1
|
Berrens AC, Knipper S, Marra G, van Leeuwen PJ, van der Mierden S, Donswijk ML, Maurer T, van Leeuwen FW, van der Poel HG. State of the Art in Prostate-specific Membrane Antigen-targeted Surgery-A Systematic Review. EUR UROL SUPPL 2023; 54:43-55. [PMID: 37361200 PMCID: PMC10285550 DOI: 10.1016/j.euros.2023.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2023] [Indexed: 06/28/2023] Open
Abstract
Context Identifying malignant tissue and leaving adjacent structures undisturbed constitute an ongoing challenge in prostate cancer (PCa) surgery. Image and radioguided surgical technologies targeting the prostate-specific membrane antigen (PSMA) receptor may facilitate identification and removal of diseased tissue. Objective To perform a systematic review of the clinical studies on PSMA-targeted surgery. Evidence acquisition The MEDLINE (OvidSP), Embase.com, and Cochrane Library databases were searched. Identified reports were critically appraised according to the Idea, Development, Exploration, Assessment, Long-term framework criteria. The risk of bias (RoB) was assessed as per the Risk Of Bias In Non-randomized Studies-of Interventions tool. The strengths and limitations of the techniques and corresponding oncological outcomes were extracted as areas of interest. Data were reported according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Evidence synthesis In total, 29 reports were selected, including eight prospective studies, 12 retrospective analyses, and nine case reports, all with a high or an unclear RoB. In 72.4% of studies, PSMA targeting was achieved via radioguided surgery (RGS), predominantly using 99mTc-PSMA-I&S (66.7%). Hybrid approaches that complement RGS with optical guidance are emerging. The majority of studies retrieved were pilot studies with a short follow-up. In 13 reports, salvage lymph node surgery was discussed (44.8%). In 12 more recent reports (41.4%), PSMA targeting was studied in primary PCa surgery (50.0% lymph nodes and 50.0% surgical margins), and four studied both primary and salvage surgery (13.8%). Overall, specificity was higher than sensitivity (median 98.9% and 84.8%, respectively). Oncological outcomes were discussed only in reports on the use of 99mTc-PSMA-I&S in salvage surgery (median follow-up of 17.2 mo). A decline in prostate-specific antigen level of >90% ranged from 22.0% to 100.0%, and biochemical recurrence ranged from 50.0% to 61.8% of patients. Conclusions In PSMA-targeted surgery, most studies address salvage PSMA-RGS using 99mTc-PSMA-I&S. Available evidence suggests that the specificity of intraoperative PSMA targeting is higher than the sensitivity. The studies that included follow-up did not yet objectify a clear oncological benefit. Lacking solid outcome data, PSMA-targeted surgery remains investigational. Patient summary In this paper, we review recent advances in prostate-specific membrane antigen (PSMA)-targeted surgery, which is used to help identify and remove prostate cancer. We found good evidence to suggest that PSMA targeting helps identify prostate cancer during surgery. The oncological benefits have yet to be investigated further.
