1
|
Li N, Chen S, Cai X. Harnessing molecular probes for imaging of human epidermal growth factor receptor (HER) family. Bioorg Med Chem 2024; 113:117931. [PMID: 39362074 DOI: 10.1016/j.bmc.2024.117931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024]
Abstract
The human epidermal growth factor receptor (HER) family plays a critical role in the development, migration, and invasion of various cancers. Currently, the FDA has approved numerous targeting therapies for the HER family consist of small molecule drugs, monoclonal antibodies and antibody-drug conjugates. To facilitate precision therapy using currently approved targeted agents, early detection and quantification of each HER receptor are essential for assessment, treatment, and prognostic purposes. This study provides a comprehensive review of the latest advancements in detection and quantification of HER receptors, including traditional biopsies, liquid biopsies, and non-invasive detection methods. Although traditional histological methods, such as immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH), have yielded valuable insights, advancements in real-time and non-invasive detection technologies necessitate improved methods for the dynamic evaluation of HER status. This article also reviews several emerging real-time techniques for detecting and quantifying HER status in circulating tumor cells (CTCs) extracted from blood samples, as well as in vivo assessments using positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging. This review emphasizes the importance of continuous innovation in the application of HER receptor imaging technologies, with the goal of enhancing treatment outcomes and prognoses for cancer patients.
Collapse
Affiliation(s)
- Na Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| | - Shengxi Chen
- Biodesign Center for BioEnergetics, Arizona State University, Tempe 85287, USA.
| | - Xiaoqing Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China.
| |
Collapse
|
2
|
Chan AM, Olafsen T, Tsui J, Salazar FB, Aguirre B, Zettlitz KA, Condro M, Wu AM, Braun J, Gordon LK, Ashki N, Whitelegge J, Xu S, Ikotun O, Lee JT, Wadehra M. 89Zr-ImmunoPET for the Specific Detection of EMP2-Positive Tumors. Mol Cancer Ther 2024; 23:890-903. [PMID: 38417138 DOI: 10.1158/1535-7163.mct-23-0465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/27/2023] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Epithelial membrane protein-2 (EMP2) is upregulated in a number of tumors and therefore remains a promising target for mAb-based therapy. In the current study, image-guided therapy for an anti-EMP2 mAb was evaluated by PET in both syngeneic and immunodeficient cancer models expressing different levels of EMP2 to enable a better understanding of its tumor uptake and off target accumulation and clearance. The therapeutic efficacy of the anti-EMP2 mAb was initially evaluated in high- and low-expressing tumors, and the mAb reduced tumor load for the high EMP2-expressing 4T1 and HEC-1-A tumors. To create an imaging agent, the anti-EMP2 mAb was conjugated to p-SCN-Bn-deferoxamine (DFO) and radiolabeled with 89Zr. Tumor targeting and tissue biodistribution were evaluated in syngeneic tumor models (4T1, CT26, and Panc02) and human tumor xenograft models (Ramos, HEC-1-A, and U87MG/EMP2). PET imaging revealed radioactive accumulation in EMP2-positive tumors within 24 hours after injection, and the signal was retained for 5 days. High specific uptake was observed in tumors with high EMP2 expression (4T1, CT26, HEC-1-A, and U87MG/EMP2), with less accumulation in tumors with low EMP2 expression (Panc02 and Ramos). Biodistribution at 5 days after injection revealed that the tumor uptake ranged from 2 to approximately 16%ID/cc. The results show that anti-EMP2 mAbs exhibit EMP2-dependent tumor uptake with low off-target accumulation in preclinical cancer models. The development of improved anti-EMP2 Ab fragments may be useful to track EMP2-positive tumors for subsequent therapeutic interventions.
Collapse
Affiliation(s)
- Ann M Chan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Tove Olafsen
- Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, California
- Small Animal Imaging Core, Shared Resources, City of Hope, Duarte, California
| | - Jessica Tsui
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Felix B Salazar
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, California
| | - Brian Aguirre
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Kirstin A Zettlitz
- Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, California
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, California
| | - Michael Condro
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Anna M Wu
- Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, California
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, California
| | - Jonathan Braun
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Lynn K Gordon
- Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Negin Ashki
- Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Julian Whitelegge
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Shili Xu
- Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, California
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Oluwatayo Ikotun
- Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, California
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jason Thanh Lee
- Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, California
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
3
|
Mohr P, van Sluis J, Lub-de Hooge MN, Lammertsma AA, Brouwers AH, Tsoumpas C. Advances and challenges in immunoPET methodology. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1360710. [PMID: 39355220 PMCID: PMC11440922 DOI: 10.3389/fnume.2024.1360710] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/05/2024] [Indexed: 10/03/2024]
Abstract
Immuno-positron emission tomography (immunoPET) enables imaging of specific targets that play a role in targeted therapy and immunotherapy, such as antigens on cell membranes, targets in the disease microenvironment, or immune cells. The most common immunoPET applications use a monoclonal antibody labeled with a relatively long-lived positron emitter such as 89Zr (T 1/2 = 78.4 h), but smaller antibody-based constructs labeled with various other positron emitting radionuclides are also being investigated. This molecular imaging technique can thus guide the development of new drugs and may have a pivotal role in selecting patients for a particular therapy. In early phase immunoPET trials, multiple imaging time points are used to examine the time-dependent biodistribution and to determine the optimal imaging time point, which may be several days after tracer injection due to the slow kinetics of larger molecules. Once this has been established, usually only one static scan is performed and semi-quantitative values are reported. However, total PET uptake of a tracer is the sum of specific and nonspecific uptake. In addition, uptake may be affected by other factors such as perfusion, pre-/co-administration of the unlabeled molecule, and the treatment schedule. This article reviews imaging methodologies used in immunoPET studies and is divided into two parts. The first part summarizes the vast majority of clinical immunoPET studies applying semi-quantitative methodologies. The second part focuses on a handful of studies applying pharmacokinetic models and includes preclinical and simulation studies. Finally, the potential and challenges of immunoPET quantification methodologies are discussed within the context of the recent technological advancements provided by long axial field of view PET/CT scanners.
