice, whereas the uptakes of bone tissues were not significantly different between OVX mice and healthy mice. RNA sequencing demonstrated upregulation of ECM-related genes, which might associate with the PI3K/AKT signaling pathway, in line with the results of microRNA analysis showing that mir-21, mir-29, mir-221, and let-7a were enriched in Wharton’s jelly-MSC-EVs and correlated to the BMP and PI3K/AKT signaling pathways. Conclusion The therapeutic effect of exogenous WJ-MSC-EVs in the treatment of osteoporosis was successfully assessed by a multiplexed molecular imaging strategy. The RNA sequencing demonstrated the possible molecular targets in the regulation of bone remodeling. The results highlight the novelty of diagnostic and therapeutic strategies of EV-based treatment for osteoporosis.
Collapse
Affiliation(s)
- Cheng-Hsiu Lu
- Industrial Ph.D. Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Core Facility for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-An Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan
| | - Chien-Chih Ke
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Sain-Jhih Chiu
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan
| | - Fong-Shya Jeng
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan
| | - Chao-Cheng Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Ju Hsieh
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Bang-Hung Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.,PET Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Wei Chang
- PET Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Feng-Sheng Wang
- Core Facility for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ren-Shyan Liu
- Industrial Ph.D. Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.,PET Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Nuclear Medicine, Cheng Hsin Hospital, Taipei, Taiwan
| |
Collapse
|
32
|
Bone and Joint Infections: The Role of Imaging in Tailoring Diagnosis to Improve Patients' Care. J Pers Med 2021; 11:jpm11121317. [PMID: 34945789 PMCID: PMC8709091 DOI: 10.3390/jpm11121317] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/28/2022] Open
Abstract
Imaging is needed for the diagnosis of bone and joint infections, determining the severity and extent of disease, planning biopsy, and monitoring the response to treatment. Some radiological features are pathognomonic of bone and joint infections for each modality used. However, imaging diagnosis of these infections is challenging because of several overlaps with non-infectious etiologies. Interventional radiology is generally needed to verify the diagnosis and to identify the microorganism involved in the infectious process through imaging-guided biopsy. This narrative review aims to summarize the radiological features of the commonest orthopedic infections, the indications and the limits of different modalities in the diagnostic strategy as well as to outline recent findings that may facilitate diagnosis.
Collapse
|
33
|
Arani LS, Zirakchian Zadeh M, Saboury B, Revheim ME, Øestergaard B, Borja AJ, Samadi Samarin D, Mehdizadeh Seraj S, Kalbush E, Ayubcha C, Morris MA, Werner TJ, Abildgaard N, Høilund-Carlsen PF, Alavi A. Assessment of atherosclerosis in multiple myeloma and smoldering myeloma patients using 18F- sodium fluoride PET/CT. J Nucl Cardiol 2021; 28:3044-3054. [PMID: 33389640 DOI: 10.1007/s12350-020-02446-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/02/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND To compare the NaF uptake in the thoracic aorta and whole heart, as an early indicator of atherosclerosis, in multiple myeloma (MM) and smoldering multiple myeloma (SMM) patients with a healthy control (HC) group. METHODS Forty-four untreated myeloma patients (35 MM and nine SMM) and twenty-six age and gender-matched HC subjects were collected. Each individual's NaF uptake in three parts of the aorta (AA: ascending aorta, AR: aortic arch, DA: descending aorta) and the whole heart was segmented. Average global standardized uptake value means were derived by sum of the product of each slice area divided by the sum of those slice areas. Results were reported as target to background ratio (TBR). RESULTS There was a significant difference between the NaF uptake in the thoracic aorta of myeloma and HC groups [AA (myeloma = 1.82 ± 0.21, HC = 1.24 ± 0.02), AR (myeloma = 1.71 ± 0.19, HC = 1.28 ± 0.03) and DA (myeloma = 1.96 ± 0.28, HC = 1.38 ± 0.03); P-values < 0.001]. The difference in the whole heart NaF uptake between two groups was also significant (P < 0.001). CONCLUSIONS We observed a higher uptake of NaF in the thoracic aorta and whole heart of myeloma patients in comparison to the matched control group.
Collapse
Affiliation(s)
- Leila S Arani
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Mahdi Zirakchian Zadeh
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
- Dental School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Babak Saboury
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mona-Elisabeth Revheim
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Brian Øestergaard
- Department of Hematology, Odense University Hospital, Odense, Denmark
| | - Austin J Borja
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Davoud Samadi Samarin
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Siavash Mehdizadeh Seraj
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Eman Kalbush
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Cyrus Ayubcha
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Michael A Morris
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tom J Werner
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Niels Abildgaard
- Department of Hematology, Odense University Hospital, Odense, Denmark
- Hematology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Abass Alavi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA.
