1
|
Kovacs B, Gllareva V, Ruschitzka F, Duru F, Kaufmann PA, Buechel RR, Benz DC, Saguner AM. Prediction of major arrhythmic outcomes in ischaemic cardiomyopathy: value of hibernating myocardium in positron emission tomography/computed tomography. Eur Heart J Cardiovasc Imaging 2024; 26:30-37. [PMID: 39213366 PMCID: PMC11687117 DOI: 10.1093/ehjci/jeae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
AIMS Known predictors of major arrhythmic events (MAEs) in patients with ischaemic cardiomyopathy (ICM) include previous MAE and left ventricular ejection fraction (LVEF) ≤ 35%. Myocardial scars detected by perfusion imaging in ICM have been linked to MAE, but the prognostic significance of hibernating myocardium (HM) is unclear. The objective was to predict MAEs from combined 13N-ammonia (NH3) and 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in ICM. METHODS AND RESULTS Consecutive patients with ICM undergoing combined NH3- and FDG-PET/CT were included. HM was quantified in relation to total left ventricular myocardium (i.e. ≥7% is large). The primary outcome was MAEs [sudden cardiac death, implantable cardioverter defibrillator (ICD) therapy, and sustained ventricular tachycardia/fibrillation].Among 254 patients, median baseline LVEF was 35% [interquartile range (IQR) 28-45] and 10% had an ICD. PET/CT identified ischaemia in 94 (37%), scar in 229 (90%), and HM in 195 (77%) patients. Over a median follow-up of 5.4 (IQR 2.2-9.5) years, MAE occurred in 34 patients (13%). Large HM was associated with a lower incidence of MAE (hazard ratio 0.31, 95% confidence interval 0.1-0.8, P = 0.001). After multivariate adjustment for history of MAE, LVEF ≤35%, and scar ≥10%, large HM remained significantly associated with a lower incidence of MAE (P = 0.016). LVEF improved over time among patients with large HM (P = 0.006) but did not change in those without (P = 0.610) or small HM (P = 0.240). CONCLUSION HM conveys a lower risk of MAE in patients with ICM. This may be explained by an increase in LVEF when a large extent of HM is present.
Collapse
Affiliation(s)
- Boldizsar Kovacs
- Department of Cardiology, University Heart Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, USA
- Center for Translational and Experimental Cardiology (CTEC), University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Valon Gllareva
- Department of Cardiology, University Heart Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Frank Ruschitzka
- Department of Cardiology, University Heart Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Center for Translational and Experimental Cardiology (CTEC), University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Center for Integrative Human Physiology, University Zurich, Zurich, Switzerland
| | - Firat Duru
- Department of Cardiology, University Heart Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Center for Translational and Experimental Cardiology (CTEC), University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Center for Integrative Human Physiology, University Zurich, Zurich, Switzerland
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Ronny R Buechel
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Dominik C Benz
- Department of Cardiology, University Heart Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Center for Translational and Experimental Cardiology (CTEC), University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Ardan M Saguner
- Department of Cardiology, University Heart Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Center for Translational and Experimental Cardiology (CTEC), University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| |
Collapse
|
2
|
Wang D, Li X, Feng W, Zhou H, Peng W, Wang X. Diagnostic and prognostic value of angiography-derived index of microvascular resistance: a systematic review and meta-analysis. Front Cardiovasc Med 2024; 11:1360648. [PMID: 38685980 PMCID: PMC11057370 DOI: 10.3389/fcvm.2024.1360648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Background The angiography-derived index of microvascular resistance (A-IMR) is a novel tool for diagnosing coronary microvascular dysfunction (CMD) addressing limitation of unavailability. However, the clinical value of A-IMR remains controversial. Methods A systematic review and meta-analysis was conducted. PubMed, EMBASE, Cochrane Library and Web of Science were searched for relevant studies. Studies that reported estimates of A-IMR's diagnostic accuracy (with thermodilution-based IMR as the reference test) and/or predictions of adverse cardiovascular events were selected. Pooled sensitivity, specificity, area under the summary receiver operating characteristic curve (sROC) were calculated to measure diagnostic performance; pooled hazard/risk ratio (HR/RR) and 95% confidence interval (95% CI) of major adverse cardiovascular events (MACE) or other independent adverse events were calculated to measure prognostic effect. This study was registered with PROSPERO (CRD42023451884). Results A total of 12 diagnostic studies pooling 1,642 vessels and 12 prognostic studies pooling 2,790 individuals were included. A-IMR yielded an area under sROC of 0.93 (95% CI: 0.91, 0.95), a pooled sensitivity of 0.85 (95% CI: 0.79, 0.89) and a pooled specificity of 0.89 (95% CI: 0.83, 0.93) for the diagnosis of CMD. CMD diagnosed using A-IMR was associated with higher risks of MACE (HR, 2.73, 95% CI: 2.16, 3.45), CV death (RR, 2.39, 95% CI: 1.49, 3.82) and heart failure hospitalization (HR, 2.30, 95% CI: 1.53, 3.45). Conclusion A-IMR demonstrated high diagnostic accuracy for CMD and showed a strong prognostic capability in predicting the risk of adverse CV outcomes. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023451884, PROSPERO (CRD42023451884).
Collapse
Affiliation(s)
- Dayang Wang
- Cardiovascular Institute, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Second Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoming Li
- Center of Intervention, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Feng
- Cardiovascular Institute, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hufang Zhou
- Cardiovascular Institute, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Second Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenhua Peng
- Second Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xian Wang
- Second Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Ferko N, Priest S, Almuallem L, Walczyk Mooradally A, Wang D, Oliva Ramirez A, Szabo E, Cabra A. Economic and healthcare resource utilization assessments of PET imaging in Coronary Artery Disease diagnosis: a systematic review and discussion of opportunities for future economic evaluations. J Med Econ 2024; 27:715-729. [PMID: 38650543 DOI: 10.1080/13696998.2024.2345507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
AIMS This systematic literature review (SLR) consolidated economic and healthcare resource utilization (HCRU) evidence for positron emission tomography (PET) and single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) to inform future economic evaluations. MATERIALS AND METHODS An electronic search was conducted in MEDLINE, Embase, and Cochrane databases from 2012-2022. Economic and HCRU studies in adults who underwent PET- or SPECT-MPI for coronary artery disease (CAD) diagnosis were eligible. A qualitative methodological assessment of existing economic evaluations, HCRU, and downstream cardiac outcomes was completed. Exploratory meta-analyses of clinical outcomes were performed. RESULTS The search yielded 13,439 results, with 71 records included. Economic evaluations and comparative clinical trials were limited in number and outcome types (HCRU, downstream cardiac outcomes, and diagnostic performance) assessed. No studies included all outcome types and only one economic evaluation linked diagnostic performance to HCRU. The meta-analyses of comparative studies demonstrated significantly higher rates of early- and late-invasive coronary angiography and revascularization for PET- compared to SPECT-MPI; however, the rate of repeat testing was lower with PET-MPI. The rate of acute myocardial infarction was lower, albeit non-significant with PET- vs. SPECT-MPI. LIMITATIONS AND CONCLUSIONS This SLR identified economic and HCRU evaluations following PET- and SPECT-MPI for CAD diagnosis and determined that existing studies do not capture all pertinent outcome parameters or link diagnostic performance to downstream HCRU and cardiac outcomes, thus, resulting in simplified assessments of CAD burden. A limitation of this work relates to heterogeneity in study designs, patient populations, and follow-up times of existing studies. Resultingly, it was challenging to pool data in meta-analyses. Overall, this work provides a foundation for the development of comprehensive economic models for PET- and SPECT-MPI in CAD diagnosis, which should link diagnostic outcomes to HCRU and downstream cardiac events to capture the full CAD scope.