Collapse
Affiliation(s)
- Philipp Mohr
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joyce van Sluis
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan A Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adrienne H Brouwers
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Charalampos Tsoumpas
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
4
|
Melendez-Alafort L, Ferro-Flores G, De Nardo L, Ocampo-García B, Bolzati C. Zirconium immune-complexes for PET molecular imaging: Current status and prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Jiang C, Tian Q, Xu X, Li P, He S, Chen J, Yao B, Zhang J, Yang Z, Song S. Enhanced antitumor immune responses via a new agent [ 131I]-labeled dual-target immunosuppressant. Eur J Nucl Med Mol Imaging 2023; 50:275-286. [PMID: 36242616 PMCID: PMC9816240 DOI: 10.1007/s00259-022-05986-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/29/2022] [Indexed: 01/11/2023]
Abstract
Radionuclides theranostic are ideal "partners" for bispecific antibodies to explore the immune response of patients and synergistic treatment. A bispecific single-domain antibody-Fc fusion protein, KN046, exhibits a good treatment effect by binding to programmed cell death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). An ionizing-radiation stimulus mediated by a low-dose of [131I] may be used for immunopotentiation. In this study, we established [131I]-labeled KN046 as a novel radioimmunotherapy agent to treat malignant melanoma and explored the mechanism. METHODS After intravenous injection of [131I]-KN046, SPECT/CT imaging was applied to identify candidate targets for KN046 immunotherapy. [18F]-FDG and [68 Ga]-NOTA-GZP (granzyme B-specific PET imaging agent) micro-PET/CT imaging was used to assess the immune response in vivo after [131I]-KN046 treatment. The synergistic treatment effect of [131I]-KN046 was evaluated by exploring the [131I]-based radionuclide-induced release of tumor immunogenicity-related antigens as well as the histology and survival of tumor-bearing mice after treatment. RESULTS The constructed [131I]-KN046 exhibited high affinity and specificity for PD-L1/CTLA-4 immune targets and had excellent in vivo intratumoral retention capability so as to achieve good antitumor efficacy. More importantly, the combination of low-dose [131I] and KN046-enhanced immunosensitivity increased the immunotherapy response rates significantly. Exposure of tumor cells to [131I]-KN046 led to upregulated expression of MHC-I and Fas surface molecules and significant increases in the degree of T-cell activation and counts of tumor-infiltrating immunocytes. CONCLUSION Use of low-dose [131I] combined with a dual-target immunosuppressant could be exploited to identify the subset of treatment responders but also exhibited great potential for enhancing antitumor immune responses.
Collapse
Affiliation(s)
- Chunjuan Jiang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Qiwei Tian
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiaoping Xu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Panli Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Simin He
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Jian Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Bolin Yao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jianping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Ziyi Yang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China.
| |
Collapse
|
6
|
Jin C, Luo X, Li X, Zhou R, Zhong Y, Xu Z, Cui C, Xing X, Zhang H, Tian M. Positron emission tomography molecular imaging-based cancer phenotyping. Cancer 2022; 128:2704-2716. [PMID: 35417604 PMCID: PMC9324101 DOI: 10.1002/cncr.34228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/28/2022]
Abstract
During the past several decades, numerous studies have provided insights into biological characteristics of cancer cells and identified various hallmarks of cancer acquired in the tumorigenic processes. However, it is still challenging to image these distinctive traits of cancer to facilitate the management of patients in clinical settings. The rapidly evolving field of positron emission tomography (PET) imaging has provided opportunities to investigate cancer's biological characteristics in vivo. This article reviews the current status of PET imaging on characterizing hallmarks of cancer and discusses the future directions of PET imaging strategies facilitating in vivo cancer phenotyping.