| |
Collapse
|
34
|
Keeling GP, Sherin B, Kim J, San Juan B, Grus T, Eykyn TR, Rösch F, Smith GE, Blower PJ, Terry SYA, T M de Rosales R. [ 68Ga]Ga-THP-Pam: A Bisphosphonate PET Tracer with Facile Radiolabeling and Broad Calcium Mineral Affinity. Bioconjug Chem 2021; 32:1276-1289. [PMID: 32786371 PMCID: PMC7611355 DOI: 10.1021/acs.bioconjchem.0c00401] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calcium minerals such as hydroxyapatite (HAp) can be detected noninvasively in vivo using nuclear imaging agents such as [18F]NaF (available from cyclotrons), for positron emission tomography (PET) and 99mTc-radiolabeled bisphosphonates (BP; available from 99mTc generators for single photon emission computed tomography (SPECT) or scintigraphy). These two types of imaging agents allow detection of bone metastases (based on the presence of HAp) and vascular calcification lesions (that contain HAp and other calcium minerals). With the aim of developing a cyclotron-independent PET radiotracer for these lesions, with broad calcium mineral affinity and simple one-step radiolabeling, we developed [68Ga]Ga-THP-Pam. Radiolabeling with 68Ga is achieved using a mild single-step kit (5 min, room temperature, pH 7) to high radiochemical yield and purity (>95%). NMR studies demonstrate that Ga binds via the THP chelator, leaving the BP free to bind to its biological target. [68Ga]Ga-THP-Pam shows high stability in human serum. The calcium mineral binding of [68Ga]Ga-THP-Pam was compared in vitro to two other 68Ga-BPs which have been successfully evaluated in humans, [68Ga]Ga-NO2APBP and [68Ga]Ga-BPAMD, as well as [18F]NaF. Interestingly, we found that all 68Ga-BPs have a high affinity for a broad range of calcium minerals implicated in vascular calcification disease, while [18F]NaF is selective for HAp. Using healthy young mice as a model of metabolically active growing calcium mineral in vivo, we compared the pharmacokinetics and biodistribution of [68Ga]Ga-THP-Pam with [18F]NaF as well as [68Ga]NO2APBP. These studies revealed that [68Ga]Ga-THP-Pam has high in vivo affinity for bone tissue (high bone/muscle and bone/blood ratios) and fast blood clearance (t1/2 < 10 min) comparable to both [68Ga]NO2APBP and [18F]NaF. Overall, [68Ga]Ga-THP-Pam shows high potential for clinical translation as a cyclotron-independent calcium mineral PET radiotracer, with simple and efficient radiochemistry that can be easily implemented in any radiopharmacy.
Collapse
Affiliation(s)
- George P Keeling
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, U.K
| | - Billie Sherin
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, U.K
| | - Jana Kim
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, U.K
| | - Belinda San Juan
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, U.K
| | - Tilmann Grus
- Department of Nuclear Chemistry, Johannes Gutenberg University Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
| | - Thomas R Eykyn
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, U.K
| | - Frank Rösch
- Department of Nuclear Chemistry, Johannes Gutenberg University Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
| | - Gareth E Smith
- Theragnostics Ltd, 2 Arlington Square, Bracknell, Berkshire RG12 1WA, U.K
| | - Philip J Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, U.K
| | - Samantha Y A Terry
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, U.K
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, U.K
| |
Collapse
|
35
|
Morland D, Godard F, Lalire P, Eymard JC, Papathanassiou D. Superiority of NaF PET/CT Over Chest CT in a Case of Osteosarcoma. Clin Nucl Med 2021; 46:584-585. [PMID: 33782283 DOI: 10.1097/rlu.0000000000003579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT We report the case of a 21-year-old man referred to our institution for the initial staging of an osteoblastic osteosarcoma of the right femur. An 18F-NaF PET/CT demonstrated millimetric pleuroparenchymal metastases, later confirmed on follow-up. These lesions were not reported on both dedicated chest CT and 18F-FDG PET/CT.
Collapse
Affiliation(s)
| | | | - Paul Lalire
- From the Médecine Nucléaire, Institut Godinot
| | | | | |
Collapse
|
36
|
Usmani S, Ahmed N, Gnanasegaran G, Rasheed R, Marafi F, Alnaaimi M, Omar M, Musbah A, Al Kandari F, De Schepper S, Van den Wyngaert T. The clinical effectiveness of reconstructing 18F-sodium fluoride PET/CT bone using Bayesian penalized likelihood algorithm for evaluation of metastatic bone disease in obese patients. Br J Radiol 2021; 94:20210043. [PMID: 33571003 DOI: 10.1259/bjr.20210043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE A new Bayesian penalized likelihood reconstruction algorithm for positron emission tomography (PET) (Q.Clear) is now in clinical use for fludeoxyglucose (FDG) PET/CT. However, experience with non-FDG tracers and in special patient populations is limited. This pilot study aims to compare Q.Clear to standard PET reconstructions for 18F sodium fluoride (18F-NaF) PET in obese patients. METHODS 30 whole body 18F-NaF PET/CT scans (10 patients with BMI 30-40 Kg/m2 and 20 patients with BMI >40 Kg/m2) and a NEMA image quality phantom scans were analyzed using ordered subset expectation maximization (OSEM) and Q.Clear reconstructions methods with B400, 600, 800 and 1000. The images were assessed for overall image quality (IQ), noise level, background soft tissue, and lesion detectability, contrast recovery (CR), background variability (BV) and contrast-to-noise ratio (CNR) for both algorithms. RESULTS CNR for clinical cases was higher for Q.Clear than OSEM (p < 0.05). Mean CNR for OSEM was (21.62 ± 8.9), and for Q.Clear B400 (31.82 ± 14.6), B600 (35.54 ± 14.9), B800 (39.81 ± 16.1), and B1000 (40.9 ± 17.8). As the β value increased the CNR increased in all clinical cases. B600 was the preferred β value for reconstruction in obese patients. The phantom study showed Q.Clear reconstructions gave lower CR and lower BV than OSEM. The CNR for all spheres was significantly higher for Q.Clear (independent of β) than OSEM (p < 0.05), suggesting superiority of Q.Clear. CONCLUSION This pilot clinical study shows that Q.Clear reconstruction algorithm improves overall IQ of 18F-NaF PET in obese patients. Our clinical and phantom measurement results demonstrate improved CNR and reduced BV when using Q.Clear. A β value of 600 is preferred for reconstructing 18F-NaF PET/CT with Q.Clear in obese patients. ADVANCES IN KNOWLEDGE 18F-NaF PET/CT is less susceptible to artifacts induced by body habitus. Bayesian penalized likelihood reconstruction with18F-NaF PET improves overall IQ in obese patients.
