1
|
Bibika M, Kanellopoulos P, Rouchota M, Loudos G, Nock BA, Krenning EP, Maina T. Diagnosis of Prostate Cancer with a Neurotensin-Bombesin Radioligand Combination-First Preclinical Results. Pharmaceutics 2024; 16:1223. [PMID: 39339259 PMCID: PMC11435135 DOI: 10.3390/pharmaceutics16091223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The concept of radiotheranostics relies on the overexpression of a biomolecular target on malignant cells to direct diagnostic/therapeutic radionuclide-carriers specifically to cancer lesions. The concomitant expression of more than one target in pathological lesions may be elegantly exploited to improve diagnostic sensitivity and therapeutic efficacy. Toward this goal, we explored a first example of a combined application of [99mTc]Tc-DT11 (DT11, N4-Lys(MPBA-PEG4)-Arg-Arg-Pro-Tyr-Ile-Leu-OH; NTS1R-specific) and [99mTc]Tc-DB7(DB7, N4-PEG2-DPhe-Gln-Trp-Ala-Val-Gly-His-Leu-NHEt; GRPR-specific) in prostate cancer models. Methods: Accordingly, the behavior of [99mTc]Tc-DT11 was compared with that of the [99mTc]Tc-DT11+[99mTc]Tc-DB7 mixture in prostate adenocarcinoma PC-3 cells and xenografts in mice. The impact of stabilizing both radiotracers by Entresto®, as a source of the potent neprilysin inhibitor sacubitrilat, was also investigated. Results: The PC-3 cell binding of the [99mTc]Tc-DT11+[99mTc]Tc-DB7 mixture surpassed that of [99mTc]Tc-DT11. Likewise, the PC-3 tumor uptake of the [99mTc]Tc-DT11+[99mTc]Tc-DB7 mixture at 4 h post-injection was superior (7.70 ± 0.89%IA/g) compared with [99mTc]Tc-DT11 (4.23 ± 0.58%IA/g; p < 0.0001). Treatment with Entresto® led to further enhancement of the tumor uptake (to 11.57 ± 1.92%IA/g; p < 0.0001). Conclusions: In conclusion, this first preclinical study on prostate cancer models revealed clear advantages of dual NTS1R/GRPR targeting, justifying further assessment of this promising concept in other cancer models.
Collapse
Affiliation(s)
- Maria Bibika
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15341 Athens, Greece
| | | | - Maritina Rouchota
- BIOEMTECH, Lefkippos Attica Technology Park NCSR "Demokritos", 15310 Athens, Greece
| | - George Loudos
- BIOEMTECH, Lefkippos Attica Technology Park NCSR "Demokritos", 15310 Athens, Greece
| | - Berthold A Nock
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15341 Athens, Greece
| | - Eric P Krenning
- Cyclotron Rotterdam BV, Erasmus MC, 3015 CE Rotterdam, The Netherlands
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15341 Athens, Greece
| |
Collapse
|
2
|
Previti S, Bodin S, Rémond E, Vimont D, Hindié E, Morgat C, Cavelier F. Rational design of NT-PSMA heterobivalent probes for prostate cancer theranostics. RSC Med Chem 2024:d4md00491d. [PMID: 39371434 PMCID: PMC11451938 DOI: 10.1039/d4md00491d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024] Open
Abstract
Targeting the prostate-specific membrane antigen (PSMA) with radiopharmaceuticals for imaging and/or therapy has demonstrated significant advancement in the management of prostate cancer patients. However, PSMA targeting remains unsuccessful in prostate cancers with low expression of PSMA, which account for 15% of cases. The neurotensin receptor-1 (NTS1) has been highlighted as a suitable oncotarget for imaging and therapy of PSMA-negative prostate cancer lesions. Therefore, heterobivalent probes targeting both PSMA and NTS1 could improve the prostate cancer management. Herein, we report the development of a branched hybrid probe (JMV 7489) designed to target PSMA and/or NTS1 bearing relevant pharmacophores and DOTA as the chelating agent. The new ligand was synthesized with a hybrid approach, which includes both syntheses in batch and in the solid phase. Saturation binding experiments were next performed on HT-29 and PC3-PIP cells to derive K d and B max values. On the PC3-PIP cells, [68Ga]Ga-JMV 7489 displayed good affinity towards PSMA (K d = 53 ± 17 nM; B max = 1393 ± 29 fmol/106 cells) in the same range as the corresponding reference monomer. A lower affinity value towards NTS1 was depicted (K d = 157 ± 71 nM; B max = 241 ± 42 fmol/106 cells on PC3-PIP cells; K d = 246 ± 1 nM; B max = 151 ± 44 fmol/106 cells on HT-29 cells) and, surprisingly, it was also the case for the corresponding monomer [68Ga]Ga-JMV 7089. These results indicate that the DOTA macrocycle and the linker are critical elements to design heterobivalent probes targeting PSMA and NTS1 with high affinity towards NTS1.