Collapse
Affiliation(s)
- Chentao Jin
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Xiaoyun Luo
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Xiaoyi Li
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Rui Zhou
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Yan Zhong
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Zhoujiao Xu
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Chunyi Cui
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Xiaoqing Xing
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Hong Zhang
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
- College of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhouChina
- Key Laboratory for Biomedical Engineering of Ministry of EducationZhejiang UniversityHangzhouChina
| | - Mei Tian
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
7
|
Manafi-Farid R, Ataeinia B, Ranjbar S, Jamshidi Araghi Z, Moradi MM, Pirich C, Beheshti M. ImmunoPET: Antibody-Based PET Imaging in Solid Tumors. Front Med (Lausanne) 2022; 9:916693. [PMID: 35836956 PMCID: PMC9273828 DOI: 10.3389/fmed.2022.916693] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Immuno-positron emission tomography (immunoPET) is a molecular imaging modality combining the high sensitivity of PET with the specific targeting ability of monoclonal antibodies. Various radioimmunotracers have been successfully developed to target a broad spectrum of molecules expressed by malignant cells or tumor microenvironments. Only a few are translated into clinical studies and barely into clinical practices. Some drawbacks include slow radioimmunotracer kinetics, high physiologic uptake in lymphoid organs, and heterogeneous activity in tumoral lesions. Measures are taken to overcome the disadvantages, and new tracers are being developed. In this review, we aim to mention the fundamental components of immunoPET imaging, explore the groundbreaking success achieved using this new technique, and review different radioimmunotracers employed in various solid tumors to elaborate on this relatively new imaging modality.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahar Ataeinia
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shaghayegh Ranjbar
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Zahra Jamshidi Araghi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mobin Moradi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
8
|
Noninvasive Evaluation of EGFR Expression of Digestive Tumors Using 99mTc-MAG3-Cet-F(ab )2-Based SPECT/CT Imaging. Mol Imaging 2022; 2022:3748315. [PMID: 35903247 PMCID: PMC9281432 DOI: 10.1155/2022/3748315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/04/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose. This study is aimed at investigating the feasibility of cetuximab (Cet) F(ab
)2 fragment- (Cet-F(ab
)2-) based single photon emission tomography/computed tomography (SPECT/CT) for assessing the epidermal growth factor receptor (EGFR) expression in digestive tumor mouse models. Methods. Cet-F(ab
)2 was synthesized using immunoglobulin G-degrading enzyme of Streptococcus pyogenes (IdeS) protease and purified with protein A beads. The product and its in vitro stability in normal saline and 1% bovine serum albumin were analyzed with sodium dodecyl sulfate–polyacrylamide gel electrophoresis. The EGFR expression in the human colon tumor cell line HT29 and the human stomach tumor cell line MGC803 were verified using western blotting and immunocytochemistry. Cet-F(ab
)2 was conjugated with 5(6)-carboxytetramethylrhodamine succinimidyl ester to demonstrate its binding ability to the MGC803 and HT29 cells. Cet-F(ab
)2 was conjugated with NHS-MAG3 for 99mTc radiolabeling. The best imaging time was determined using a biodistribution assay at 1, 4, 16, and 24 h after injection of the 99mTc-MAG3-Cet-F(ab
)2 tracer. Furthermore, 99mTc-MAG3-Cet-F(ab
)2 SPECT/CT was performed on MGC803 and HT29 tumor-bearing nude mice. Results. HT29 cells had low EGFR expression while MGC803 cell exhibited the high EGFR expression. Cet-F(ab
)2 and intact cetuximab showed similar high binding ability to MGC803 cells but not to HT29 cells. Cet-F(ab
)2 and 99mTc-MAG3-Cet-F(ab
)2 showed excellent in vitro stability. The biodistribution assay showed that the target to nontarget ratio was the highest at 16 h (
,
) after tracer injection. The 99mTc-MAG3-Cet-F(ab
)2-based SPECT/CT imaging revealed rapid and sustained tracer uptake in MGC803 tumors rather than in HT29 tumors with high image contrast, which was consistent with the results in vitro. Conclusion. SPECT/CT imaging using 99mTc-MAG3-Cet-F(ab
)2 enables the evaluation of the EGFR expression in murine EGFR-positive tumors, indicating the potential utility for noninvasive evaluation of the EGFR expression in tumors.