Collapse
Affiliation(s)
- Sharjeel Usmani
- Department of Nuclear Medicine, Kuwait Cancer Control Centre, Kuwait, Kuwait.,Department of Nuclear Medicine, Jaber Al-Ahmad Molecular Imaging Center, Kuwait, Kuwait.,Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Najeeb Ahmed
- Cancer Research Group, Hull York Medical School, University of Hull, Hull, UK
| | | | - Rashid Rasheed
- Department of Nuclear Medicine, Kuwait Cancer Control Centre, Kuwait, Kuwait
| | - Fahad Marafi
- Department of Nuclear Medicine, Jaber Al-Ahmad Molecular Imaging Center, Kuwait, Kuwait
| | - Mashari Alnaaimi
- Department of Nuclear Medicine, Kuwait Cancer Control Centre, Kuwait, Kuwait
| | - Mohammad Omar
- Department of Nuclear Medicine, Kuwait Cancer Control Centre, Kuwait, Kuwait
| | - Ahmed Musbah
- Department of Nuclear Medicine, Kuwait Cancer Control Centre, Kuwait, Kuwait
| | - Fareeda Al Kandari
- Department of Nuclear Medicine, Kuwait Cancer Control Centre, Kuwait, Kuwait
| | - Stijn De Schepper
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Tim Van den Wyngaert
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
37
|
Ayubcha C, Raynor WY, Borja AJ, Seraj SM, Rojulpote C, Werner TJ, Revheim ME, Rajapakse CS, Alavi A. Magnetic resonance imaging-based partial volume-corrected 18F-sodium fluoride positron emission tomography in the femoral neck. Nucl Med Commun 2021; 42:416-420. [PMID: 33306627 DOI: 10.1097/mnm.0000000000001344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES 18F-sodium fluoride (NaF) is a radiotracer used in PET that reflects calcium metabolism and osteoblastic activity. In this study, we assessed the construct validity of a novel application of global assessment to measure NaF uptake in the femoral neck as a method of evaluating physiologic changes in osteoblastic metabolism with age. METHODS Whole-body NaF-PET/computed tomography (CT) images and MRI of 24 male patients with a history of nonmetastatic prostate cancer between the ages of 36 and 82 years (67.8 ± 9.6) were analyzed. A region of interest delineated the entire femoral neck on the PET/CT image to determine the mean standardized uptake value (SUVmean). Correction for the partial volume effect was performed by measuring the volume of inert yellow bone marrow by MRI segmentation. Multiple linear regression was used to assess the relationship of uptake with age and body weight. RESULTS The SUVmean with and without partial volume correction decreased with respect to age (P = 0.001 and P = 0.002, respectively). Body weight was not significantly related to any measured PET parameter. CONCLUSION Our results support the use of global NaF uptake with magnetic resonance-derived partial volume correction in the femoral neck. Because osteoblastic metabolism is known to decrease with normal aging, the observed decrease in NaF uptake constitutes evidence for convergent validity, indicating that the proposed methodology likely reflects systemic osteoblastic activity. Future studies of this methodology are warranted in other instances of varying osteoblastic activity such as in metabolic bone diseases and for the evaluation of therapy targeting osteoblastic metabolism.
Collapse
Affiliation(s)
- Cyrus Ayubcha
- Department of Radiology, Hospital of the University of Pennsylvania
| | - William Y Raynor
- Department of Radiology, Hospital of the University of Pennsylvania
- Department of Medicine, Drexel University College of Medicine
| | - Austin J Borja
- Department of Radiology, Hospital of the University of Pennsylvania
- Department of Orthopedic Surgery, Hospital of the University of Pennsylvania
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Siavash M Seraj
- Department of Radiology, Hospital of the University of Pennsylvania
| | | | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania
| | - Mona-Elisabeth Revheim
- Department of Radiology, Hospital of the University of Pennsylvania
- Division for Radiology and Nuclear Medicine, Oslo University Hospital
- Department of Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Chamith S Rajapakse
- Department of Radiology, Hospital of the University of Pennsylvania
- Department of Orthopedic Surgery, Hospital of the University of Pennsylvania
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania
| |
Collapse
|
38
|
Gonzalez-Galofre ZN, Alcaide-Corral CJ, Tavares AAS. Effects of administration route on uptake kinetics of 18F-sodium fluoride positron emission tomography in mice. Sci Rep 2021; 11:5512. [PMID: 33750874 PMCID: PMC7970902 DOI: 10.1038/s41598-021-85073-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/19/2021] [Indexed: 12/01/2022] Open
Abstract
18F-sodium fluoride (18F-NaF) is a positron emission tomography (PET) radiotracer widely used in skeletal imaging and has also been proposed as a biomarker of active calcification in atherosclerosis. Like most PET radiotracers, 18F-NaF is typically administered intravenously. However in small animal research intravenous administrations can be challenging, because partial paravenous injection is common due to the small calibre of the superficial tail veins and repeat administrations via tail veins can lead to tissue injury therefore limiting the total number of longitudinal scanning points. In this paper, the feasibility of using intra-peritoneal route of injection of 8F-NaF to study calcification in mice was studied by looking at the kinetic and uptake profiles of normal soft tissues and bones versus intra-vascular injections. Dynamic PET was performed for 60 min on nineteen isoflurane-anesthetized male Swiss mice after femoral artery (n = 7), femoral vein (n = 6) or intraperitoneal (n = 6) injection of 8F-NaF. PET data were reconstructed and the standardised uptake value (SUV) and standardised uptake value ratio (SUVr) were estimated from the last three frames between 45- and 60-min and 8F-NaF uptake constant (Ki) was derived by Patlak graphical analysis. In soft tissue, the 18F-NaF perfusion phase changes depending on the type on injection route, whereas the uptake phase is similar regardless of the administration route. In bone tissue SUV, SUVr and Ki measures were not significantly different between the three administration routes. Comparison between PET and CT measures showed that bones that had the highest CT density displayed the lowest PET activity and conversely, bones where CT units were low had high 8F-NaF uptake. Intraperitoneal injection is a valid and practical alternative to the intra-vascular injections in small-animal 18F-NaF PET imaging providing equivalent pharmacokinetic data. CT outcome measures report on sites of stablished calcification whereas PET measures sites of higher complexity and active calcification.