Collapse
Affiliation(s)
- Santo Previti
- Pôle Chime Balard, IBMM, UMR 5247 CNRS, Université Montpellier ENSCM F-34000 Montpellier France +33 448792134
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina Viale Stagno d'Alcontres 31 98166 Messina Italy +39 090 676 5669
| | - Sacha Bodin
- CNRS, EPHE, INCIA UMR 5287, University of Bordeaux F-33400 Talence France
- Department of Nuclear Medicine, CHU Bordeaux F-33000 Bordeaux France
| | - Emmanuelle Rémond
- Pôle Chime Balard, IBMM, UMR 5247 CNRS, Université Montpellier ENSCM F-34000 Montpellier France +33 448792134
| | - Delphine Vimont
- CNRS, EPHE, INCIA UMR 5287, University of Bordeaux F-33400 Talence France
| | - Elif Hindié
- CNRS, EPHE, INCIA UMR 5287, University of Bordeaux F-33400 Talence France
- Department of Nuclear Medicine, CHU Bordeaux F-33000 Bordeaux France
- Institut Universitaire de France F-75000 Paris France
| | - Clément Morgat
- CNRS, EPHE, INCIA UMR 5287, University of Bordeaux F-33400 Talence France
- Department of Nuclear Medicine, CHU Bordeaux F-33000 Bordeaux France
| | - Florine Cavelier
- Pôle Chime Balard, IBMM, UMR 5247 CNRS, Université Montpellier ENSCM F-34000 Montpellier France +33 448792134
| |
Collapse
|
3
|
Xiao L, Fang Z, Tang Y, Sun Y, Zhu Z, Li J, Zhou M, Yang N, Zheng K, Hu S. Evaluation of gastrin-releasing peptide receptor, prostate-specific membrane antigen, and neurotensin receptor 1 as potential biomarkers for accurate prostate cancer stratified diagnosis. EJNMMI Res 2024; 14:55. [PMID: 38880858 PMCID: PMC11180645 DOI: 10.1186/s13550-024-01116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Studies on single-target PET imaging of gastrin-releasing peptide receptor (GRPR), prostate-specific membrane antigen (PSMA), or neurotensin receptor 1(NTR1) have been reported. However, the performance of these three targets in the progression of PCa remains unclear. Our study aims to compare the expression of GRPR, PSMA, and NTR1 in patients with prostatic intraepithelial neoplasia (PIN), prostate cancer (PCa), and lymph node metastasis. We synthesized molecular probes targeting the markers to achieve a non-invasive precise detection of PCa patients with PET/CT imaging. METHODS In this study, the expression of GRPR, PSMA, and NTR1 was evaluated by immunohistochemistry in 34 PIN, 171 PCa, and 22 lymph node metastasis tissues of patients. The correlation between their expression and the clinicopathological parameters of PCa patients was assessed. Sixteen PCa patients with different Gleason scores (GS) underwent dual-tracer (68Ga-NOTA-RM26 and 68Ga-NOTA-PSMA617) PET/CT. RESULTS In the PIN stage, the expression of GRPR was significantly higher than that of PSMA and NTR1 (P < 0.001), while NTR1 expression was significantly higher than PSMA and GRPR expression in primary PCa (P = 0.001). High PSMA expression in PCa patients was associated with shorter progression-free survival (P = 0.037) and overall survival (P = 0.035). PCa patients with high GS had higher tumor uptake of 68Ga-NOTA-PSMA617 than those with low GS (P = 0.001), while PCa patients with low GS had higher tumor uptake of 68Ga-NOTA-RM26 than those with high GS (P = 0.001). CONCLUSIONS This study presents three novel biomarkers (PSMA, GRPR, and NTR1) as imaging agents for PET/CT, and may offer a promising approach for non-invasive precise detection and Gleason grade prediction of PCa patients.