Collapse
Affiliation(s)
| | | | | | | | - Di Wang
- EVERSANA, Burlington, Canada
| | | | | | | |
Collapse
|
4
|
Civieri G, Kerkhof PLM, Montisci R, Iliceto S, Tona F. Sex differences in diagnostic modalities of coronary artery disease: Evidence from coronary microcirculation. Atherosclerosis 2023; 384:117276. [PMID: 37775426 DOI: 10.1016/j.atherosclerosis.2023.117276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/16/2023] [Accepted: 09/01/2023] [Indexed: 10/01/2023]
Abstract
Although atherosclerosis is usually considered a disease of the large arteries, risk factors for atherosclerosis also trigger structural and functional abnormalities at a microvascular level. In cardiac disease, microvascular dysfunction is especially relevant in women, among whom the manifestation of ischemic disease due to impaired coronary microcirculation is more common than in men. This sex-specific clinical phenotype has important clinical implications and, given the higher pre-test probability of coronary microvascular dysfunction in females, different diagnostic modalities should be used in women compared to men. In this review, we summarize invasive and non-invasive diagnostic modalities to assess coronary microvascular function, ranging from catheter-based evaluation of endothelial function to Doppler echocardiography and positron emission tomography. Moreover, we discuss different clinical settings in which microvascular disease plays an important role, underlining the importance of choosing the right diagnostic modality depending on the sex of the patients.
Collapse
Affiliation(s)
- Giovanni Civieri
- Cardiology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Peter L M Kerkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VUmc, Amsterdam, the Netherlands
| | - Roberta Montisci
- Clinical Cardiology, AOU Cagliari, Department of Medical Science and Public Health, University of Cagliari, Italy
| | - Sabino Iliceto
- Cardiology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Francesco Tona
- Cardiology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy.
| |
Collapse
|
5
|
Ahmed AI, Saad JM, Alahdab F, Han Y, Nayfeh M, Alfawara MS, Al-Rifai M, Al-Mallah M. Prognostic value of positron emission tomography derived myocardial flow reserve: A systematic review and meta-analysis. Atherosclerosis 2023; 382:117280. [PMID: 37742396 DOI: 10.1016/j.atherosclerosis.2023.117280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND AND AIMS Positron Emission Tomography (PET)-derived myocardial flow reserve (MFR) has been shown to have a role in the diagnosis and prognosis of patients with coronary artery disease (CAD). We performed a systematic review and meta-analysis to summarize the body of literature and synthesize the evidence on the prognostic role of PET-derived MFR in patients with known or suspected CAD. METHODS A comprehensive literature search of the Medline database from its inception to August 2023, in humans, in any language, was conducted for clinical studies examining the prognostic value of PET imaging in patients of any age, sex, and CAD status. Systematic screening and data extraction of the identified studies were followed by quantitative meta-analysis of PET-MFR's role in predicting adverse clinical events using random effect model. Studies were appraised using the modified Newcastle-Ottawa tool. RESULTS A total of 21 studies assessing the prognostic role of PET derived MFR in 46,815 patients with known and/or suspected CAD were included (mean (SD) age 66 (4) years, 48% women). The mean follow-up duration was 36 months (range 10-96). Cardiovascular risk factors were prevalent (73% hypertension, 35% diabetes and 67% dyslipidemia). The definition of the composite outcome varied between studies, with various combinations of mortality, non-fatal myocardial infarction, hospitalization, and coronary revascularization. Pooled impaired MFR was significantly associated with an increased risk of adverse outcomes (RR = 2.94, 95% CI 2.42-3.56, p < 0.001). Results were similar in a subgroup of patients with suspected CAD. CONCLUSIONS The available body of evidence shows that impaired PET-derived MFR measured using different tracers and PET systems is strongly associated with an increased risk of adverse cardiovascular events. Limitations of this review include observational nature of studies, marked heterogeneity in patient populations, inconsistency in thresholds to define abnormal MFR, and differing components for the composite outcome.
Collapse
Affiliation(s)
- Ahmed Ibrahim Ahmed
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, USA; Yale School of Medicine, New Haven, CT, USA
| | - Jean Michel Saad
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, USA
| | - Fares Alahdab
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, USA
| | - Yushui Han
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, USA
| | - Malek Nayfeh
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, USA
| | | | - Mahmoud Al-Rifai
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, USA
| | - Mouaz Al-Mallah
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, USA.
| |
Collapse
|
6
|
Luo X, Liu Y, Liu J, Zhang J, Gao S, Zhang Y, Zhou Z, Xie H, Hou W, Gong YJ, Zheng B, Zhang Y, Li J. Impact of Isolated Coronary Microvascular Disease Diagnosed Using Various Measurement Modalities on Prognosis: An Updated Systematic Review and Meta-Analysis. Cardiology 2023; 149:78-92. [PMID: 37708863 DOI: 10.1159/000533670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION The main aim of this study was to investigate the impact of isolated coronary microvascular disease (CMD) as diagnosed via various modalities on prognosis. METHODS A systematic literature review of PubMed, Embase, and Cochrane Library databases was conducted to identify relevant studies published up to March 2023. Included studies were required to measure coronary microvascular function and report outcomes in patients without obstructive coronary artery disease (CAD) or any other cardiac pathological characteristics. The primary endpoint was all-cause mortality, and the secondary endpoint was a major adverse cardiac event (MACE). Pooled effects were calculated using random effects models. RESULTS A total of 27 studies comprising 18,204 subjects were included in the meta-analysis. Indices of coronary microvascular function measurement included coronary angiography-derived index of microcirculatory resistance (caIMR), hyperemic microcirculatory resistance (HMR), coronary flow reserve (CFR), and so on. Patients with isolated CMD exhibited a significantly higher risk of mortality (OR: 2.97, 95% CI, 1.91-4.60, p < 0.0001; HR: 3.38, 95% CI, 1.77-6.47, p = 0.0002) and MACE (OR: 5.82, 95% CI, 3.65-9.29, p < 0.00001; HR: 4.01, 95% CI, 2.59-6.20, p < 0.00001) compared to those without CMD. Subgroup analysis by measurement modality demonstrated consistent and robust pooled effect estimates in various subgroups. CONCLUSION CMD is significantly associated with an elevated risk of mortality and MACE in patients without obstructive CAD or any other identifiable cardiac pathologies. The utilization of various measurement techniques may have potential advantages in the management of isolated CMD.