Collapse
|
9
|
Sheikhbahaei S, Marcus CV, Sadaghiani MS, Rowe SP, Pomper MG, Solnes LB. Imaging of Cancer Immunotherapy: Response Assessment Methods, Atypical Response Patterns, and Immune-Related Adverse Events, From the AJR Special Series on Imaging of Inflammation. AJR Am J Roentgenol 2022; 218:940-952. [PMID: 34612682 DOI: 10.2214/ajr.21.26538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The introduction of immunotherapy with immune-checkpoint inhibitors (ICIs) has revolutionized cancer treatment paradigms. Since FDA approval of the first ICI in 2011, multiple additional ICIs have been approved and granted marketing authorization, and many promising agents are in early clinical adoption. Due to the distinctive biologic mechanisms of ICIs, the patterns of tumor response and progression seen with immunotherapy differ from those observed with cytotoxic chemothera-pies. With increasing clinical adoption of immunotherapy, it is critical for radiologists to recognize different response patterns and common pitfalls to avoid misinterpretation of imaging studies or prompt premature cessation of potentially effective treatment. This review provides an overview of ICIs and their mechanisms of action and discusses anatomic and metabolic immune-related response assessment methods, typical and atypical patterns of immunotherapy response (including pseudoprogression, hyperprogression, dissociated response, and durable response), and common imaging features of immune-related adverse events. Future multicenter trials are needed to validate the proposed immune-related response criteria and identify the functional imaging markers of early treatment response and survival.
Collapse
Affiliation(s)
- Sara Sheikhbahaei
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, Johns Hopkins Outpatient Center, JHOC #3009, Baltimore, MD 21287
| | | | - Mohammad S Sadaghiani
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, Johns Hopkins Outpatient Center, JHOC #3009, Baltimore, MD 21287
| | - Steven P Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, Johns Hopkins Outpatient Center, JHOC #3009, Baltimore, MD 21287
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, Johns Hopkins Outpatient Center, JHOC #3009, Baltimore, MD 21287
| | - Lilja B Solnes
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, Johns Hopkins Outpatient Center, JHOC #3009, Baltimore, MD 21287
| |
Collapse
|
10
|
Parakh S, Lee ST, Gan HK, Scott AM. Radiolabeled Antibodies for Cancer Imaging and Therapy. Cancers (Basel) 2022; 14:1454. [PMID: 35326605 PMCID: PMC8946248 DOI: 10.3390/cancers14061454] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
Radioimmunoconjugates consist of a monoclonal antibody (mAb) linked to a radionuclide. Radioimmunoconjugates as theranostics tools have been in development with success, particularly in hematological malignancies, leading to approval by the US Food and Drug Administration (FDA) for the treatment of non-Hodgkin's lymphoma. Radioimmunotherapy (RIT) allows for reduced toxicity compared to conventional radiation therapy and enhances the efficacy of mAbs. In addition, using radiolabeled mAbs with imaging methods provides critical information on the pharmacokinetics and pharmacodynamics of therapeutic agents with direct relevance to the optimization of the dose and dosing schedule, real-time antigen quantitation, antigen heterogeneity, and dynamic antigen changes. All of these parameters are critical in predicting treatment responses and identifying patients who are most likely to benefit from treatment. Historically, RITs have been less effective in solid tumors; however, several strategies are being investigated to improve their therapeutic index, including targeting patients with minimal disease burden; using pre-targeting strategies, newer radionuclides, and improved labeling techniques; and using combined modalities and locoregional application. This review provides an overview of the radiolabeled intact antibodies currently in clinical use and those in development.
Collapse
Affiliation(s)
- Sagun Parakh
- Department of Medical Oncology, Heidelberg, VIC 3084, Australia; (S.P.); (H.K.G.)
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3086, Australia
| | - Sze Ting Lee
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3086, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - Hui K. Gan
- Department of Medical Oncology, Heidelberg, VIC 3084, Australia; (S.P.); (H.K.G.)
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3086, Australia
- Department of Medicine, University of Melbourne, Heidelberg, VIC 3010, Australia
| | - Andrew M. Scott
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3086, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Heidelberg, VIC 3010, Australia
| |
Collapse
|
11
|
Rassamegevanon T, Feindt L, Koi L, Müller J, Freudenberg R, Löck S, Sihver W, Çevik E, Kühn AC, von Neubeck C, Linge A, Pietzsch HJ, Kotzerke J, Baumann M, Krause M, Dietrich A. Molecular Response to Combined Molecular- and External Radiotherapy in Head and Neck Squamous Cell Carcinoma (HNSCC). Cancers (Basel) 2021; 13:cancers13225595. [PMID: 34830750 PMCID: PMC8615625 DOI: 10.3390/cancers13225595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/03/2021] [Indexed: 01/11/2023] Open
Abstract
Simple Summary Our previous preclinical trial in a head and neck squamous cell carcinoma (HNSCC) xenograft model showed a high potential for the improvement of curative treatment outcome upon the combination treatment of a radiolabeled (Yttrium-90) anti-EGFR antibody (Cetuximab) and external radiotherapy. We aim to elucidate the molecular response of HNSCC tumors upon this combination. Here, we show that the combination treatment leads to an increasing number and complexity of DNA double strand breaks. The upregulation of p21cip1/waf1 expression and cleaved caspase-3 suggest a blockage of cell cycle transition and an induction of programmed cell death. Collectively, a complex interplay between molecular mechanisms involved in cell death induction, cell cycle arrest, and DNA double strand break repair accounts for the beneficial potential using Yttrium-90-Cetuximab in combination with external radiotherapy. Abstract Combination treatment of molecular targeted and external radiotherapy is a promising strategy and was shown to improve local tumor control in a HNSCC xenograft model. To enhance the therapeutic value of this approach, this study investigated the underlying molecular response. Subcutaneous HNSCC FaDuDD xenografts were treated with single or combination therapy (X-ray: 0, 2, 4 Gy; anti-EGFR antibody (Cetuximab) (un-)labeled with Yttrium-90 (90Y)). Tumors were excised 24 h post respective treatment. Residual DNA double strand breaks (DSB), mRNA expression of DNA damage response related genes, immunoblotting, tumor histology, and immunohistological staining were analyzed. An increase in number and complexity of residual DNA DSB was observed in FaDuDD tumors exposed to the combination treatment of external irradiation and 90Y-Cetuximab relative to controls. The increase was observed in a low oxygenated area, suggesting the expansion of DNA DSB damages. Upregulation of genes encoding p21cip1/waf1 (CDKN1A) and GADD45α (GADD45A) was determined in the combination treatment group, and immunoblotting as well as immunohistochemistry confirmed the upregulation of p21cip1/waf1. The increase in residual γH2AX foci leads to the blockage of cell cycle transition and subsequently to cell death, which could be observed in the upregulation of p21cip1/waf1 expression and an elevated number of cleaved caspase-3 positive cells. Overall, a complex interplay between DNA damage repair and programmed cell death accounts for the potential benefit of the combination therapy using 90Y-Cetuximab and external radiotherapy.