Collapse
Affiliation(s)
- Ling Xiao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, 410008, Hunan Province, P.R. China
| | - Zhihui Fang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, 410008, Hunan Province, P.R. China
- Department of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, 410008, Hunan Province, P.R. China
| | - Yanyan Sun
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450000, China
| | - Zehua Zhu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, 410008, Hunan Province, P.R. China
| | - Jian Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, 410008, Hunan Province, P.R. China
| | - Ming Zhou
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, 410008, Hunan Province, P.R. China
| | - Nengan Yang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, 410008, Hunan Province, P.R. China
| | - Kai Zheng
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, 410008, Hunan Province, P.R. China
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, 410008, Hunan Province, P.R. China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
4
|
Schollhammer R, Quintyn Ranty ML, de Clermont Gallerande H, Cavelier F, Valverde IE, Vimont D, Hindié E, Morgat C. Theranostics of Primary Prostate Cancer: Beyond PSMA and GRP-R. Cancers (Basel) 2023; 15:cancers15082345. [PMID: 37190273 DOI: 10.3390/cancers15082345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
The imaging of Prostate-Specific Membrane Antigen (PSMA) is now widely used at the initial staging of prostate cancers in patients with a high metastatic risk. However, its ability to detect low-grade tumor lesions is not optimal. METHODS First, we prospectively performed neurotensin receptor-1 (NTS1) IHC in a series of patients receiving both [68Ga]Ga-PSMA-617 and [68Ga]Ga-RM2 before prostatectomy. In this series, PSMA and GRP-R IHC were also available (n = 16). Next, we aimed at confirming the PSMA/GRP-R/NTS1 expression profile by retrospective autoradiography (n = 46) using a specific radiopharmaceuticals study and also aimed to decipher the expression of less-investigated targets such as NTS2, SST2 and CXCR4. RESULTS In the IHC study, all samples with negative PSMA staining (two patients with ISUP 2 and one with ISUP 3) were strongly positive for NTS1 staining. No samples were negative for all three stains-for PSMA, GRP-R or NTS1. In the autoradiography study, binding of [111In]In-PSMA-617 was high in all ISUP groups. However, some samples did not bind or bound weakly to [111In]In-PSMA-617 (9%). In these cases, binding of [111n]In-JMV 6659 and [111In]In-JMV 7488 towards NTS1 and NTS2 was high. CONCLUSIONS Targeting PSMA and NTS1/NTS2 could allow for the detection of all intraprostatic lesions.