Collapse
Affiliation(s)
- Xingyu Luo
- Department of Cardiology, Peking University First Hospital, Beijing, China,
| | - Yaokun Liu
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Jiahui Liu
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Jin Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Songyuan Gao
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yanyan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Zuoyi Zhou
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Haotai Xie
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Weijie Hou
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yan Jun Gong
- Department of Cardiology, Peking University First Hospital, Beijing, China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
| | - Bo Zheng
- Department of Cardiology, Peking University First Hospital, Beijing, China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
| |
Collapse
|
7
|
Kujala I, Nammas W, Maaniitty T, Stenström I, Klén R, Bax JJ, Knuuti J, Saraste A. Prognostic value of combined coronary CT angiography and myocardial perfusion imaging in women and men. Eur Heart J Cardiovasc Imaging 2023; 24:1201-1209. [PMID: 37086269 PMCID: PMC10445260 DOI: 10.1093/ehjci/jead072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/19/2023] [Accepted: 04/02/2023] [Indexed: 04/23/2023] Open
Abstract
AIMS Combined anatomical and functional imaging enables detection of non-obstructive and obstructive coronary artery disease (CAD) as well as myocardial ischaemia. We evaluated sex differences in disease profile and outcomes after combined computed tomography angiography (CTA) and positron emission tomography (PET) perfusion imaging in patients with suspected obstructive CAD. METHODS AND RESULTS We retrospectively evaluated 1948 patients (59% women) referred for coronary CTA due to suspected CAD during the years 2008-2016. Patients with a suspected obstructive lesion on coronary CTA (n = 657) underwent 15O-water PET to assess stress myocardial blood flow (MBF). During a mean follow-up of 6.8 years, 182 adverse events (all-cause death, myocardial infarction, or unstable angina) occurred. Women had more often normal coronary arteries (42% vs. 22%, P < 0.001) and less often abnormal stress MBF (9% vs. 28%, P < 0.001) than men. The annual adverse event rate was lower in women vs. men (1.2% vs. 1.7%, P = 0.02). Both in women and men, coronary calcification, non-obstructive CAD, and abnormal stress MBF were independent predictors of events. Abnormal stress MBF was associated with 5.0- and 5.6-fold adverse event rates in women and men, respectively. There was no interaction between sex and coronary calcification, non-obstructive CAD, or abnormal stress MBF in terms of predicting adverse events. CONCLUSION Among patients evaluated for chronic chest pain, women have a lower prevalence of ischaemic CAD and a lower rate of adverse events. Combined coronary CTA and PET myocardial perfusion imaging predict outcomes equally in women and men.
Collapse
Affiliation(s)
- Iida Kujala
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
| | - Wail Nammas
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
- Heart Center, Turku University Hospital and University of Turku, Hämeentie 11, FI-20520 Turku, Finland
| | - Teemu Maaniitty
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
- Department of clinical physiology, nuclear medicine and PET, Turku University Hospital, Turku, Finland
| | - Iida Stenström
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
- Heart Center, Turku University Hospital and University of Turku, Hämeentie 11, FI-20520 Turku, Finland
| | - Riku Klén
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
| | - Jeroen J Bax
- Heart Center, Turku University Hospital and University of Turku, Hämeentie 11, FI-20520 Turku, Finland
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
- Department of clinical physiology, nuclear medicine and PET, Turku University Hospital, Turku, Finland
| | - Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
- Heart Center, Turku University Hospital and University of Turku, Hämeentie 11, FI-20520 Turku, Finland
| |
Collapse
|
8
|
Højstrup S, Hansen KW, Talleruphuus U, Marner L, Bjerking L, Jakobsen L, Christiansen EH, Bouchelouche K, Wiinberg N, Guldbrandsen K, Galatius S, Prescott E. Myocardial Flow Reserve, an Independent Prognostic Marker of All-Cause Mortality Assessed by 82Rb PET Myocardial Perfusion Imaging: A Danish Multicenter Study. Circ Cardiovasc Imaging 2023; 16:e015184. [PMID: 37529907 DOI: 10.1161/circimaging.122.015184] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Rubidium-82 positron emission tomography (82Rb PET) myocardial perfusion imaging is used in clinical practice to quantify regional perfusion defects. Additionally, 82Rb PET provides a measure of absolute myocardial flow reserve (MFR), describing the vasculature state of health. We assessed whether 82Rb PET-derived MFR is associated with all-cause mortality independently of the extent of perfusion defects. METHODS We conducted a multicenter clinical registry-based study of patients undergoing 82Rb PET myocardial perfusion imaging on suspicion of chronic coronary syndromes. Patients were followed up in national registries for the primary outcome of all-cause mortality. Global MFR ≤2 was considered reduced. RESULTS Among 7169 patients studied, 38.1% were women, the median age was 69 (IQR, 61-76) years, and 39.0% had MFR ≤2. A total of 667 (9.3%) patients died during a median follow-up of 3.1 (IQR, 2.6-4.0) years, more in patients with MFR ≤2 versus MFR >2 (15.7% versus 5.2%; P<0.001). MFR ≤2 was associated with all-cause mortality across subgroups defined by the extent of perfusion defects (all P<0.05). In a Cox survival regression model adjusting for sex, age, comorbidities, kidney function, left ventricular ejection fraction, and perfusion defects, MFR ≤2 was a robust predictor of mortality with a hazard ratio of 1.62 (95% CI, 1.31-2.02; P<0.001). Among patients with no reversible perfusion defects (n=3101), MFR ≤2 remained strongly associated with mortality (hazard ratio, 1.86 [95% CI, 1.26-2.73]; P<0.01). The prognostic value of impaired MFR was similar for cardiac and noncardiac death. CONCLUSIONS MFR ≤2 predicts all-cause mortality independently of the extent of perfusion defects. Our results support the inclusion of MFR when assessing the prognosis of patients suspected of chronic coronary syndromes.