Collapse
Affiliation(s)
- Treewut Rassamegevanon
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany; (T.R.); (S.L.); (C.v.N.); (A.L.); (M.K.)
- German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany;
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (L.F.); (L.K.); (J.M.); (E.Ç.); (A.C.K.)
| | - Louis Feindt
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (L.F.); (L.K.); (J.M.); (E.Ç.); (A.C.K.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Lydia Koi
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (L.F.); (L.K.); (J.M.); (E.Ç.); (A.C.K.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
| | - Johannes Müller
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (L.F.); (L.K.); (J.M.); (E.Ç.); (A.C.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
| | - Robert Freudenberg
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (R.F.); (J.K.)
| | - Steffen Löck
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany; (T.R.); (S.L.); (C.v.N.); (A.L.); (M.K.)
- German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany;
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (L.F.); (L.K.); (J.M.); (E.Ç.); (A.C.K.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Wiebke Sihver
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany; (W.S.); (H.-J.P.)
| | - Enes Çevik
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (L.F.); (L.K.); (J.M.); (E.Ç.); (A.C.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
- School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Ariane Christel Kühn
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (L.F.); (L.K.); (J.M.); (E.Ç.); (A.C.K.)
- B CUBE—Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Cläre von Neubeck
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany; (T.R.); (S.L.); (C.v.N.); (A.L.); (M.K.)
- German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany;
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (L.F.); (L.K.); (J.M.); (E.Ç.); (A.C.K.)
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Annett Linge
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany; (T.R.); (S.L.); (C.v.N.); (A.L.); (M.K.)
- German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany;
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (L.F.); (L.K.); (J.M.); (E.Ç.); (A.C.K.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Hans-Jürgen Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany; (W.S.); (H.-J.P.)
| | - Jörg Kotzerke
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (R.F.); (J.K.)
| | - Michael Baumann
- German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany;
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (L.F.); (L.K.); (J.M.); (E.Ç.); (A.C.K.)
| | - Mechthild Krause
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany; (T.R.); (S.L.); (C.v.N.); (A.L.); (M.K.)
- German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany;
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (L.F.); (L.K.); (J.M.); (E.Ç.); (A.C.K.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Antje Dietrich
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany; (T.R.); (S.L.); (C.v.N.); (A.L.); (M.K.)
- German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany;
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (L.F.); (L.K.); (J.M.); (E.Ç.); (A.C.K.)