Collapse
Affiliation(s)
- Zaniah N Gonzalez-Galofre
- British Heart Foundation/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute (QMRI), Little France Campus, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.,Edinburgh Imaging, University of Edinburgh, Little France Campus, Edinburgh, EH16 4TJ, UK
| | - Carlos J Alcaide-Corral
- British Heart Foundation/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute (QMRI), Little France Campus, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.,Edinburgh Imaging, University of Edinburgh, Little France Campus, Edinburgh, EH16 4TJ, UK
| | - Adriana A S Tavares
- British Heart Foundation/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute (QMRI), Little France Campus, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK. .,Edinburgh Imaging, University of Edinburgh, Little France Campus, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
39
|
Li Q, Hou W, Li L, Su M, Ren Y, Wang W, Zou K, Tian R, Sun X. The use of systematic review evidence to support the development of guidelines for positron emission tomography: a cross-sectional survey. Eur Radiol 2021; 31:6992-7002. [PMID: 33683391 DOI: 10.1007/s00330-021-07756-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/06/2021] [Accepted: 02/04/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To examine to what degree guidelines for PET and PET/CT used systematic review evidence. METHODS The latest version of guidelines for PET, PET/CT or PET/MRI published in English in PubMed until December 2019 was analysed in two categories: (1) for indications, if mainly discussing the appropriate use of PET in diverse conditions; (2) for procedures, if providing step-by-step instructions for imaging. We surveyed the general characteristics and the use of systematic review evidence for developing recommendations across all guidelines, and surveyed the citation of evidence for five recommendation topics in guidelines for procedures. RESULTS Forty-seven guidelines, published between 2004 and 2020, were included. Guidelines for indications were developed mainly on systematic reviews (13 of 19, 68.4%). Among those, 12 (63.2%) reported the level of evidence, 4 (21.1%) reported the strength of recommendations, 3 (15.8%) described external review and 7 (36.8%) involved methodologists. Guidelines for procedures were seldom developed on systematic reviews (1 of 27, 3.7%). Among those, 1 (3.7%) reported the level of evidence, 1 (3.7%) reported the strength of recommendations, 3 (11.1%) described external review and 1 (3.7%) involved methodologists. Systematic review evidence was cited by 2 (7.4%) procedure guidelines per recommendation topic in median. CONCLUSION The use of systematic review evidence for developing recommendations among PET or PET/CT guidelines was suboptimal. While our survey is an icebreaking attempt to explore a key element (i.e. use of systematic review evidence) for developing nuclear medicine guidelines, assessments of other domains of guideline quality may help capture the entire picture. KEY POINTS • The use of systematic review evidence for developing recommendations among guidelines for PET or PET/CT was suboptimal. • Only 13 (68.4%) guidelines for indications and 1 (3.7%) guideline for procedures systematically reviewed the literature during guideline development. • For each recommendation topic we examined, only a median of 2 (7.4%) procedure guidelines cited systematic review evidence.
Collapse
Affiliation(s)
- Qianrui Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Chinese Evidence-based Medicine Centre, Cochrane China Centre and MAGIC China Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenxiu Hou
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Li
- Chinese Evidence-based Medicine Centre, Cochrane China Centre and MAGIC China Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Minggang Su
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Ren
- Chinese Evidence-based Medicine Centre, Cochrane China Centre and MAGIC China Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen Wang
- Chinese Evidence-based Medicine Centre, Cochrane China Centre and MAGIC China Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kang Zou
- Chinese Evidence-based Medicine Centre, Cochrane China Centre and MAGIC China Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xin Sun
- Chinese Evidence-based Medicine Centre, Cochrane China Centre and MAGIC China Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
40
|
[ 18F]-sodium fluoride autoradiography imaging of nephrocalcinosis in donor kidneys and explanted kidney allografts. Sci Rep 2021; 11:1841. [PMID: 33469037 PMCID: PMC7815841 DOI: 10.1038/s41598-021-81144-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/04/2021] [Indexed: 11/08/2022] Open
Abstract
Nephrocalcinosis is present in up to 43% of kidney allograft biopsies at one-year after transplantation and is associated with inferior graft function and poor graft survival. We studied [18F]-sodium fluoride ([18F]-NaF) imaging of microcalcifications in donor kidneys (n = 7) and explanted kidney allografts (n = 13). Three µm paraffin-embedded serial sections were used for histological evaluation of calcification (Alizarin Red; Von Kossa staining) and ex-vivo [18F]-NaF autoradiography. The images were fused to evaluate if microcalcification areas corresponded with [18F]-NaF uptake areas. Based on histological analyses, tubulointerstitial and glomerular microcalcifications were present in 19/20 and 7/20 samples, respectively. Using autoradiography, [18F]-NaF uptake was found in 19/20 samples, with significantly more tracer activity in kidney allograft compared to deceased donor kidney samples (p = 0.019). Alizarin Red staining of active microcalcifications demonstrated good correlation (Spearman’s rho of 0.81, p < 0.001) and Von Kossa staining of consolidated calcifications demonstrated significant but weak correlation (0.62, p = 0.003) with [18F]-NaF activity. This correlation between ex-vivo [18F]-NaF uptake and histology-proven microcalcifications, is the first step towards an imaging method to identify microcalcifications in active nephrocalcinosis. This may lead to better understanding of the etiology of microcalcifications and its impact on kidney transplant function.