Collapse
Affiliation(s)
- Signe Højstrup
- Department of Cardiology (S.H., K.W.H., L.B., S.G., E.P.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Kim W Hansen
- Department of Cardiology (S.H., K.W.H., L.B., S.G., E.P.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Ulrik Talleruphuus
- Department of Clinical Physiology and Nuclear Medicine (U.T., L.M., N.W., K.G.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Lisbeth Marner
- Department of Clinical Physiology and Nuclear Medicine (U.T., L.M., N.W., K.G.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Louise Bjerking
- Department of Cardiology (S.H., K.W.H., L.B., S.G., E.P.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Lars Jakobsen
- Department of Cardiology (L.J., E.H.C.), Aarhus University Hospital, Denmark
| | | | - Kirsten Bouchelouche
- Department of Nuclear Medicine and PET Center (K.B.), Aarhus University Hospital, Denmark
| | - Niels Wiinberg
- Department of Clinical Physiology and Nuclear Medicine (U.T., L.M., N.W., K.G.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Kasper Guldbrandsen
- Department of Clinical Physiology and Nuclear Medicine (U.T., L.M., N.W., K.G.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Denmark (K.G.)
| | - Søren Galatius
- Department of Cardiology (S.H., K.W.H., L.B., S.G., E.P.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Eva Prescott
- Department of Cardiology (S.H., K.W.H., L.B., S.G., E.P.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| |
Collapse
|
9
|
Zhang H, Caobelli F, Che W, Huang Y, Zhang Y, Fan X, Hu X, Xu C, Fei M, Zhang J, Lv Z, Shi K, Yu F. The prognostic value of CZT SPECT myocardial blood flow (MBF) quantification in patients with ischemia and no obstructive coronary artery disease (INOCA): a pilot study. Eur J Nucl Med Mol Imaging 2023; 50:1940-1953. [PMID: 36786817 PMCID: PMC10199834 DOI: 10.1007/s00259-023-06125-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/22/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Despite the demonstrated adverse outcome, it is difficult to early identify the risks for patients with ischemia and no obstructive coronary artery disease (INOCA). We aimed to explore the prognostic potential of CZT SPECT in INOCA patients. METHODS The study population consisted of a retrospective cohort of 118 INOCA patients, all of whom underwent CZT SPECT imaging and invasive coronary angiography (ICA). Dynamic data were reconstructed, and MBF was quantified using net retention model. Major adverse cardiovascular events (MACEs) were defined as cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, heart failure, late coronary revascularization, or hospitalization for unstable angina. RESULTS During a median follow-up of 15 months (interquartile range (IQR) 11-20), 19 (16.1%) MACEs occurred; both stress myocardial blood flow (sMBF) ([Formula: see text]) and coronary flow reserve (CFR) ([Formula: see text]) were significantly lower in the MACE group. Optimal thresholds of sMBF<3.16 and CFR<2.52 were extracted from the ROC curves, and both impaired sMBF (HR: 15.08; 95% CI 2.95-77.07; [Formula: see text]) and CFR (HR: 6.51; 95% CI 1.43-29.65; [Formula: see text]) were identified as prognostic factors for MACEs. Only sMBF<3.16 (HR: 11.20; 95% CI 2.04-61.41; [Formula: see text]) remained a robust predictor when sMBF and CFR were integrated considered. Compared with CFR, sMBF provides better prognostic model discrimination and reclassification ability (C-index improvement = 0.06, [Formula: see text]; net reclassification improvement (NRI) = 0.19; integrated discrimination improvement (IDI) = 0.10). CONCLUSION The preliminary results demonstrated that quantitative analysis on CZT SPECT provides prognostic value for INOCA patients, which may allow the stratification for early prevention and intervention.
Collapse
Affiliation(s)
- Han Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Federico Caobelli
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Wenliang Che
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yan Huang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yu Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xin Fan
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xueping Hu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Chong Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Mengyu Fei
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jiajia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Computer Aided Medical Procedures and Augmented Reality, Institute of Informatics I16, Technical University of Munich, Munich, Germany.
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
10
|
Benz DC, Nagao M, Gräni C. Digital positron emission tomography - Making cardiac risk stratification fit for the future. Int J Cardiol 2023; 371:486-487. [PMID: 36179906 DOI: 10.1016/j.ijcard.2022.09.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Dominik C Benz
- CV Imaging Program, Cardiovascular Division, Department of Radiology, Brigham and Women's Hospital, Boston, MA, United States of America
| | - Michinobu Nagao
- Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, 8-1, Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Christoph Gräni
- Department of Cardiology, University Hospital Bern, Bern, Switzerland.
| |
Collapse
|
11
|
Mikail N, Rossi A, Bengs S, Haider A, Stähli BE, Portmann A, Imperiale A, Treyer V, Meisel A, Pazhenkottil AP, Messerli M, Regitz-Zagrosek V, Kaufmann PA, Buechel RR, Gebhard C. Imaging of heart disease in women: review and case presentation. Eur J Nucl Med Mol Imaging 2022; 50:130-159. [PMID: 35974185 PMCID: PMC9668806 DOI: 10.1007/s00259-022-05914-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
Abstract
Cardiovascular diseases (CVD) remain the leading cause of mortality worldwide. Although major diagnostic and therapeutic advances have significantly improved the prognosis of patients with CVD in the past decades, these advances have less benefited women than age-matched men. Noninvasive cardiac imaging plays a key role in the diagnosis of CVD. Despite shared imaging features and strategies between both sexes, there are critical sex disparities that warrant careful consideration, related to the selection of the most suited imaging techniques, to technical limitations, and to specific diseases that are overrepresented in the female population. Taking these sex disparities into consideration holds promise to improve management and alleviate the burden of CVD in women. In this review, we summarize the specific features of cardiac imaging in four of the most common presentations of CVD in the female population including coronary artery disease, heart failure, pregnancy complications, and heart disease in oncology, thereby highlighting contemporary strengths and limitations. We further propose diagnostic algorithms tailored to women that might help in selecting the most appropriate imaging modality.