- Correspondence: ; Tel.: +49-351-458-7404
| |
Collapse
|
12
|
Avallone A, Piccirillo MC, Nasti G, Rosati G, Carlomagno C, Di Gennaro E, Romano C, Tatangelo F, Granata V, Cassata A, Silvestro L, De Stefano A, Aloj L, Vicario V, Nappi A, Leone A, Bilancia D, Arenare L, Petrillo A, Lastoria S, Gallo C, Botti G, Delrio P, Izzo F, Perrone F, Budillon A. Effect of Bevacizumab in Combination With Standard Oxaliplatin-Based Regimens in Patients With Metastatic Colorectal Cancer: A Randomized Clinical Trial. JAMA Netw Open 2021; 4:e2118475. [PMID: 34309665 PMCID: PMC8314140 DOI: 10.1001/jamanetworkopen.2021.18475] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
IMPORTANCE Although bevacizumab is a standard of care in combination treatments for metastatic colorectal cancer (mCRC), its clinical benefit has been limited. OBJECTIVE To determine whether sequential scheduling of bevacizumab administration in combination with chemotherapy improves treatment efficacy in patients with mCRC, in keeping with the tumor vascular normalization hypothesis. DESIGN, SETTING, AND PARTICIPANTS This open-label, randomized clinical phase 3 trial was conducted from May 8, 2012, to December 9, 2015, at 3 Italian centers. Patients aged 18 to 75 years with unresectable, previously untreated, or single line-treated mCRC were recruited. Follow-up was completed December 31, 2019, and data were analyzed from February 26 to July 24, 2020. INTERVENTIONS Patients received 12 biweekly cycles of standard oxaliplatin-based regimens (modified FOLFOX-6 [levo-folinic acid, fluorouracil, and oxaliplatin]/modified CAPOX [capecitabine and oxaliplatin]) plus bevacizumab administered either on the same day as chemotherapy (standard arm) or 4 days before chemotherapy (experimental arm). MAIN OUTCOMES AND MEASURES The primary end point was the objective response rate (ORR) measured with Response Evaluation Criteria in Solid Tumors, version 1.1. Secondary end points included progression-free survival, overall survival, safety, and quality of life (QOL). RESULTS Overall, 230 patients (136 men [59.1%]; median age, 62.3 [interquartile range, 53.3-67.6] years) were randomly assigned to the standard arm (n = 115) or the experimental arm (n = 115). The median duration of follow-up was 68.3 (95% CI, 61.0-70.0) months. No difference in ORR (57.4% [95% CI, 47.8%-66.6%] in the standard arm and 56.5% [95% CI, 47.0-65.7] in the experimental arm; P = .89) or progression-free survival (10.5 [95% CI, 9.1-12.3] months in the standard arm and 11.7 [95% CI, 9.9-12.9] months in the experimental arm; P = .15) was observed. However, the median overall survival was 29.8 (95% CI, 22.5-41.1) months in the experimental arm compared with 24.1 (95% CI, 18.6-29.8) months in the standard arm (adjusted hazard ratio, 0.73; 95% CI, 0.54-0.99; P = .04). Moreover, the experimental arm was associated with a significant reduction in the rate of severe diarrhea (6 [5.3%] vs 19 [16.5%]; P = .006) and nausea (2 [1.8%] vs 8 [7.0%]; P = .05) and improved physical functioning (mean [SD] change from baseline, 0.65 [1.96] vs -7.41 [2.95] at 24 weeks; P = .02), and constipation scores (mean [SD] change from baseline, -17.2 [3.73] vs -0.62 [4.44]; P = .003). CONCLUSIONS AND RELEVANCE In this randomized clinical trial, sequential administration of bevacizumab plus chemotherapy did not improve ORR, the primary end point. However, the overall survival advantage, fewer adverse effects, and better health-related QOL associated with sequential bevacizumab administration might provide the basis for exploring antiangiogenic combination treatments with innovative perspectives. TRIAL REGISTRATION EudraCT Identifier: 2011-004997-27; ClinicalTrials.gov Identifier: NCT01718873.
Collapse
Affiliation(s)
- Antonio Avallone
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, Napoli, Italy
| | - Maria C. Piccirillo
- Clinical Trials Unit, Istituto Nazionale Tumori–IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Guglielmo Nasti
- Innovative Therapy for Abdominal Metastases, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Gerardo Rosati
- Medical Oncology Unit, S. Carlo Hospital, Potenza, Italy
| | - Chiara Carlomagno
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Elena Di Gennaro
- Experimental Pharmacology Unit, Istituto Nazionale Tumori–IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Carmela Romano
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, Napoli, Italy
| | - Fabiana Tatangelo
- Pathology Unit, Istituto Nazionale Tumori–IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Vincenza Granata
- Radiology Unit, Istituto Nazionale Tumori–IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Antonino Cassata
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, Napoli, Italy
| | - Lucrezia Silvestro
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, Napoli, Italy
| | - Alfonso De Stefano
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, Napoli, Italy
| | - Luigi Aloj
- Nuclear Medicine Unit, Istituto Nazionale Tumori–IRCCS, Fondazione G. Pascale, Napoli, Italy
- currently affiliated with Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Valeria Vicario
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, Napoli, Italy
| | - Anna Nappi