Collapse
Affiliation(s)
- Romain Schollhammer
- Nuclear Medicine Department, Bordeaux University Hospital, 33000 Bordeaux, France
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, 33000 Bordeaux, France
| | | | - Henri de Clermont Gallerande
- Nuclear Medicine Department, Bordeaux University Hospital, 33000 Bordeaux, France
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, 33000 Bordeaux, France
| | - Florine Cavelier
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247, CNRS, Université Montpellier, ENSCM, Pôle Chimie Balard, 1919 Route de Mende, Cedex 5, 34293 Montpellier, France
| | - Ibai E Valverde
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, 21000 Dijon, France
| | - Delphine Vimont
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, 33000 Bordeaux, France
| | - Elif Hindié
- Nuclear Medicine Department, Bordeaux University Hospital, 33000 Bordeaux, France
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, 33000 Bordeaux, France
- Institut Universitaire de France (IUF), 75231 Paris, France
| | - Clément Morgat
- Nuclear Medicine Department, Bordeaux University Hospital, 33000 Bordeaux, France
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, 33000 Bordeaux, France
| |
Collapse
|
5
|
Wu W, Yu F, Zhang P, Bu T, Fu J, Ai S, You Q, Shi L, Shao G, Wang F, Hodolic M, Guo H. 68Ga-DOTA-NT-20.3 Neurotensin Receptor 1 PET Imaging as a Surrogate for Neuroendocrine Differentiation of Prostate Cancer. J Nucl Med 2022; 63:1394-1400. [PMID: 35177423 PMCID: PMC9454456 DOI: 10.2967/jnumed.121.263132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/28/2021] [Indexed: 01/26/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA)-negative neuroendocrine prostate cancer (PCa) is a subtype of PCa likely to be lethal, with limited clinical diagnostic and therapeutic options. High expression of neurotensin receptor subtype 1 (NTR1) is associated with neuroendocrine differentiation of PCa, which makes NTR1 a potential target for neuroendocrine PCa. In this study, the NTR1-targeted tracer 68Ga-DOTA-NT-20.3 was synthesized, and its affinity to androgen-dependent (LNCap) and androgen-independent (PC3) xenografts was determined. Methods: 68Ga-DOTA-NT-20.3 was labeled using an automated synthesizer module, and its stability, labeling yield, and radiochemical purity were analyzed by radio-high-performance liquid chromatography. Receptor binding affinity was evaluated in NTR1-positive PC3 cells by a competitive binding assay. The biodistribution of 68Ga-DOTA-NT-20.3 in vivo was evaluated in PC3 and LNCap xenografts by small-animal PET imaging. NTR1 expression was identified by immunohistochemistry and immunofluorescence evaluation. Results: 68Ga-DOTA-NT-20.3 was synthesized successfully, with a yield of 88.07% ± 1.26%, radiochemical purity of at least 99%, and favorable stability. The NTR1 affinity (half-maximal inhibitory concentration) for 68Ga-DOTA-NT-20.3 was 7.59 ± 0.41 nM. Small-animal PET/CT of PC3 xenograft animals showed high-contrast images with intense tumor uptake, which revealed specific NTR1 expression. The tumors showed significant radioactivity (4.95 ± 0.67 percentage injected dose per gram of tissue [%ID/g]) at 1 h, which fell to 1.95 ± 0.17 %ID/g (P < 0.01, t = 8.72) after specific blockage by neurotensin. LNCap xenografts had no significant accumulation (0.81 ± 0.06 %ID/g) of 68Ga-DOTA-NT-20.3 at 1 h. In contrast, 68Ga-PSMA-11 was concentrated mainly in LNCap xenografts (8.60 ± 2.11 %ID/g), with no significant uptake in PC3 tumors (0.53 ± 0.05 %ID/g), consistent with the in vitro immunohistochemistry findings. Biodistribution evaluation showed rapid clearance from the blood and main organs (brain, heart, lung, liver, muscle, and bone), with significantly high tumor-to-liver (4.41 ± 0.73) and tumor-to-muscle (12.34 ± 1.32) ratios at 60 min after injection. Conclusion: 68Ga-DOTA-NT-20.3 can be efficiently prepared with a high yield and high radiochemical purity. Its favorable biodistribution and prominent NTR1 affinity make 68Ga-DOTA-NT-20.3 a potential radiopharmaceutical for the detection of PSMA-negative PCa and identification of neuroendocrine differentiation.