Collapse
Affiliation(s)
- Nidaa Mikail
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Achi Haider
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Barbara E Stähli
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Angela Portmann
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Alessio Imperiale
- Nuclear Medicine and Molecular Imaging - Institut de Cancérologie de Strasbourg Europe (ICANS), University of Strasbourg, Strasbourg, France
- Molecular Imaging - DRHIM, IPHC, UMR 7178, CNRS/Unistra, Strasbourg, France
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Alexander Meisel
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Aju P Pazhenkottil
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Michael Messerli
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Vera Regitz-Zagrosek
- Charité, Universitätsmedizin, Berlin, Berlin, Germany
- University of Zurich, Zurich, Switzerland
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Ronny R Buechel
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Cathérine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Haider A, Bengs S, Portmann A, Rossi A, Ahmed H, Etter D, Warnock GI, Mikail N, Grämer M, Meisel A, Gisler L, Jie C, Keller C, Kozerke S, Weber B, Schibli R, Mu L, Kaufmann PA, Regitz-Zagrosek V, Ametamey SM, Gebhard C. Role of sex hormones in modulating myocardial perfusion and coronary flow reserve. Eur J Nucl Med Mol Imaging 2022; 49:2209-2218. [PMID: 35024889 PMCID: PMC9165260 DOI: 10.1007/s00259-022-05675-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/31/2021] [Indexed: 12/02/2022]
Abstract
BACKGROUND A growing body of evidence highlights sex differences in the diagnostic accuracy of cardiovascular imaging modalities. Nonetheless, the role of sex hormones in modulating myocardial perfusion and coronary flow reserve (CFR) is currently unclear. The aim of our study was to assess the impact of female and male sex hormones on myocardial perfusion and CFR. METHODS Rest and stress myocardial perfusion imaging (MPI) was conducted by small animal positron emission tomography (PET) with [18F]flurpiridaz in a total of 56 mice (7-8 months old) including gonadectomized (Gx) and sham-operated males and females, respectively. Myocardial [18F]flurpiridaz uptake (% injected dose per mL, % ID/mL) was used as a surrogate for myocardial perfusion at rest and following intravenous regadenoson injection, as previously reported. Apparent coronary flow reserve (CFRApp) was calculated as the ratio of stress and rest myocardial perfusion. Left ventricular (LV) morphology and function were assessed by cardiac magnetic resonance (CMR) imaging. RESULTS Orchiectomy resulted in a significant decrease of resting myocardial perfusion (Gx vs. sham, 19.4 ± 1.0 vs. 22.2 ± 0.7 % ID/mL, p = 0.034), while myocardial perfusion at stress remained unchanged (Gx vs. sham, 27.5 ± 1.2 vs. 27.3 ± 1.2 % ID/mL, p = 0.896). Accordingly, CFRApp was substantially higher in orchiectomized males (Gx vs. sham, 1.43 ± 0.04 vs. 1.23 ± 0.05, p = 0.004), and low serum testosterone levels were linked to a blunted resting myocardial perfusion (r = 0.438, p = 0.020) as well as an enhanced CFRApp (r = -0.500, p = 0.007). In contrast, oophorectomy did not affect myocardial perfusion in females. Of note, orchiectomized males showed a reduced LV mass, stroke volume, and left ventricular ejection fraction (LVEF) on CMR, while no such effects were observed in oophorectomized females. CONCLUSION Our experimental data in mice indicate that sex differences in myocardial perfusion are primarily driven by testosterone. Given the diagnostic importance of PET-MPI in clinical routine, further studies are warranted to determine whether testosterone levels affect the interpretation of myocardial perfusion findings in patients.
Collapse
Affiliation(s)
- Achi Haider
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, CH-8952, Schlieren, Switzerland
| | - Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, CH-8952, Schlieren, Switzerland
| | - Angela Portmann
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, CH-8952, Schlieren, Switzerland
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, CH-8952, Schlieren, Switzerland
| | - Hazem Ahmed
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Dominik Etter
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, CH-8952, Schlieren, Switzerland
| | - Geoffrey I Warnock
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, CH-8952, Schlieren, Switzerland
| | - Nidaa Mikail
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, CH-8952, Schlieren, Switzerland
| | - Muriel Grämer
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, CH-8952, Schlieren, Switzerland
| | - Alexander Meisel
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, CH-8952, Schlieren, Switzerland
| | - Livio Gisler
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Caitlin Jie
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Claudia Keller
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, CH-8092, Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Roger Schibli
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Linjing Mu
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
| | - Vera Regitz-Zagrosek
- Institute for Gender in Medicine, Charité Universitaetsmedizin Berlin, D-10115, Berlin, Germany
- University Hospital Zurich, CH-8091, Zurich, Switzerland
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.
- Center for Molecular Cardiology, University of Zurich, CH-8952, Schlieren, Switzerland.
| |
Collapse
|
13
|
Kelshiker MA, Seligman H, Howard JP, Rahman H, Foley M, Nowbar AN, Rajkumar CA, Shun-Shin MJ, Ahmad Y, Sen S, Al-Lamee R, Petraco R. Coronary flow reserve and cardiovascular outcomes: a systematic review and meta-analysis. Eur Heart J 2022; 43:1582-1593. [PMID: 34849697 PMCID: PMC9020988 DOI: 10.1093/eurheartj/ehab775] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/07/2021] [Accepted: 10/26/2021] [Indexed: 01/04/2023] Open
Abstract
AIMS This meta-analysis aims to quantify the association of reduced coronary flow with all-cause mortality and major adverse cardiovascular events (MACE) across a broad range of patient groups and pathologies. METHODS AND RESULTS We systematically identified all studies between 1 January 2000 and 1 August 2020, where coronary flow was measured and clinical outcomes were reported. The endpoints were all-cause mortality and MACE. Estimates of effect were calculated from published hazard ratios (HRs) using a random-effects model. Seventy-nine studies with a total of 59 740 subjects were included. Abnormal coronary flow reserve (CFR) was associated with a higher incidence of all-cause mortality [HR: 3.78, 95% confidence interval (CI): 2.39-5.97] and a higher incidence of MACE (HR 3.42, 95% CI: 2.92-3.99). Each 0.1 unit reduction in CFR was associated with a proportional increase in mortality (per 0.1 CFR unit HR: 1.16, 95% CI: 1.04-1.29) and MACE (per 0.1 CFR unit HR: 1.08, 95% CI: 1.04-1.11). In patients with isolated coronary microvascular dysfunction, an abnormal CFR was associated with a higher incidence of mortality (HR: 5.44, 95% CI: 3.78-7.83) and MACE (HR: 3.56, 95% CI: 2.14-5.90). Abnormal CFR was also associated with a higher incidence of MACE in patients with acute coronary syndromes (HR: 3.76, 95% CI: 2.35-6.00), heart failure (HR: 6.38, 95% CI: 1.95-20.90), heart transplant (HR: 3.32, 95% CI: 2.34-4.71), and diabetes mellitus (HR: 7.47, 95% CI: 3.37-16.55). CONCLUSION Reduced coronary flow is strongly associated with increased risk of all-cause mortality and MACE across a wide range of pathological processes. This finding supports recent recommendations that coronary flow should be measured more routinely in clinical practice, to target aggressive vascular risk modification for individuals at higher risk.