Collapse
|
41
|
Liu F, Dong J, Shen Y, Yun C, Wang R, Wang G, Tan J, Wang T, Yao Q, Wang B, Li L, Mi J, Zhou D, Xiong F. Comparison of PET/CT and MRI in the Diagnosis of Bone Metastasis in Prostate Cancer Patients: A Network Analysis of Diagnostic Studies. Front Oncol 2021; 11:736654. [PMID: 34671558 PMCID: PMC8522477 DOI: 10.3389/fonc.2021.736654] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/10/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Accurate diagnosis of bone metastasis status of prostate cancer (PCa) is becoming increasingly more important in guiding local and systemic treatment. Positron emission tomography/computed tomography (PET/CT) and magnetic resonance imaging (MRI) have increasingly been utilized globally to assess the bone metastases in PCa. Our meta-analysis was a high-volume series in which the utility of PET/CT with different radioligands was compared to MRI with different parameters in this setting. MATERIALS AND METHODS Three databases, including Medline, Embase, and Cochrane Library, were searched to retrieve original trials from their inception to August 31, 2019 according to the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) statement. The methodological quality of the included studies was assessed by two independent investigators utilizing Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). A Bayesian network meta-analysis was performed using an arm-based model. Absolute sensitivity and specificity, relative sensitivity and specificity, diagnostic odds ratio (DOR), and superiority index, and their associated 95% confidence intervals (CI) were used to assess the diagnostic value. RESULTS Forty-five studies with 2,843 patients and 4,263 lesions were identified. Network meta-analysis reveals that 68Ga-labeled prostate membrane antigen (68Ga-PSMA) PET/CT has the highest superiority index (7.30) with the sensitivity of 0.91 and specificity of 0.99, followed by 18F-NaF, 11C-choline, 18F-choline, 18F-fludeoxyglucose (FDG), and 18F-fluciclovine PET/CT. The use of high magnetic field strength, multisequence, diffusion-weighted imaging (DWI), and more imaging planes will increase the diagnostic value of MRI for the detection of bone metastasis in prostate cancer patients. Where available, 3.0-T high-quality MRI approaches 68Ga-PSMA PET/CT was performed in the detection of bone metastasis on patient-based level (sensitivity, 0.94 vs. 0.91; specificity, 0.94 vs. 0.96; superiority index, 4.43 vs. 4.56). CONCLUSIONS 68Ga-PSMA PET/CT is recommended for the diagnosis of bone metastasis in prostate cancer patients. Where available, 3.0-T high-quality MRI approaches 68Ga-PSMA PET/CT should be performed in the detection of bone metastasis.
Collapse
Affiliation(s)
- Fanxiao Liu
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jinlei Dong
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yelong Shen
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Canhua Yun
- Department of Nuclear Medicine, The Second Hospital of Shandong University, Jinan, China
| | - Ruixiao Wang
- Department of Urology Surgery, University Hospital of Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Ganggang Wang
- Department of Urology Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jiyang Tan
- Department of Sports Medicine, Wuxi 9th People’s Hospital Affiliated to Soochow University, Wuxi, China
| | - Tao Wang
- Department of Sports Medicine, Wuxi 9th People’s Hospital Affiliated to Soochow University, Wuxi, China
| | - Qun Yao
- Department of Sports Medicine, Wuxi 9th People’s Hospital Affiliated to Soochow University, Wuxi, China
| | - Bomin Wang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lianxin Li
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jingyi Mi
- Department of Sports Medicine, Wuxi 9th People’s Hospital Affiliated to Soochow University, Wuxi, China
| | - Dongsheng Zhou
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fei Xiong
- Department of Sports Medicine, Wuxi 9th People’s Hospital Affiliated to Soochow University, Wuxi, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
- *Correspondence: Fei Xiong,
| |
Collapse
|
42
|
Usmani S, Ahmed N, Gnanasegaran G, Musbah A, Al Kandari F, Van den Wyngaert T. 18F-NaF PET/CT of Obese Patients on a Lutetium-Yttrium Oxyorthosilicate PET/CT System: Patient Dosimetry, Optimization of Injected Activity, and Acquisition Time. J Nucl Med Technol 2021; 49:150-155. [PMID: 33380519 DOI: 10.2967/jnmt.120.258137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022] Open
Abstract
18F-NaF PET/CT has a rapid single-pass extraction and fast clearance from soft tissues, resulting in a good target-to-background ratio. This study aimed to establish the optimum acquisition time and dosimetry for 18F-NaF PET/CT to evaluate bone metastases in obese patients. A secondary objective was to evaluate the impact of acquisition time on image quality, lesion detection rate, noise level, and radiation burden in this patient group. Methods: In total, 60 patients were included in the study (20 patients with a body mass index (BMI) of 30.0-34.9 kg/m2, 20 with a BMI of 35-39.9 kg/m2, and 20 with a BMI of >40 kg/m2). Images were acquired after intravenous injection of a 2.2 MBq/kg (0.06 mCi/kg) dose of 18F-NaF. Data were acquired in list mode using ordered-subset expectation maximization reconstruction. The raw data were rebinned to simulate scans with acquisition times of 2, 2.5, and 3 min per bed position. The scans were visually analyzed by 2 observers and scored by rank against a panel of parameters (overall image quality, noise level, background soft tissue, and lesion detectability), and the contrast-to-noise ratio (CNR) was calculated. Results: The mean CNR was 20.19 ± 8.39 for a 2-min acquisition, 21.03 ± 8.35 for 2.5 min, and 22.16 ± 8.37 for 3 min. There were no statistically significant differences in CNR among the 3 different acquisition durations (P > 0.05). Lesion delineation was excellent and independent of the acquisition time. All relevant lesions could be identified with all 3 acquisition times. A mean activity of 215.4 ± 31.3 MBq was injected, with estimated mean effective absorbed doses of 4.09 ± 0.59 mSv for 18F-NaF PET and 7.88 ± 1.66 mSv for CT alone. Conclusion: 18F-NaF PET/CT can be beneficial in obese patients because of its good pharmacokinetics. Optimal osseous staging can be achieved with relatively low doses and radiation burden. Lesion delineation was excellent regardless of acquisition time. However, it is recommended that an acquisition of 3 min per bed position be used in patients with a BMI of more than 40.