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, Napoli, Italy
| | - Alessandra Leone
- Experimental Pharmacology Unit, Istituto Nazionale Tumori–IRCCS, Fondazione G. Pascale, Napoli, Italy
| | | | - Laura Arenare
- Clinical Trials Unit, Istituto Nazionale Tumori–IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Antonella Petrillo
- Radiology Unit, Istituto Nazionale Tumori–IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Secondo Lastoria
- Nuclear Medicine Unit, Istituto Nazionale Tumori–IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Ciro Gallo
- Università della Campania Luigi Vanvitelli, Napoli, Italy
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale Tumori–IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Paolo Delrio
- Colorectal Oncological Surgery, Istituto Nazionale Tumori–IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Francesco Izzo
- Colorectal Oncological Surgery, Istituto Nazionale Tumori–IRCCS, Fondazione G. Pascale, Napoli, Italy
- Hepatobiliary Surgery Unit, Istituto Nazionale Tumori–IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Franco Perrone
- Clinical Trials Unit, Istituto Nazionale Tumori–IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori–IRCCS, Fondazione G. Pascale, Napoli, Italy
| |
Collapse
|
13
|
Rinne SS, Orlova A, Tolmachev V. PET and SPECT Imaging of the EGFR Family (RTK Class I) in Oncology. Int J Mol Sci 2021; 22:ijms22073663. [PMID: 33915894 PMCID: PMC8036874 DOI: 10.3390/ijms22073663] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The human epidermal growth factor receptor family (EGFR-family, other designations: HER family, RTK Class I) is strongly linked to oncogenic transformation. Its members are frequently overexpressed in cancer and have become attractive targets for cancer therapy. To ensure effective patient care, potential responders to HER-targeted therapy need to be identified. Radionuclide molecular imaging can be a key asset for the detection of overexpression of EGFR-family members. It meets the need for repeatable whole-body assessment of the molecular disease profile, solving problems of heterogeneity and expression alterations over time. Tracer development is a multifactorial process. The optimal tracer design depends on the application and the particular challenges of the molecular target (target expression in tumors, endogenous expression in healthy tissue, accessibility). We have herein summarized the recent preclinical and clinical data on agents for Positron Emission Tomography (PET) and Single Photon Emission Tomography (SPECT) imaging of EGFR-family receptors in oncology. Antibody-based tracers are still extensively investigated. However, their dominance starts to be challenged by a number of tracers based on different classes of targeting proteins. Among these, engineered scaffold proteins (ESP) and single domain antibodies (sdAb) show highly encouraging results in clinical studies marking a noticeable trend towards the use of smaller sized agents for HER imaging.
Collapse
Affiliation(s)
- Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Vladimir Tolmachev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
- Correspondence: ; Tel.: +46-704-250-782
| |
Collapse
|
14
|
Chen R, Huang Y, Wang L, Zhou J, Tan Y, Peng C, Yang P, Peng W, Li J, Gu Q, Sheng Y, Wang Y, Shao G, Zhang Q, Sun Y. Cetuximab functionalization strategy for combining active targeting and antimigration capacities of a hybrid composite nanoplatform applied to deliver 5-fluorouracil: toward colorectal cancer treatment. Biomater Sci 2021; 9:2279-2294. [PMID: 33538278 DOI: 10.1039/d0bm01904f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibody-functionalized targeted nanocarriers to deliver chemotherapeutics have been widely explored. However, it remains highly desirable to understand and apply the antitumor potential of antibodies integrated in hybrid composite nanoplatforms. Herein, mesoporous silica nanoparticles, a supported lipid bilayer and cetuximab were integrated to fabricate a hybrid nanoplatform for effectively encapsulating and selectively delivering 5-fluorouracil (5-FU) against colorectal cancer (CRC) cells. The specially designed nanoplatform exhibited superior properties, such as satisfying size distribution, dispersity and stability, drug encapsulation, controlled release, and cellular uptake. Interestingly, the modification of cetuximab onto nanoplatforms without drug loading can significantly inhibit the migration and invasion of CRC cells through suppressing the epidermal growth factor receptor (EGFR)-associated signaling pathway. Furthermore, delivery of 5-FU by using this nanoplatform can remarkably induce cytotoxicity, cell cycle arrest, and cell apoptosis for CRC cells with high EGFR expression. Overall, this nanostructured platform can dramatically improve the tumor killing effects of encapsulated chemotherapeutics and present antimigration effects derived from the antibody modified on it. Moreover, in vivo biodistribution experiments demonstrated the superior tumor targeting ability of the targeted nanoparticles. Thus, this targeted nanoplatform has substantial potential in combinational therapy of antibodies and chemotherapy agents against colorectal cancer.