Collapse
Affiliation(s)
- Mihir A Kelshiker
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, 72 Du Cane Road, London W12 0HS, UK
| | - Henry Seligman
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, 72 Du Cane Road, London W12 0HS, UK
| | - James P Howard
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, 72 Du Cane Road, London W12 0HS, UK
| | - Haseeb Rahman
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, 72 Du Cane Road, London W12 0HS, UK
| | - Michael Foley
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, 72 Du Cane Road, London W12 0HS, UK
| | - Alexandra N Nowbar
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, 72 Du Cane Road, London W12 0HS, UK
| | - Christopher A Rajkumar
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, 72 Du Cane Road, London W12 0HS, UK
| | - Matthew J Shun-Shin
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, 72 Du Cane Road, London W12 0HS, UK
| | - Yousif Ahmad
- Yale School of Medicine, Yale University, 333 Cedar St, New Haven, Connecticut 06510, USA
| | - Sayan Sen
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, 72 Du Cane Road, London W12 0HS, UK
| | - Rasha Al-Lamee
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, 72 Du Cane Road, London W12 0HS, UK
| | - Ricardo Petraco
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, 72 Du Cane Road, London W12 0HS, UK
| |
Collapse
|
14
|
Gyllenhammar T, Carlsson M, Jögi J, Arheden H, Engblom H. Myocardial perfusion by CMR coronary sinus flow shows sex differences and lowered perfusion at stress in patients with suspected microvascular angina. Clin Physiol Funct Imaging 2022; 42:208-219. [PMID: 35279944 PMCID: PMC9310583 DOI: 10.1111/cpf.12750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 03/07/2022] [Indexed: 11/28/2022]
Abstract
Background Methods Results Conclusions
Collapse
Affiliation(s)
- Tom Gyllenhammar
- Department of Clinical Physiology Lund University, and Skåne University Hospital Sweden
| | - Marcus Carlsson
- Department of Clinical Physiology Lund University, and Skåne University Hospital Sweden
| | - Jonas Jögi
- Department of Clinical Physiology Lund University, and Skåne University Hospital Sweden
| | - Håkan Arheden
- Department of Clinical Physiology Lund University, and Skåne University Hospital Sweden
| | - Henrik Engblom
- Department of Clinical Physiology Lund University, and Skåne University Hospital Sweden
| |
Collapse
|
15
|
Green R, Cantoni V, Acampa W, Assante R, Zampella E, Nappi C, Gaudieri V, Mannarino T, Cuocolo R, Petretta M, Cuocolo A. Prognostic value of coronary flow reserve in patients with suspected or known coronary artery disease referred to PET myocardial perfusion imaging: A meta-analysis. J Nucl Cardiol 2021; 28:904-918. [PMID: 31875285 DOI: 10.1007/s12350-019-02000-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/06/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND We performed a meta-meta-analysis to evaluate the prognostic value of coronary flow reserve (CFR) assessed by cardiac positron emission tomography (PET) imaging in patients with suspected or known coronary artery disease (CAD). METHODS Studies published until April 2019 were identified by database search. We included studies if they evaluated CFR by PET providing data on adjusted hazard ratio (HR) for the occurrence of adverse events. Annualized event rates were calculated and the incidence rate ratios with 95% confidence interval (CI) were estimated to compare patients with impaired and preserved CFR. RESULTS We identified 13 eligible articles including 11,867 patients with a follow-up ranging from 0.6 to 7.1 years. The HR for the occurrence of major adverse cardiac events (MACE) was reported in 11 studies and pooled HR was 1.93 (95% CI 1.65-2.27). The HR for the occurrence of hard events was reported in 5 studies and pooled HR was 3.11 (95% CI 1.88-5.14). Six studies reported data useful to calculate separately the incidence rate of MACE in patients with preserved and impaired CFR and pooled IRR was 2.26 (CI 95% 1.79-2.85). Three studies reported data useful to calculate separately the incidence rate of hard events in patients with preserved and impaired CFR and pooled IRR was 4.12 (CI 95% 3.08-5.51). At meta-regression analysis, we found an association between HR for MACE and gender, diabetes and hypertension, while no significant association was found between HR for hard events and demographic and clinical variables. CONCLUSION In patients with suspected or known CAD, an impaired CFR is associated with adverse cardiovascular events. However, the large heterogeneity in study population underlines the need for further investigations to maximize the prognostic role of CFR.
Collapse
Affiliation(s)
- Roberta Green
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Valeria Cantoni
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Wanda Acampa
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
- Institute of Biostructure and Bioimaging, National Council of Research, Naples, Italy
| | - Roberta Assante
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Emilia Zampella
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Carmela Nappi
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Valeria Gaudieri
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Teresa Mannarino
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Renato Cuocolo
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Mario Petretta
- Department of Translational Medical Sciences, University Federico II, Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
16
|
Maredziak M, Bengs S, Portmann A, Haider A, Wijnen WJ, Warnock GI, Etter D, Froehlich S, Fiechter M, Meisel A, Treyer V, Fuchs TA, Pazhenkottil AP, Buechel RR, Kaufmann PA, Gebhard C. Microvascular dysfunction and sympathetic hyperactivity in women with supra-normal left ventricular ejection fraction (snLVEF). Eur J Nucl Med Mol Imaging 2020; 47:3094-3106. [PMID: 32506162 DOI: 10.1007/s00259-020-04892-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recently, a new disease phenotype characterized by supra-normal left ventricular ejection fraction (snLVEF) has been suggested, based on large datasets demonstrating an increased all-cause mortality in individuals with an LVEF > 65%. The underlying mechanisms of this association are currently unknown. METHODS A total of 1367 patients (352 women, mean age 63.1 ± 11.6 years) underwent clinically indicated rest/adenosine stress ECG-gated 13N-ammonia positron emission tomography (PET) between 1995 and 2017 at our institution. All patients were categorized according to LVEF. A subcohort of 698 patients (150 women) were followed for major adverse cardiac events (MACEs), a composite of cardiac death, non-fatal myocardial infarction, cardiac-related hospitalization, and revascularization. RESULTS The prevalence of a snLVEF (≥ 65%) was higher in women as compared to that in men (31.3% vs 18.8%, p < 0.001). In women, a significant reduction in coronary flow reserve (CFR, p < 0.001 vs normal LVEF) and a blunted heart rate reserve (% HRR, p = 0.004 vs normal LVEF) during pharmacological stress testing-a surrogate marker for autonomic dysregulation-were associated with snLVEF. Accordingly, reduced CFR and HRR were identified as strong and independent predictors for snLVEF in women in a fully adjusted multinomial regression analysis. After a median follow-up time of 5.6 years, women with snLVEF experienced more often a MACE than women with normal (55-65%) LVEF (log rank p < 0.001), while such correlation was absent in men (log rank p = 0.76). CONCLUSION snLVEF is associated with an increased risk of MACE in women, but not in men. Microvascular dysfunction and an increased sympathetic tone in women may account for this association.