Collapse
Affiliation(s)
- Sharjeel Usmani
- Department of Nuclear Medicine, Kuwait Cancer Control Centre, Khaitan, Kuwait;
| | - Najeeb Ahmed
- Jack Brignall PET/CT Centre, Castle Hill Hospital, Cottingham, United Kingdom
| | | | - Ahmed Musbah
- Department of Nuclear Medicine, Kuwait Cancer Control Centre, Khaitan, Kuwait
| | - Fareeda Al Kandari
- Department of Nuclear Medicine, Kuwait Cancer Control Centre, Khaitan, Kuwait
| | | |
Collapse
|
43
|
Dorau-Rutke V, Huang K, Lukas M, Schulze MO, Rosner C, Gregor-Mamoudou B, Steffen IG, Brenner W, Beindorff N. 18F-sodium fluoride bone deposition quantitation with PET in Mice: Variation with age, sex, and circadian rhythm. Nuklearmedizin 2020; 59:428-437. [DOI: 10.1055/a-1205-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Aim The aim of this study was to establish a data base for normal 18F-sodium fluoride (18F-NaF) bone uptake as a function of age, sex and circadian rhythm in mice.
Methods In 12 female (F) and 12 male (M) C57BL/6N mice PET images were acquired 90 min after intravenous injection of 20 MBq 18F-NaF for 30 minutes. Each mouse was imaged in follow-up studies at 1, 3, 6, 13 and 21 months of age. In order to assess for physiologic changes related to circadian rhythm, animals were imaged during light (sleep phase) as well as during night conditions (awake phase). Bone uptake is described as the median percentage of the injected activity (%IA) and in relation to bone volume (%IA/ml).
Results A significant smaller bone volume was found in F (1.79 ml) compared to M (1.99 ml; p < 0.001). In sex-pooled data, highest bone uptake occurred at an age of 1 month (61.1 %IA, 44.5 %IA/ml) with a significant reduction (p < 0.001) at age 3 months (43.6 %IA, 23.6 %IA/ml), followed by an increase between 13 (47.3 %IA, 24.5 %IA/ml) and 21 months (52.2 %IA, 28.1 %IA/ml). F had a significantly higher total uptake (F 48.2 %IA, M 43.8 %IA; p = 0.026) as well as a higher uptake per ml bone tissue (F 27.0 %IA/ml; M 22.4 %IA/ml; p < 0.001). A significant impact of circadian rhythm was only found for F at ages of 3 and 6 months with a higher uptake during the sleep phase.
Conclusion Circadian rhythm had a significant impact on uptake only in F of 3 and 6 months. Regarding sex, F showed generally higher uptake rates than M. The highest uptake values were observed during bone growth at age 1 month in both sexes, a second uptake peak occurred in elderly F. Designing future bone uptake studies with M, attention must be paid to age only, while in F circadian rhythm and age must be taken into account.
Collapse
Affiliation(s)
| | - Kai Huang
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Germany
| | - Mathias Lukas
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Germany
| | - Marc O. Schulze
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Germany
| | - Christian Rosner
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Germany
| | | | - Ingo G. Steffen
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Germany
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité-Universitätsmedizin Berlin, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité-Universitätsmedizin Berlin, Germany
| |
Collapse
|
44
|
Afzelius P, Alstrup AKO, Nielsen OL, Nielsen KM, Jensen SB. Attempts to Target Staphylococcus aureus Induced Osteomyelitis Bone Lesions in a Juvenile Pig Model by Using Radiotracers. Molecules 2020; 25:E4329. [PMID: 32967275 PMCID: PMC7570567 DOI: 10.3390/molecules25184329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
Background [18F]FDG Positron Emission Tomography cannot differentiate between sterile inflammation and infection. Therefore, we, aimed to develop more specific radiotracers fitted for differentiation between sterile and septic infection to improve the diagnostic accuracy. Consequently, the clinicians can refine the treatment of, for example, prosthesis-related infection. METHODS We examined different target points; Staphylococcus aureus biofilm (68Ga-labeled DOTA-K-A9 and DOTA-GSGK-A11), bone remodeling ([18F]NaF), bacterial cell membranes ([68Ga]Ga-Ubiquicidin), and leukocyte trafficking ([68Ga]Ga-DOTA-Siglec-9). We compared them to the well-known glucose metabolism marker [18F]FDG, in a well-established juvenile S. aureus induced osteomyelitis (OM) pig model. RESULTS [18F]FDG accumulated in the OM lesions seven days after bacterial inoculation, but disappointingly we were not able to identify any tracer accumulation in OM with any of the supposedly more specific tracers. CONCLUSION These negative results are, however, relevant to report as they may save other research groups from conducting the same animal experiments and provide a platform for developing and evaluating other new potential tracers or protocol instead.