Collapse
Affiliation(s)
- Anne-Claire Berrens
- Department of Urology, Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sophie Knipper
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Department of Urology, Institut Paoli-Calmettes, Marseille, France
| | - Giancarlo Marra
- Urology division, Department of Surgical Sciences, Molinette Hospital, Città della Salute e della Scienza San Giovanni Battista Hospital and University of Turin, Turin, Italy
| | - Pim J. van Leeuwen
- Department of Urology, Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Stevie van der Mierden
- Scientific Information Service, Netherlands Cancer Institute- Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands
| | - Maarten L. Donswijk
- Department of Nuclear Medicine, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Tobias Maurer
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Fijs W.B. van Leeuwen
- Department of Urology, Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Henk G. van der Poel
- Department of Urology, Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Department of Urology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Cheng L, Yang T, Zhang J, Gao F, Yang L, Tao W. The Application of Radiolabeled Targeted Molecular Probes for the Diagnosis and Treatment of Prostate Cancer. Korean J Radiol 2023; 24:574-589. [PMID: 37271211 DOI: 10.3348/kjr.2022.1002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 06/06/2023] Open
Abstract
Radiopharmaceuticals targeting prostate-specific membrane antigens (PSMA) are essential for the diagnosis, evaluation, and treatment of prostate cancer (PCa), particularly metastatic castration-resistant PCa, for which conventional treatment is ineffective. These molecular probes include [68Ga]PSMA, [18F]PSMA, [Al18F]PSMA, [99mTc]PSMA, and [89Zr]PSMA, which are widely used for diagnosis, and [177Lu]PSMA and [225Ac]PSMA, which are used for treatment. There are also new types of radiopharmaceuticals. Due to the differentiation and heterogeneity of tumor cells, a subtype of PCa with an extremely poor prognosis, referred to as neuroendocrine prostate cancer (NEPC), has emerged, and its diagnosis and treatment present great challenges. To improve the detection rate of NEPC and prolong patient survival, many researchers have investigated the use of relevant radiopharmaceuticals as targeted molecular probes for the detection and treatment of NEPC lesions, including DOTA-TOC and DOTA-TATE for somatostatin receptors, 4A06 for CUB domain-containing protein 1, and FDG. This review focused on the specific molecular targets and various radionuclides that have been developed for PCa in recent years, including those mentioned above and several others, and aimed to provide valuable up-to-date information and research ideas for future studies.
Collapse
Affiliation(s)
- Luyi Cheng
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Tianshuo Yang
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Jun Zhang
- Department of Nuclear Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lingyun Yang
- JYAMS PET Research and Development Limited, Nanjing, Jiangsu, China
| | - Weijing Tao
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China.
| |
Collapse
|
3
|
Tan Y, Fang Z, Tang Y, Liu K, Zhao H. Clinical advancement of precision theranostics in prostate cancer. Front Oncol 2023; 13:1072510. [PMID: 36816956 PMCID: PMC9932923 DOI: 10.3389/fonc.2023.1072510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Theranostic approaches with positron emission tomography/computed tomography (PET/CT) or PET/magnetic resonance imaging (PET/MRI) molecular imaging probes are being implemented clinically in prostate cancer (PCa) diagnosis and imaging-guided precision surgery. This review article provides a comprehensive summary of the rapidly expanding list of molecular imaging probes in this field, including their applications in early diagnosis of primary prostate lesions; detection of lymph node, skeletal and visceral metastases in biochemical relapsed patients; and intraoperative guidance for tumor margin detection and nerve preservation. Although each imaging probe shows preferred efficacy in some applications and limitations in others, the exploration and research efforts in this field will eventually lead to improved precision theranostics of PCa.
Collapse
Affiliation(s)
- Yue Tan
- Hengyang Medical College, University of South China, Hengyang, Hunan, China,Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhihui Fang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China,Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kai Liu
- Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Weill Cornell Medicine, Houston TX, United States,Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,*Correspondence: Kai Liu, ; Hong Zhao,
| | - Hong Zhao
- Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Weill Cornell Medicine, Houston TX, United States,*Correspondence: Kai Liu, ; Hong Zhao,
| |
Collapse
|
4
|