Collapse
Affiliation(s)
- Monika Maredziak
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Angela Portmann
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Achi Haider
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Winandus J Wijnen
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Geoffrey I Warnock
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Dominik Etter
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Sandro Froehlich
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Michael Fiechter
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Alexander Meisel
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Tobias A Fuchs
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Aju P Pazhenkottil
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Ronny R Buechel
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Diagnostic performance of angiography-based quantitative flow ratio for the identification of myocardial ischemia as assessed by 13N-ammonia myocardial perfusion imaging positron emission tomography. Int J Cardiol 2020; 314:13-19. [PMID: 32353492 DOI: 10.1016/j.ijcard.2020.04.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Quantitative flow ratio (QFR) is a novel, adenosine-free method for functional lesion interrogation based on 3-dimensional quantitative coronary angiography and computational algorithms. We sought to investigate the diagnostic performance of QFR versus myocardial perfusion imaging positron emission tomography (MPI-PET), which yields the highest accuracy for detection of myocardial ischemia. METHODS Diagnostic performance of QFR versus MPI-PET was assessed in consecutive patients undergoing both clinically indicated coronary angiography and 13N-ammonia MPI-PET within a six-month period. RESULTS Out of 176 patients (439 coronary arteries), 19.3% were women. Percent area stenosis was 45 [32-58] %. Myocardial ischemia on 13N-ammonia MPI-PET was detected in 106 (24.1%) vessel territories and hemodynamic significance defined as contrast-flow vessel QFR ≤ 0.80 was observed in 83 (18.9%) vessels. Diagnostic accuracy, sensitivity, and specificity of contrast-flow vessel QFR for the prediction of myocardial ischemia on 13N-ammonia MPI-PET were 92.5 (95% CI 89.6-94.7) %, 73.6 (95% CI 64.1-81.7) %, and 98.5 (95% CI 96.5-99.5) %, respectively. The AUCs for contrast-flow vessel QFR, percent diameter stenosis, and percent area stenosis were 0.85 (95% CI 0.81-0.88, p < 0.001), 0.76 (95% CI 0.71-0.79, p < 0.001) and 0.75 (95% CI 0.70-0.79, p < 0.001), respectively. CONCLUSIONS QFR, a novel diagnostic tool for functional coronary lesion assessment, provides good diagnostic agreement with MPI-PET and superior diagnostic accuracy for the detection of myocardial ischemia as compared to anatomic indices. Future studies will have to determine the non-inferiority of QFR to fractional flow reserve with respect to clinical outcomes.
Collapse
|
18
|
Boscolo Berto M, Benz DC, Gräni C. Noninvasive Assessment of Coronary Artery Disease - Anatomical versus Functional Imaging and the Marginal Role of Exercise Electrocardiograms. PRAXIS 2020; 109:1141-1149. [PMID: 33108995 DOI: 10.1024/1661-8157/a003531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Coronary artery disease (CAD) is the leading cause of morbidity and mortality in the industrialized countries. Assessment of symptomatic patients with suspected obstructive CAD is a common reason for a clinical visit. Noninvasive anatomical and functional imaging are established tools to rule-in and rule-out CAD, to assess the severity of disease and to determine the potential risk of future cardiovascular events. In this review, we discuss the updated Guidelines from the European Society of Cardiology on Chronic Coronary Syndromes and explore the different imaging modalities used in current clinical practice for the noninvasive assessment of CAD. The pros and cons of each method, especially comparing anatomical and functional testing, are presented. Furthermore we we address the practical clinical aspects in the selection of the optimal noninvasive tests according to clinical need.
Collapse
Affiliation(s)
| | - Dominik C Benz
- Department of Nuclear Medicine and Department of Cardiology, University Hospital Zurich
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern
| |
Collapse
|
19
|
Cortigiani L, Ciampi Q, Lombardo A, Rigo F, Bovenzi F, Picano E. Age- and Gender-Specific Prognostic Cutoff Values of Coronary Flow Velocity Reserve in Vasodilator Stress Echocardiography. J Am Soc Echocardiogr 2019; 32:1307-1317. [DOI: 10.1016/j.echo.2019.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/18/2019] [Accepted: 05/25/2019] [Indexed: 01/09/2023]
|
20
|
Fiechter M, Roggo A, Haider A, Bengs S, Burger IA, Marędziak M, Portmann A, Treyer V, Becker AS, Messerli M, Mühlematter UJ, Kudura K, von Felten E, Benz DC, Fuchs TA, Gräni C, Pazhenkottil AP, Buechel RR, Kaufmann PA, Gebhard C. Metabolic Activity in Central Neural Structures of Patients With Myocardial Injury. J Am Heart Assoc 2019; 8:e013070. [PMID: 31566462 PMCID: PMC6806042 DOI: 10.1161/jaha.119.013070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Increasing evidence suggests a psychosomatic link between neural systems and the heart. In light of the growing burden of ischemic cardiovascular disease across the globe, a better understanding of heart‐brain interactions and their implications for cardiovascular treatment strategies is needed. Thus, we sought to investigate the interaction between myocardial injury and metabolic alterations in central neural areas in patients with suspected or known coronary artery disease. Methods and Results The association between resting metabolic activity in distinct neural structures and cardiac function was analyzed in 302 patients (aged 66.8±10.2 years; 70.9% men) undergoing fluor‐18‐deoxyglucose positron emission tomography and 99mTc‐tetrofosmin single‐photon emission computed tomography myocardial perfusion imaging. There was evidence for reduction of callosal, caudate, and brainstem fluor‐18‐deoxyglucose uptake in patients with impaired left ventricular ejection fraction (<55% versus ≥55%: P=0.047, P=0.022, and P=0.013, respectively) and/or in the presence of myocardial ischemia (versus normal perfusion: P=0.010, P=0.013, and P=0.016, respectively). In a sex‐stratified analysis, these differences were observed in men, but not in women. A first‐order interaction term consisting of sex and impaired left ventricular ejection fraction or myocardial ischemia was identified as predictor of metabolic activity in these neural regions (left ventricular ejection fraction: P=0.015 for brainstem; myocardial ischemia: P=0.004, P=0.018, and P=0.003 for callosal, caudate, or brainstem metabolism, respectively). Conclusions Myocardial dysfunction and injury are associated with reduced resting metabolic activity of central neural structures, including the corpus callosum, the caudate nucleus, and the brainstem. These associations differ in women and men, suggesting sex differences in the pathophysiological interplay of the nervous and cardiovascular systems.