Collapse
Affiliation(s)
- Pia Afzelius
- Department of Nuclear Medicine, Aalborg University Hospital, 9100 Aalborg, Denmark; (K.M.N.); (S.B.J.)
- North Zealand Hospital, Copenhagen University Hospital, 3400 Hillerød, Denmark
| | - Aage Kristian Olsen Alstrup
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus, Denmark;
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Ole Lerberg Nielsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2000 Copenhagen F, Denmark;
| | - Karin Michaelsen Nielsen
- Department of Nuclear Medicine, Aalborg University Hospital, 9100 Aalborg, Denmark; (K.M.N.); (S.B.J.)
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2000 Copenhagen F, Denmark;
| | - Svend Borup Jensen
- Department of Nuclear Medicine, Aalborg University Hospital, 9100 Aalborg, Denmark; (K.M.N.); (S.B.J.)
- Department of Chemistry and Biochemistry, Aalborg University, 9100 Aalborg, Denmark
| |
Collapse
|
45
|
Yoshii T, Miwa K, Yamaguchi M, Shimada K, Wagatsuma K, Yamao T, Kamitaka Y, Hiratsuka S, Kobayashi R, Ichikawa H, Miyaji N, Miyazaki T, Ishii K. Optimization of a Bayesian penalized likelihood algorithm (Q.Clear) for 18F-NaF bone PET/CT images acquired over shorter durations using a custom-designed phantom. EJNMMI Phys 2020; 7:56. [PMID: 32915344 PMCID: PMC7486353 DOI: 10.1186/s40658-020-00325-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022] Open
Abstract
Background The Bayesian penalized likelihood (BPL) algorithm Q.Clear (GE Healthcare) allows fully convergent iterative reconstruction that results in better image quality and quantitative accuracy, while limiting image noise. The present study aimed to optimize BPL reconstruction parameters for 18F-NaF PET/CT images and to determine the feasibility of 18F-NaF PET/CT image acquisition over shorter durations in clinical practice. Methods A custom-designed thoracic spine phantom consisting of several inserts, soft tissue, normal spine, and metastatic bone tumor, was scanned using a Discovery MI PET/CT scanner (GE Healthcare). The phantom allows optional adjustment of activity distribution, tumor size, and attenuation. We reconstructed PET images using OSEM + PSF + TOF (2 iterations, 17 subsets, and a 4-mm Gaussian filter), BPL + TOF (β = 200 to 700), and scan durations of 30–120 s. Signal-to-noise ratios (SNR), contrast, and coefficients of variance (CV) as image quality indicators were calculated, whereas the quantitative measures were recovery coefficients (RC) and RC linearity over a range of activity. We retrospectively analyzed images from five persons without bone metastases (male, n = 1; female, n = 4), then standardized uptake values (SUV), CV, and SNR at the 4th, 5th, and 6th thoracic vertebra were calculated in BPL + TOF (β = 400) images. Results The optimal reconstruction parameter of the BPL was β = 400 when images were acquired at 120 s/bed. At 90 s/bed, the BPL with a β value of 400 yielded 24% and 18% higher SNR and contrast, respectively, than OSEM (2 iterations; 120 s acquisitions). The BPL was superior to OSEM in terms of RC and the RC linearity over a range of activity, regardless of scan duration. The SUVmax were lower in BPL, than in OSEM. The CV and vertebral SNR in BPL were superior to those in OSEM. Conclusions The optimal reconstruction parameters of 18F-NaF PET/CT images acquired over different durations were determined. The BPL can reduce PET acquisition to 90 s/bed in 18F-NaF PET/CT imaging. Our results suggest that BPL (β = 400) on SiPM-based TOF PET/CT scanner maintained high image quality and quantitative accuracy even for shorter acquisition durations.
Collapse
Affiliation(s)
- Tokiya Yoshii
- Department of Radiological Sciences, School of Health Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan.,Department of Radiology, Fukushima Medical University Hospital, 1 Hikarigaoka, Fukushima, Fukushima, 960-1247, Japan
| | - Kenta Miwa
- Department of Radiological Sciences, School of Health Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan.
| | - Masashi Yamaguchi
- Department of Radiological Sciences, School of Health Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Kai Shimada
- Department of Radiological Sciences, School of Health Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Kei Wagatsuma
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Tensho Yamao
- Department of Radiological Sciences, School of Health Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Yuto Kamitaka
- Department of Radiological Sciences, School of Health Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Seiya Hiratsuka
- Department of Radiological Sciences, School of Health Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Rinya Kobayashi
- Department of Radiological Sciences, School of Health Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Hajime Ichikawa
- Department of Radiology, Toyohashi Municipal Hospital, 50, Aza Hachiken Nishi, Aotake-Cho, Toyohashi, Aichi, 441-8570, Japan
| | - Noriaki Miyaji
- Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Tsuyoshi Miyazaki
- Department of Orthopaedic Surgery, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| |
Collapse
|
46
|
Usmani S, Ahmed N, Marafi F, al kandari F, Gnanasegaran G, Van den Wyngaert T. 18F-sodium fluoride bone PET-CT in symptomatic lumbosacral transitional vertebra. Clin Radiol 2020; 75:643.e1-643.e10. [DOI: 10.1016/j.crad.2020.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
|
47
|
Boers J, de Vries EFJ, Glaudemans AWJM, Hospers GAP, Schröder CP. Application of PET Tracers in Molecular Imaging for Breast Cancer. Curr Oncol Rep 2020; 22:85. [PMID: 32627087 PMCID: PMC7335757 DOI: 10.1007/s11912-020-00940-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Molecular imaging with positron emission tomography (PET) is a powerful tool to visualize breast cancer characteristics. Nonetheless, implementation of PET imaging into cancer care is challenging, and essential steps have been outlined in the international "imaging biomarker roadmap." In this review, we identify hurdles and provide recommendations for implementation of PET biomarkers in breast cancer care, focusing on the PET tracers 2-[18F]-fluoro-2-deoxyglucose ([18F]-FDG), sodium [18F]-fluoride ([18F]-NaF), 16α-[18F]-fluoroestradiol ([18F]-FES), and [89Zr]-trastuzumab. RECENT FINDINGS Technical validity of [18F]-FDG, [18F]-NaF, and [18F]-FES is established and supported by international guidelines. However, support for clinical validity and utility is still pending for these PET tracers in breast cancer, due to variable endpoints and procedures in clinical studies. Assessment of clinical validity and utility is essential towards implementation; however, these steps are still lacking for PET biomarkers in breast cancer. This could be solved by adding PET biomarkers to randomized trials, development of imaging data warehouses, and harmonization of endpoints and procedures.