Filippi L, Palumbo B, Frantellizzi V, Nuvoli S, De Vincentis G, Spanu A, Schillaci O. Prostate-specific membrane antigen-directed imaging and radioguided surgery with single-photon emission computed tomography: state of the art and future outlook. Expert Rev Med Devices 2022; 19:815-824. [PMID: 36370108 DOI: 10.1080/17434440.2022.2146999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Prostate-specific membrane antigen (PSMA) has emerged as a highly relevant target for prostate cancer (PC) diagnosis and therapy. PSMA inhibitors targeting PSMA-enzymatic domain have been successfully labeled with radionuclides emitting positrons or gamma-photons, thus obtaining tracers suitable for imaging with positron emission computed tomography (PET/CT) or single-photon emission tomography (SPECT). AREAS COVERED The different approaches for obtaining PSMA-ligands labeled with gamma-emitting nuclides (99mTc or111In) are reviewed. Furthermore, the applications of 99mTc/111In-PSMA SPECT for the imaging of PC patients in different clinical settings (staging or biochemical recurrence) are covered. Lastly, the employment of PSMA-targeted SPECT tracers for radioguided surgery (RGS) during primary or salvage lymphadenectomy is discussed. EXPERT OPINION RGS provided satisfying preliminary results in both primary and salvage lymphadenectomy, allowing to discriminate between pathological and non-pathological nodes with high accuracy, although prospective studies with larger cohorts are needed to further validate this surgical approach. The potential of PSMA-targeted SPECT/CT has not been fully explored yet, but it might represent a relatively cost-effective alternative to PSMA PET/CT in limited resource environments. In this perspective, the implementation of novel SPECT technologies or algorithms, such as semiconductor-ionization detectors or resolution recovery reconstruction, will be topic of future investigation.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, Latina, Italy
| | - Barbara Palumbo
- Section of Nuclear Medicine and Health Physics, Department of Medicine and Surgery, Università Degli Studi di Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Susanna Nuvoli
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Angela Spanu
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
5
|
Yılmaz B, Şahin S, Ergül N, Çolakoğlu Y, Baytekin HF, Sökmen D, Tuğcu V, Taşçı Aİ, Çermik TF. 99mTc-PSMA targeted robot-assisted radioguided surgery during radical prostatectomy and extended lymph node dissection of prostate cancer patients. Ann Nucl Med 2022; 36:597-609. [DOI: 10.1007/s12149-022-01741-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 11/25/2022]
|
6
|
Dell'Oglio P, van Willigen DM, van Oosterom MN, Bauwens K, Hensbergen F, Welling MM, van der Stadt H, Bekers E, Pool M, van Leeuwen P, Maurer T, van Leeuwen FWB, Buckle T. Feasibility of fluorescence imaging at microdosing using a hybrid PSMA tracer during robot-assisted radical prostatectomy in a large animal model. EJNMMI Res 2022; 12:14. [PMID: 35254544 PMCID: PMC8901828 DOI: 10.1186/s13550-022-00886-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/19/2022] [Indexed: 11/17/2022] Open
Abstract
Background With the rise of prostate-specific membrane antigen (PSMA) radioguided surgery, which is performed using a microdosing regime, demand for visual target confirmation via fluorescence guidance is growing. While proven very effective for radiotracers, microdosing approaches the detection limit for fluorescence imaging. Thus, utility will be highly dependent on the tracer performance, the sensitivity of the fluorescence camera used, and the degree of background signal. Using a porcine model the ability to perform robot-assisted radical prostatectomy under fluorescence guidance using the bimodal or rather hybrid PSMA tracer (99mTc-EuK-(SO3)Cy5-mas3) was studied, while employing the tracer in a microdosing regime. This was followed by ex vivo evaluation in surgical specimens obtained from prostate cancer patients. Results T50% blood and T50% urine were reached at 85 min and 390 min, in, respectively, blood and urine. Surgical fluorescence imaging allowed visualization of the prostate gland based on the basal PSMA-expression in porcine prostate. Together, in vivo visualization of the prostate and urinary excretion suggests at least an interval of > 7 h between tracer administration and surgery. Confocal microscopy of excised tissues confirmed tracer uptake in kidney and prostate, which was confirmed with PSMA IHC. No fluorescence was detected in other excised tissues. Tumor identification based on ex vivo fluorescence imaging of human prostate cancer specimens correlated with PSMA IHC. Conclusion Intraoperative PSMA-mediated fluorescence imaging with a microdosing approach was shown to be feasible. Furthermore, EuK‐(SO3)Cy5‐mas3 allowed tumor identification in human prostate samples, underlining the translational potential of this novel tracer. Trial registration Approval for use of biological material for research purposes was provided by the Translational Research Board of the Netherlands Cancer Institute-Antoni van Leeuwenhoek hospital (NKI-AvL) under reference IRBm19-273 (22/10/2019).