Collapse
Affiliation(s)
- Wenyu Wu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Fei Yu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Pengjun Zhang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ting Bu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jingjing Fu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shuyue Ai
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qinqin You
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liang Shi
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China;
| | - Marina Hodolic
- Nuclear Medicine Research Department, IASON, Graz, Austria; .,Department of Nuclear Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic; and
| | - Hongqian Guo
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Construction of a Redox-Related Prognostic Model with Predictive Value in Survival and Therapeutic Response for Patients with Lung Adenocarcinoma. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7651758. [PMID: 35251577 PMCID: PMC8896929 DOI: 10.1155/2022/7651758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/27/2021] [Accepted: 01/18/2022] [Indexed: 01/20/2023]
Abstract
Background Lung adenocarcinoma (LUAD) represents the most common histological subtype of lung cancer. Redox plays a significant role in oncogenesis and antitumor immunity. In this study, we aimed to investigate the prognostic redox-associated genes and construct a redox-based prognostic signature for LUAD. Materials and Methods A discovery cohort containing 479 LUAD samples from The Cancer Genome Atlas (TCGA) was analyzed. We identified prognostic redox-associated genes by weighted correlation network analysis (WGCNA) and univariate Cox regression analysis to construct a prognostic model via least absolute shrinkage and selection operator (LASSO)-multivariate Cox regression analyses. The performance of the redox-based model was validated in the TCGA cohort and an independent cohort of 456 samples by Cox regression analyses, log-rank test, and receiver operating characteristic (ROC) curves. Correlations of the model with clinicopathological variables and lymphocyte infiltration were assessed. Gene set enrichment analysis (GSEA) was used to clarify the underlying mechanism of the prognostic model. We constructed a nomogram based on the model and created calibration curves to show the accordance between actual survival and predicted survival of the nomogram. Results Stepwise analyses identified 6 prognostic redox-associated genes of LUAD and constructed a prognostic model that performed well in both the discovery and validation cohorts. The model was found to be associated with tumor stage, mutation of TP53 and EGFR, and lymphocyte infiltration. The model was mainly involved in the regulation of the cell cycle, DNA replication and repair, NADH metabolism, and the p53 signaling pathway. Calibration curves showed the high predictive accuracy of the nomogram. Conclusions This study explored the role of redox-associated genes in LUAD and constructed a prognostic model of LUAD. The signature was also associated with tumor progression and therapeutic response to immunotherapy. These findings contributed to uncovering the underlying mechanism and discovering novel prognostic predictor of LUAD.
Collapse
|
7
|
Slabáková E, Kahounová Z, Procházková J, Souček K. Regulation of Neuroendocrine-like Differentiation in Prostate Cancer by Non-Coding RNAs. Noncoding RNA 2021; 7:ncrna7040075. [PMID: 34940756 PMCID: PMC8704250 DOI: 10.3390/ncrna7040075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) represents a variant of prostate cancer that occurs in response to treatment resistance or, to a much lesser extent, de novo. Unravelling the molecular mechanisms behind transdifferentiation of cancer cells to neuroendocrine-like cancer cells is essential for development of new treatment opportunities. This review focuses on summarizing the role of small molecules, predominantly microRNAs, in this phenomenon. A published literature search was performed to identify microRNAs, which are reported and experimentally validated to modulate neuroendocrine markers and/or regulators and to affect the complex neuroendocrine phenotype. Next, available patients’ expression datasets were surveyed to identify deregulated microRNAs, and their effect on NEPC and prostate cancer progression is summarized. Finally, possibilities of miRNA detection and quantification in body fluids of prostate cancer patients and their possible use as liquid biopsy in prostate cancer monitoring are discussed. All the addressed clinical and experimental contexts point to an association of NEPC with upregulation of miR-375 and downregulation of miR-34a and miR-19b-3p. Together, this review provides an overview of different roles of non-coding RNAs in the emergence of neuroendocrine prostate cancer.