Collapse
Affiliation(s)
- Jorianne Boers
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Erik F J de Vries
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andor W J M Glaudemans
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Geke A P Hospers
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Carolina P Schröder
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
48
|
Jeuken RM, Roth AK, Peters MJM, Welting TJM, van Rhijn LW, Koenen J, Peters RJRW, Thies JC, Emans PJ. In vitro and in vivo study on the osseointegration of BCP-coated versus uncoated nondegradable thermoplastic polyurethane focal knee resurfacing implants. J Biomed Mater Res B Appl Biomater 2020; 108:3370-3382. [PMID: 32614486 PMCID: PMC7586808 DOI: 10.1002/jbm.b.34672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 04/18/2020] [Accepted: 06/03/2020] [Indexed: 11/10/2022]
Abstract
Focal knee resurfacing implants (FKRIs) are intended to treat cartilage defects in middle-aged patients. Most FKRIs are metal-based, which hampers follow-up of the joint using magnetic resonance imaging and potentially leads to damage of the opposing cartilage. The purpose of this study was to develop a nondegradable thermoplastic polyurethane (TPU) FKRI and investigate its osseointegration. Different surface roughness modifications and biphasic calcium phosphate (BCP) coating densities were first tested in vitro on TPU discs. The in vivo osseointegration of BCP-coated TPU implants was subsequently compared to uncoated TPU implants and the titanium bottom layer of metal control implants in a caprine model. Implants were implanted bilaterally in stifle joints and animals were followed for 12 weeks, after which the bone-to-implant contact area (BIC) was assessed. Additionally, 18F-sodium-fluoride (18F-NaF) positron emission tomography PET/CT-scans were obtained at 3 and 12 weeks to visualize the bone metabolism over time. The BIC was significantly higher for the BCP-coated TPU implants compared to the uncoated TPU implants (p = .03), and did not significantly differ from titanium (p = .68). Similar 18F-NaF tracer uptake patterns were observed between 3 and 12 weeks for the BCP-coated TPU and titanium implants, but not for the uncoated implants. TPU FKRIs with surface modifications could provide the answer to the drawbacks of metal FKRIs.
Collapse
Affiliation(s)
- Ralph M Jeuken
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alex K Roth
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marloes J M Peters
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tim J M Welting
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lodewijk W van Rhijn
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jac Koenen
- DSM Biomedical BV, Geleen, The Netherlands
| | | | | | - Pieter J Emans
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
49
|
Can 18F-NaF PET/CT before Autologous Stem Cell Transplantation Predict Survival in Multiple Myeloma? Cancers (Basel) 2020; 12:cancers12051335. [PMID: 32456181 PMCID: PMC7281312 DOI: 10.3390/cancers12051335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/11/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
There is an unmet need for positron emission tomography (PET) radiotracers that can image bone disease in multiple myeloma (MM) in a more sensitive and specific way than the widely used 18F-fluorodeoxyglucose (18F-FDG). Sodium fluoride (18F-NaF) is a highly sensitive tracer of bone reconstruction, evolving as an important imaging agent for the assessment of malignant bone diseases. We attempted to investigate for the first time the prognostic significance of 18F-NaF PET/CT in newly diagnosed, symptomatic MM patients planned for autologous stem cell transplantation (ASCT). Forty-seven patients underwent dynamic and static PET/CT with 18F-NaF before treatment. After correlation with the respective findings on CT and 18F-FDG PET/CT that served as reference, the 18F-NaF PET findings were compared with established factors of high-risk disease, like cytogenetic abnormalities as well as bone marrow plasma cell infiltration rate. Furthermore, the impact of 18F-NaF PET/CT on progression-free survival (PFS) was analyzed. Correlation analysis revealed a moderate, significant correlation of the 18F-NaF parameters SUVaverage and K1 in reference tissue with bone marrow plasma cell infiltration rate. However, no significant correlation was observed regarding all other 18F-NaF PET parameters. Survival analysis revealed that patients with a pathologic 18F-NaF PET/CT have a shorter PFS (median = 36.2 months) than those with a physiologic scan (median = 55.6 months) (p = 0.02). Nevertheless, no quantitative 18F-NaF parameter could be shown to adversely affect PFS. In contrast, the respective analysis for quantitative dynamic 18F-FDG PET/CT revealed that the parameters SUVmax, fractional blood volume (VB), k3 and influx from reference tissue as well as SUVaverage from MM lesions had a significant negative impact on patient survival. The herein presented findings highlight the rather limited role of 18F-NaF PET/CT as a single PET approach in MM.
Collapse
|
50
|
Beheshti M, Manafi-Farid R, Rezaee A, Langsteger W. PET/CT and PET/MRI, Normal Variations, and Artifacts. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|