Collapse
Affiliation(s)
- Paolo Dell'Oglio
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.,Department of Urology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Danny M van Willigen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Matthias N van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.,Department of Urology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | | | - Fabian Hensbergen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Mick M Welling
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | | | - Elise Bekers
- Department of Pathology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Martin Pool
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pim van Leeuwen
- Department of Urology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Tobias Maurer
- Martini-Klinik, Universit¨Atsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.,Department of Urology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands. .,Department of Urology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Guidoccio F, Valdés Olmos RA, Vidal-Sicart S, Orsini F, Giammarile F, Mariani G. Radioguided surgery for intraoperative detection of occult lesions. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
8
|
Neels OC, Kopka K, Liolios C, Afshar-Oromieh A. Radiolabeled PSMA Inhibitors. Cancers (Basel) 2021; 13:6255. [PMID: 34944875 PMCID: PMC8699044 DOI: 10.3390/cancers13246255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/16/2022] Open
Abstract
PSMA has shown to be a promising target for diagnosis and therapy (theranostics) of prostate cancer. We have reviewed developments in the field of radio- and fluorescence-guided surgery and targeted photodynamic therapy as well as multitargeting PSMA inhibitors also addressing albumin, GRPr and integrin αvβ3. An overview of the regulatory status of PSMA-targeting radiopharmaceuticals in the USA and Europe is also provided. Technical and quality aspects of PSMA-targeting radiopharmaceuticals are described and new emerging radiolabeling strategies are discussed. Furthermore, insights are given into the production, application and potential of alternatives beyond the commonly used radionuclides for radiolabeling PSMA inhibitors. An additional refinement of radiopharmaceuticals is required in order to further improve dose-limiting factors, such as nephrotoxicity and salivary gland uptake during endoradiotherapy. The improvement of patient treatment achieved by the advantageous combination of radionuclide therapy with alternative therapies is also a special focus of this review.
Collapse
Affiliation(s)
- Oliver C. Neels
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany;
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany;
- Faculty of Chemistry and Food Chemistry, School of Science, Technical University Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Christos Liolios
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National & Kapodistrian University of Athens, Zografou, 15771 Athens, Greece;
- INRASTES, Radiochemistry Laboratory, NCSR “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Bern University Hospital (Inselspital), Freiburgstrasse 18, 3010 Bern, Switzerland;
| |
Collapse
|
9
|
Mix M, Schultze-Seemann W, von Büren M, Sigle A, Omrane MA, Grabbert MT, Werner M, Gratzke C, Meyer PT, Jilg CA. 99mTc-labelled PSMA ligand for radio-guided surgery in nodal metastatic prostate cancer: proof of principle. EJNMMI Res 2021; 11:22. [PMID: 33661414 PMCID: PMC7933311 DOI: 10.1186/s13550-021-00762-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/10/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose Intraoperative identification of prostate cancer (PCa) lymph node (LN) metastases (LNM) detected by preoperative PSMA PET/CT may be facilitated by PSMA radio-guided surgery (RGS) with use of a γ-probe. Earlier we demonstrated excellent performance of the 111In-labelled PSMA ligand DKFZ-617 ([111In]In-PSMA-617) in RGS for ex situ distinction of LN vs LNM at lymphadenectomy (LA) at a single LN level. In comparison with indium-111, technetium-99m has better physical properties for γ-probe measurements, better availability and lower radiation exposure for patients and medical personnel. Against this background, we evaluated the uptake of 99mTc-PSMA-I&S ligand at the level of single LN and its power to discriminate between unaffected LN and LNM.