Collapse
Affiliation(s)
- Ranran Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kirchner J, O'Donoghue JA, Becker AS, Ulaner GA. Improved image reconstruction of 89Zr-immunoPET studies using a Bayesian penalized likelihood reconstruction algorithm. EJNMMI Phys 2021; 8:6. [PMID: 33469848 PMCID: PMC7815860 DOI: 10.1186/s40658-021-00352-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/05/2021] [Indexed: 12/04/2022] Open
Abstract
Purpose The aim of this study was to evaluate the use of a Bayesian penalized likelihood reconstruction algorithm (Q.Clear) for 89Zr-immunoPET image reconstruction and its potential to improve image quality and reduce the administered activity of 89Zr-immunoPET tracers. Methods Eight 89Zr-immunoPET whole-body PET/CT scans from three 89Zr-immunoPET clinical trials were selected for analysis. On average, patients were imaged 6.3 days (range 5.0–8.0 days) after administration of 69 MBq (range 65–76 MBq) of [89Zr]Zr-DFO-daratumumab, [89Zr]Zr-DFO-pertuzumab, or [89Zr]Zr-DFO-trastuzumab. List-mode PET data was retrospectively reconstructed using Q.Clear with incremental β-values from 150 to 7200, as well as standard ordered-subset expectation maximization (OSEM) reconstruction (2-iterations, 16-subsets, a 6.4-mm Gaussian transaxial filter, “heavy” z-axis filtering and all manufacturers’ corrections active). Reduced activities were simulated by discarding 50% and 75% of original counts in each list mode stream. All reconstructed PET images were scored for image quality and lesion detectability using a 5-point scale. SUVmax for normal liver and sites of disease and liver signal-to-noise ratio were measured. Results Q.Clear reconstructions with β = 3600 provided the highest scores for image quality. Images reconstructed with β-values of 3600 or 5200 using only 50% or 25% of the original counts provided comparable or better image quality scores than standard OSEM reconstruction images using 100% of counts. Conclusion The Bayesian penalized likelihood reconstruction algorithm Q.Clear improved the quality of 89Zr-immunoPET images. This could be used in future studies to improve image quality and/or decrease the administered activity of 89Zr-immunoPET tracers. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-021-00352-z.
Collapse
Affiliation(s)
- Julian Kirchner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Dusseldorf, Germany
| | - Joseph A O'Donoghue
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anton S Becker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gary A Ulaner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Department of Radiology, Weill Cornell Medical College, New York, NY, USA. .,Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, CA, USA.
| |
Collapse
|
16
|
Wijetunga I, McVeigh LE, Charalambous A, Antanaviciute A, Carr IM, Nair A, Prasad KR, Ingram N, Coletta PL. Translating Biomarkers of Cholangiocarcinoma for Theranosis: A Systematic Review. Cancers (Basel) 2020; 12:E2817. [PMID: 33007872 PMCID: PMC7601719 DOI: 10.3390/cancers12102817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a rare disease with poor outcomes and limited research efforts into novel treatment options. A systematic review of CCA biomarkers was undertaken to identify promising biomarkers that may be used for theranosis (therapy and diagnosis). MEDLINE/EMBASE databases (1996-2019) were systematically searched using two strategies to identify biomarker studies of CCA. The PANTHER Go-Slim classification system and STRING network version 11.0 were used to interrogate the identified biomarkers. The TArget Selection Criteria for Theranosis (TASC-T) score was used to rank identified proteins as potential targetable biomarkers for theranosis. The following proteins scored the highest, CA9, CLDN18, TNC, MMP9, and EGFR, and they were evaluated in detail. None of these biomarkers had high sensitivity or specificity for CCA but have potential for theranosis. This review is unique in that it describes the process of selecting suitable markers for theranosis, which is also applicable to other diseases. This has highlighted existing validated markers of CCA that can be used for active tumor targeting for the future development of targeted theranostic delivery systems. It also emphasizes the relevance of bioinformatics in aiding the search for validated biomarkers that could be repurposed for theranosis.
Collapse
Affiliation(s)
- Imeshi Wijetunga
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - Laura E. McVeigh
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - Antonia Charalambous
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - Agne Antanaviciute
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - Ian M. Carr
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - Amit Nair
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - K. Raj Prasad
- Department of Hepatobiliary and Transplant Surgery, St. James’s University Hospital, Leeds LS9 7TF, UK;
| | - Nicola Ingram
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - P. Louise Coletta
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| |
Collapse
|
17
|
Positron Emission Tomography and Molecular Imaging of Head and Neck Malignancies. CURRENT RADIOLOGY REPORTS 2020. [DOI: 10.1007/s40134-020-00366-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Lau J, Rousseau E, Kwon D, Lin KS, Bénard F, Chen X. Insight into the Development of PET Radiopharmaceuticals for Oncology. Cancers (Basel) 2020; 12:E1312. [PMID: 32455729 PMCID: PMC7281377 DOI: 10.3390/cancers12051312] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
While the development of positron emission tomography (PET) radiopharmaceuticals closely follows that of traditional drug development, there are several key considerations in the chemical and radiochemical synthesis, preclinical assessment, and clinical translation of PET radiotracers. As such, we outline the fundamentals of radiotracer design, with respect to the selection of an appropriate pharmacophore. These concepts will be reinforced by exemplary cases of PET radiotracer development, both with respect to their preclinical and clinical evaluation. We also provide a guideline for the proper selection of a radionuclide and the appropriate labeling strategy to access a tracer with optimal imaging qualities. Finally, we summarize the methodology of their evaluation in in vitro and animal models and the road to clinical translation. This review is intended to be a primer for newcomers to the field and give insight into the workflow of developing radiopharmaceuticals.
Collapse
Affiliation(s)
- Joseph Lau
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Etienne Rousseau
- Department of Nuclear Medicine and Radiobiology, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Daniel Kwon
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (K.-S.L.); (F.B.)
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (K.-S.L.); (F.B.)
| | - François Bénard
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (K.-S.L.); (F.B.)
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
19
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|