Collapse
|
8
|
Expression of neurotensin receptor-1 (NTS 1) in primary breast tumors, cellular distribution, and association with clinical and biological factors. Breast Cancer Res Treat 2021; 190:403-413. [PMID: 34596798 DOI: 10.1007/s10549-021-06402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Neurotensin receptor-1 (NTS1) is increasingly recognized as a potential target in diverse tumors including breast cancer, but factors associated with NTS1 expression have not been fully clarified. METHODS We studied NTS1 expression using the Tissue MicroArray (TMA) of primary breast tumors from Institut Bergonié. We also studied association between NTS1 expression and clinical, pathological, and biological parameters, as well as patient outcomes. RESULTS Out of 1419 primary breast tumors, moderate to strong positivity for NTS1 (≥ 10% of tumoral cells stained) was seen in 459 samples (32.4%). NTS1 staining was cytoplasmic in 304 tumors and nuclear in 155 tumors, a distribution which appeared mutually exclusive. Cytoplasmic overexpression of NTS1 was present in 21.5% of all breast tumors. In multivariate analysis, factors associated with cytoplasmic overexpression of NTS1 in breast cancer samples were higher tumor grade, Ki67 ≥ 20%, and higher pT stage. Cytoplasmic NTS1 was more frequent in tumors other than luminal A (30% versus 17.3%; p < 0.0001). Contrastingly, the main "correlates" of a nuclear location of NTS1 were estrogen receptor (ER) positivity, low E&E (Elston and Ellis) grade, Ki67 < 20%, and lower pT stage. In NTS1-positive samples, cytoplasmic expression of NTS1 was associated with shorter 10-year metastasis-free interval (p = 0.033) compared to NTS1 nuclear staining. Ancillary analysis showed NTS1 expression in 73% of invaded lymph nodes from NTS1-positive primaries. CONCLUSION NTS1 overexpression was found in about one-third of breast tumors from patients undergoing primary surgery with two distinct patterns of distribution, cytoplasmic distribution being more frequent in aggressive subtypes. These findings encourage the development of NTS1-targeting strategy, including radiopharmaceuticals for imaging and therapy.
Collapse
|
9
|
Biomarkers in Prostate-Specific Membrane Antigen Theranostics. Diagnostics (Basel) 2021; 11:diagnostics11061108. [PMID: 34207069 PMCID: PMC8235046 DOI: 10.3390/diagnostics11061108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Theranostics of prostate cancer (PC) represents a growing area of development of imaging agents and targeted radionuclide therapeutics against a major target, prostate specific membrane antigen (PSMA). In view of the encouraging efficacy from the use of 177Lu and other radionuclides in metastatic castration-resistant prostate cancer (mCRPC), it is becoming increasingly important to identify surrogate markers that can help predict which patients are more likely to respond and experience improved survival. This review discusses potential predictors of efficacy of PSMA-targeted radionuclide therapies (TRT) segregated in three major categories: imaging, clinical and molecular.
Collapse
|
10
|
Potential use of radiolabelled neurotensin in PET imaging and therapy of patients with pancreatic cancer. Nucl Med Commun 2021; 41:411-415. [PMID: 32168264 DOI: 10.1097/mnm.0000000000001172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer is the fourth leading cause of cancer-related death in both men and women. Neurotensin receptors are overexpressed in different malignancies, above all pancreatic cancer. On the other hand, neurotensin receptor expression in inflammation is quite low. This fact can probably solve the most important problem of F-FDG PET imaging - distinguishing malignant and inflammatory processes. The first therapeutic injection of radiolabelled neurotensin in human with pancreatic cancer has been successfully performed. Animal experiments are also very close to the first in human injection of radiolabelled neurotensin for diagnostic purposes. The purpose of this article is to provide an overview of radiolabelled neurotensin analogues that can be used in imaging and therapy in patients with pancreatic ductal adenocarcinoma.
Collapse
|
11
|
Characterisation of the Expression of Neurotensin and Its Receptors in Human Colorectal Cancer and Its Clinical Implications. Biomolecules 2020; 10:biom10081145. [PMID: 32764278 PMCID: PMC7464404 DOI: 10.3390/biom10081145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 01/22/2023] Open
Abstract
Introduction: Colorectal Cancer (CRC) accounts for 9% of cancer deaths globally. Hormonal pathways play important roles in some cancers. This study investigated the association of CRC expression of neurotensin (NTS), NTS receptors 1 and 3 (NTSR1 and NTSR3) and clinical outcomes. Methods: A prospective cohort study which quantifies the protein expression of NTS, NTSR1 and NTSR3 in human CRCs using immunohistochemistry. Expression levels were then compared with clinico-pathological outcome including histological grade, overall survival (OS) and disease-free survival (DFS). Results: Sixty-four patients were enrolled with median follow-up of 44.0 months. There was significantly higher expression of NTS in cancer tissue in CRC with higher T stages (p < 0.01), N stages (p = 0.03), and AJCC clinical stages (p = 0.04). There was significantly higher expression of NTS, NTSR1 and NTSR3 in cancer tissue compared to surrounding normal epithelium (median H-score 163.5 vs 97.3, p < 0.01). There was significantly shorter DFS in individuals with CRC with high levels of NTS compared to lower levels of NTS (35.8 months 95% CI 28.7–42.8 months vs 46.4 months 95% CI 42.2–50.5 months, respectively, p = 0.02). Above median NTS expression in cancer tissue was a significant risk factor for disease recurrence (HR 4.10, 95% CI 1.14–14.7, p = 0.03). Discussion: The expression of NTS and its receptors has the potential to be utilised as a predictive and prognostic marker in colorectal cancer for postoperative selection for adjuvant therapy and identify individuals for novel therapies targeting the neurotensinergic pathways. Conclusions: High NTS expression appears to be associated with more advanced CRC and worse DFS.