Methods Six patients with PCa with the suspicion of LNM on preoperative PSMA-PET/CT underwent [99mTc]Tc-PSMA-I&S RGS (4 salvage LA, 2 primary LA) with intravenous injection of [99mTc]Tc-PSMA-I&S 24 h prior to surgery. Resected samples were isolated manually aiming at the level of single LN. Uptake measurements were done ex situ with a high-purity germanium detector. Receiver operating characteristic (ROC) analysis was performed based on [99mTc]Tc-PSMA-I&S uptake expressed as lean body mass standard uptake value (SUL). Results Separation of the tissue samples from 73 subregions resulted in 498 single samples. After final histopathology 356 LN, 160 LNM und 11 non-nodal PCa samples were identified. Median SUL of tumor-free samples (0.26) and samples with cancer (3.5) was significantly different (p < 0.0001). ROC analysis revealed an area under the curve (AUC) of 0.917 (95% CI 0.89–0.95). Using a SUL cutoff of 1.1, sensitivity, specificity, positive predictive value, and negative predictive values were 76.6%, 94.4%, 89.4% and 86.9%. Conclusion Ex situ analysis of [99mTc]Tc-PSMA-I&S uptake at single LN level showed good diagnostic performance for the ex situ distinction of tumor-bearing vs tumor-free LN during RGS.
Collapse
Affiliation(s)
- Michael Mix
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Freiburg, Germany.
| | - Wolfgang Schultze-Seemann
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Moritz von Büren
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - August Sigle
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mohamed A Omrane
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus T Grabbert
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Werner
- Institute for Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Gratzke
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Freiburg, Germany
| | - Cordula A Jilg
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Jilg CA, Reichel K, Stoykow C, Rischke HC, Bartholomä M, Drendel V, von Büren M, Schultze-Seemann W, Meyer PT, Mix M. Results from extended lymphadenectomies with [ 111In]PSMA-617 for intraoperative detection of PSMA-PET/CT-positive nodal metastatic prostate cancer. EJNMMI Res 2020; 10:17. [PMID: 32144598 PMCID: PMC7060305 DOI: 10.1186/s13550-020-0598-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose Identification of suspicious PSMA-PET/CT-positive lymph node (LN) metastases (LNM) from prostate cancer (PCa) during lymphadenectomy (LA) is challenging. We evaluated an 111In-labelled PSMA ligand (DKFZ-617, referred to as [111In]PSMA-617) as a γ-emitting tracer for intraoperative γ-probe application for resected tissue samples in PCa patients. Forty-eight hours prior to LA, [111In]PSMA-617 was administered intravenously in 23 patients with suspected LNM on PSMA-PET/CT (n = 21 with biochemical relapse, n = 2 at primary therapy). Resected tissue samples (LN, LNM and fibrofatty tissue) were measured ex situ by a γ-probe expressed as counts per second (CPSnorm). [111In]PSMA-617 tissue sample uptake was measured by a germanium detector for verification and calculated as %IAlbm (percent injected activity per kilogram lean body mass at time of surgery). Based on a clinical requirement for a specificity > 95%, thresholds for both ex situ measurements were chosen accordingly. Correlation of the results from PET/CT, γ-probe and germanium detector with histopathology was done. Results Eight hundred sixty-four LNs (197 LNM) were removed from 275 subregions in 23 patients, on average 8.6 ± 14.9 LNM per patient. One hundred four of 275 tissue samples showed cancer. Median γ-probe and germanium detector results were significantly different between tumour-affected (33.5 CPSnorm, 0.71 %IAlbm) and tumour-free subregions (3.0 CPSnorm, 0.03 %IAlbm) (each p value < 0.0001). For the chosen γ-probe cut-off (CPSnorm > 23) and germanium detector cut-off (%IAlbm > 0.27), 64 and 74 true-positive and 158 true-negative samples for both measurements were identified. Thirty-nine and 30 false-negative and 6 and 5 false-positive tissue samples were identified by γ-probe and germanium detector measurements. Conclusion [111In]PSMA-617 application for LA is feasible in terms of an intraoperative real-time measurement with a γ-probe for detection of tumour-affected tissue samples. γ-probe results can be confirmed by precise germanium detector measurements and were significantly different between tumour-affected and tumour-free samples.