Collapse
Affiliation(s)
- Michael Fiechter
- Department of Nuclear Medicine University Hospital Zurich Zurich Switzerland.,Center for Molecular Cardiology University of Zurich Switzerland.,Swiss Paraplegic Center Nottwil Switzerland
| | - Andrea Roggo
- Department of Nuclear Medicine University Hospital Zurich Zurich Switzerland
| | - Ahmed Haider
- Department of Nuclear Medicine University Hospital Zurich Zurich Switzerland.,Center for Molecular Cardiology University of Zurich Switzerland
| | - Susan Bengs
- Department of Nuclear Medicine University Hospital Zurich Zurich Switzerland.,Center for Molecular Cardiology University of Zurich Switzerland
| | - Irene A Burger
- Department of Nuclear Medicine University Hospital Zurich Zurich Switzerland
| | - Monika Marędziak
- Department of Nuclear Medicine University Hospital Zurich Zurich Switzerland.,Center for Molecular Cardiology University of Zurich Switzerland
| | - Angela Portmann
- Department of Nuclear Medicine University Hospital Zurich Zurich Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine University Hospital Zurich Zurich Switzerland
| | - Anton S Becker
- Department of Diagnostic and Interventional Radiology University Hospital Zurich Zurich Switzerland
| | - Michael Messerli
- Department of Nuclear Medicine University Hospital Zurich Zurich Switzerland
| | - Urs J Mühlematter
- Department of Diagnostic and Interventional Radiology University Hospital Zurich Zurich Switzerland
| | - Ken Kudura
- Department of Nuclear Medicine University Hospital Zurich Zurich Switzerland
| | - Elia von Felten
- Department of Nuclear Medicine University Hospital Zurich Zurich Switzerland
| | - Dominik C Benz
- Department of Nuclear Medicine University Hospital Zurich Zurich Switzerland
| | - Tobias A Fuchs
- Department of Nuclear Medicine University Hospital Zurich Zurich Switzerland
| | - Christoph Gräni
- Department of Nuclear Medicine University Hospital Zurich Zurich Switzerland
| | - Aju P Pazhenkottil
- Department of Nuclear Medicine University Hospital Zurich Zurich Switzerland
| | - Ronny R Buechel
- Department of Nuclear Medicine University Hospital Zurich Zurich Switzerland
| | - Philipp A Kaufmann
- Department of Nuclear Medicine University Hospital Zurich Zurich Switzerland
| | - Catherine Gebhard
- Department of Nuclear Medicine University Hospital Zurich Zurich Switzerland.,Center for Molecular Cardiology University of Zurich Switzerland
| |
Collapse
|
21
|
Gebhard CE, Marędziak M, Portmann A, Bengs S, Haider A, Fiechter M, Herzog BA, Messerli M, Treyer V, Kudura K, von Felten E, Benz DC, Fuchs TA, Gräni C, Pazhenkottil AP, Buechel RR, Kaufmann PA, Gebhard C. Heart rate reserve is a long-term risk predictor in women undergoing myocardial perfusion imaging. Eur J Nucl Med Mol Imaging 2019; 46:2032-2041. [PMID: 31254034 DOI: 10.1007/s00259-019-04344-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/29/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Although women with cardiovascular disease experience relatively worse outcomes as compared to men, substantial knowledge gaps remain regarding the unique female determinants of cardiovascular risk. Heart rate (HR) responses to vasodilator stress mirror autonomic activity and may carry important long-term prognostic information in women. METHODS AND RESULTS Hemodynamic changes during adenosine stress were recorded in a total of 508 consecutive patients (104 women) undergoing clinically indicated 13N-ammonia Positron-Emission-Tomography (PET) at our institution. Following propensity matching, 202 patients (101 women, mean age 61.3 ± 12.6 years) were analyzed. During a median follow-up of 5.6 years, 97 patients had at least one cardiac event, including 17 cardiac deaths. Heart rate reserve (% HRR) during adenosine infusion was significantly higher in women as compared to men (23.8 ± 19.5 vs 17.3 ± 15.3, p = 0.009). A strong association between 10-year cardiovascular endpoints and a blunted HRR was observed in women, while this association was less pronounced in men. Accordingly, in women, but not in men, reduced HRR was selected as a strong predictor for adverse cardiovascular events in a Cox regression model fully adjusted for imaging findings and traditional risk factors (HR 2.41, 95% CI 1.23-4.75, p = 0.011). Receiver operating characteristics (ROC) curves revealed that a blunted HRR <21% was a powerful predictor for MACE in women with a sensitivity of 77% and a specificity of 68%. CONCLUSION Blunted HRR to adenosine stress adds incremental prognostic value for long-term cardiovascular outcomes in women beyond that provided by traditional risk factors and imaging findings.
Collapse
Affiliation(s)
- Caroline E Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Department of Anesthesiology, University Hospital Basel, Basel, Switzerland
| | - Monika Marędziak
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Angela Portmann
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Achi Haider
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Michael Fiechter
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Bernhard A Herzog
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Michael Messerli
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Ken Kudura
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Elia von Felten
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Dominik C Benz
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Tobias A Fuchs
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Christoph Gräni
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Aju P Pazhenkottil
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Ronny R Buechel
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
22
|
Benz DC, von Dahlen AP, Huang W, Messerli M, von Felten E, Benetos G, Giannopoulos AA, Fuchs TA, Gräni C, Gebhard C, Pazhenkottil AP, Gaemperli O, Kaufmann PA, Buechel RR. No differences in rest myocardial blood flow in stunned and hibernating myocardium: insights into the pathophysiology of ischemic cardiomyopathy. Eur J Nucl Med Mol Imaging 2019; 46:2322-2328. [DOI: 10.1007/s00259-019-04440-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/11/2019] [Indexed: 11/27/2022]
|
23
|
Haider A, Bengs S, Maredziak M, Messerli M, Fiechter M, Giannopoulos AA, Treyer V, Schwyzer M, Kamani CH, Patriki D, von Felten E, Benz DC, Fuchs TA, Gräni C, Pazhenkottil AP, Kaufmann PA, Buechel RR, Gebhard C. Heart rate reserve during pharmacological stress is a significant negative predictor of impaired coronary flow reserve in women. Eur J Nucl Med Mol Imaging 2019; 46:1257-1267. [PMID: 30648200 DOI: 10.1007/s00259-019-4265-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/04/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Evidence to date has failed to adequately explore determinants of cardiovascular risk in women with coronary microvascular dysfunction (CMVD). Heart rate responses to adenosine mirror autonomic activity and may carry important prognostic information for the diagnosis of CMVD. METHODS Hemodynamic changes during adenosine stress were analyzed in a propensity-matched cohort of 404 patients (202 women, mean age 65.9 ± 11.0) who underwent clinically indicated myocardial perfusion 13N-ammonia Positron-Emission-Tomography (PET) at our institution between September 2013 and May 2017. RESULTS Baseline heart rate (HR) was significantly higher in patients with abnormal coronary flow reserve (CFR, p < 0.001 vs normal CFR). Accordingly, a blunted HR response to adenosine (=reduced heart rate reserve, %HRR) was seen in patients with abnormal CFR, with a most pronounced effect being observed in female patients free of myocardial ischemia (45.9 ± 34.9 vs 26.5 ± 18.0, p < 0.001 in women and 29.1 ± 16.9 vs 24.3 ± 21.7, p = 0.15 in men). Hence, a fully-adjusted multivariate logistic regression model identified HRR as the strongest negative predictor of reduced CFR in women free of myocardial ischemia, but not in men. Accordingly, receiver operating characteristics (ROC) curves for the presence of reduced CFR revealed that a %HRR <35 was a powerful predictor for abnormal CFR with a sensitivity of 81% and a specificity of 60% in women. CONCLUSION A blunted HRR <35% is associated with abnormal CFR in women. Taking into account HR responses during stress test in women may help to risk stratify the heterogeneous female population of patients with non-obstructive coronary artery disease (CAD).
Collapse
Affiliation(s)
- Achi Haider
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Monika Maredziak
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Michael Messerli
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Michael Fiechter
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Andreas A Giannopoulos
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Moritz Schwyzer
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Christel Hermann Kamani
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Dimitri Patriki
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Elia von Felten
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Dominik C Benz
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Tobias A Fuchs
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Christoph Gräni
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Aju P Pazhenkottil
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Ronny R Buechel
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|