Collapse
|
12
|
A comparative study of peptide-based imaging agents [ 68Ga]Ga-PSMA-11, [ 68Ga]Ga-AMBA, [ 68Ga]Ga-NODAGA-RGD and [ 68Ga]Ga-DOTA-NT-20.3 in preclinical prostate tumour models. Nucl Med Biol 2020; 84-85:88-95. [PMID: 32251995 DOI: 10.1016/j.nucmedbio.2020.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Peptide-based imaging agents targeting prostate-specific membrane antigen (PSMA) have revolutionized the evaluation of biochemical recurrence of prostate cancer (PCa) but lacks sensitivity at very low serum prostate specific antigen (PSA) levels. Once recurrence is suspected, other positron emission tomography (PET) radiotracers could be of interest to discriminate between local and distant relapse. We studied [18F]fluorodeoxyglucose ([18F]FDG) targeting glucose metabolism, [18F]fluorocholine ([18F]FCH) targeting membrane metabolism and peptide-based imaging agents [68Ga]Ga-PSMA-11, [68Ga]Ga-AMBA, [68Ga]Ga-NODAGA-RGD and [68Ga]Ga-DOTA-NT-20.3 targeting PSMA, gastrin releasing peptide receptor (GRPr), αvβ3 integrin and neurotensin type 1 receptor (NTSR1) respectively, in different PCa tumour models. METHODS Mice were xenografted with 22Rv1, an androgen-receptor (AR)-positive, PCa cell line that expresses PSMA and PC3, an AR-negative one that does not express PSMA. PET imaging using the different radiotracers was performed sequentially and the uptake characteristics compared to one other. NTSR1 and PSMA expression levels were analysed in tumours by immunohistochemistry. RESULTS [18F]FDG displayed low but sufficient uptake to visualize PC3 and 22Rv1 derived tumours. We also observed a low efficacy of [18F]FCH PET imaging and a low [68Ga]Ga-NODAGA-RGD tumour uptake in those tumours. As expected, an elevated tumour uptake was obtained for [68Ga]Ga-PSMA-11 in 22Rv1 derived tumour although no uptake was measured in the androgen independent cell line PC3, derived from a bone metastasis of a high-grade PCa. Moreover, in PC3 cell line, we obtained good tumour uptake, high tumour-to-background contrast using [68Ga]Ga-AMBA and [68Ga]Ga-DOTA-NT-20.3. Immunohistochemistry analysis confirmed high NTSR1 expression in PC3 derived tumours and conversely high PSMA expression in 22Rv1 derived tumours. CONCLUSION PET imaging using [68Ga]Ga-AMBA and [68Ga]Ga-DOTA-NT-20.3 demonstrates that GRPr and NTSR1 could represent viable alternative targets for diagnostic or therapeutic applications in PCa with limited PSMA expression levels. More preclinical and clinical studies will follow to explore this potential. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT Peptide-based imaging agents targeting PSMA represent a major progress in the evaluation of biochemical recurrence of PCa but sometimes yield false negative results in some lesions. Continuing efforts have thus been made to evaluate other radiotracers. Our preclinical results suggest that [68Ga]labelled bombesin and neurotensin analogues could serve as alternative PET radiopharmaceuticals for diagnostic or therapy in cases of PSMA-negative PCa.
Collapse
|