Collapse
Affiliation(s)
- Cordula A Jilg
- Department of Urology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstraße 55, 79106, Freiburg, Germany.
| | - Kathrin Reichel
- Department of Urology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstraße 55, 79106, Freiburg, Germany
| | - Christian Stoykow
- Department of Nuclear Medicine, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - H Christian Rischke
- Department of Radiation Oncology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mark Bartholomä
- Department of Nuclear Medicine, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vanessa Drendel
- Institute for Pathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Moritz von Büren
- Department of Urology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstraße 55, 79106, Freiburg, Germany
| | - Wolfgang Schultze-Seemann
- Department of Urology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstraße 55, 79106, Freiburg, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Medical Imaging and Clinical Oncology, Nuclear Medicine Division, Faculty of Medicine and Health Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
11
|
Nuclear Imaging of Glucose Metabolism: Beyond 18F-FDG. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:7954854. [PMID: 31049045 PMCID: PMC6458935 DOI: 10.1155/2019/7954854] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/05/2019] [Indexed: 01/25/2023]
Abstract
Glucose homeostasis plays a key role in numerous fundamental aspects of life, and its dysregulation is associated with many important diseases such as cancer. The atypical glucose metabolic phenomenon, known as the Warburg effect, has been recognized as a hallmark of cancer and serves as a promising target for tumor specific imaging. At present, 2-deoxy-2-[18F]fluoro-glucose (18F-FDG)-based positron emission tomography/computed tomography (PET/CT) represented the state-of-the-art radionuclide imaging technique for this purpose. The powerful impact of 18F-FDG has prompted intensive research efforts into other glucose-based radiopharmaceuticals for positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging. Currently, glucose and its analogues have been labeled with various radionuclides such as 99mTc, 111In, 18F, 68Ga, and 64Cu and have been successfully investigated for tumor metabolic imaging in many preclinical studies. Moreover, 99mTc-ECDG has advanced into its early clinical trials and brings a new era of tumor imaging beyond 18F-FDG. In this review, preclinical and early clinical development of glucose-based radiopharmaceuticals for tumor metabolic imaging will be summarized.
Collapse
|
12
|
Zamboglou C, Eiber M, Fassbender TR, Eder M, Kirste S, Bock M, Schilling O, Reichel K, van der Heide UA, Grosu AL. Multimodal imaging for radiation therapy planning in patients with primary prostate cancer. Phys Imaging Radiat Oncol 2018; 8:8-16. [PMID: 33458410 PMCID: PMC7807571 DOI: 10.1016/j.phro.2018.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
Implementation of advanced imaging techniques like multiparametric magnetic resonance imaging (mpMRI) or Positron Emission Tomography (PET) in radiation therapy (RT) planning of patients with primary prostate cancer demands several preconditions: accurate staging of the extraprostatic and intraprostatic tumor mass, robust delineation of the intraprostatic gross tumor volume (GTV) and a reproducible characterization of the prostate cancer's biological properties. In the current review we searched for the currently available imaging techniques and we discussed their ability to fulfill these preconditions. We found that current pretreatment imaging was mainly performed with mpMRI and/or Prostate-specific membrane antigen PET imaging. Both techniques offered an accurate detection of the extraprostatic and intraprostatic tumor burden and had a major impact on RT concepts. However, some studies postulated that mpMRI and PSMA PET had complementary information for intraprostatic GTV detection. Moreover, interobserver differences for intraprostatic tumor delineation based on mpMRI were observed. It is currently unclear whether PET based GTV delineation underlies also interobserver heterogeneity. Further research is warranted to answer whether multimodal imaging is able to visualize biological processes related to prostate cancer pathophysiology and radiation resistance.
Collapse
Affiliation(s)
- Constantinos Zamboglou
- Department of Radiation Oncology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Thomas R. Fassbender
- Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Matthias Eder
- Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Simon Kirste
- Department of Radiation Oncology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Michael Bock
- Division of Medical Physics, Department of Radiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Kathrin Reichel
- Department of Urology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Uulke A. van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anca L. Grosu
- Department of Radiation Oncology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| |
Collapse
|