1
|
Liu Y, Oroujeni M, Liao Y, Vorobyeva A, Bodenko V, Orlova A, Konijnenberg M, Carlqvist M, Wahlberg E, Loftenius A, Frejd FY, Tolmachev V. Evaluation of a novel 177Lu-labelled therapeutic Affibody molecule with a deimmunized ABD domain and improved biodistribution profile. Eur J Nucl Med Mol Imaging 2024; 51:4038-4048. [PMID: 39008065 PMCID: PMC11527907 DOI: 10.1007/s00259-024-06840-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE Fusion of Affibody molecules with an albumin-binding domain (ABD) provides targeting agents, which are suitable for radionuclide therapy. To facilitate clinical translation, the low immunogenic potential of such constructs with targeting properties conserved is required. METHODS The HER2-targeting Affibody molecule ZHER2:2891 was fused with a deimmunized ABD variant and DOTA was conjugated to a unique C-terminal cysteine. The novel construct, PEP49989, was labelled with 177Lu. Affinity, specificity, and in vivo targeting properties of [177Lu]Lu-PEP49989 were characterised. Experimental therapy in mice with human HER2-expressing xenografts was evaluated. RESULTS The maximum molar activity of 52 GBq/µmol [177Lu]Lu-PEP49989 was obtained. [177Lu]Lu-PEP49989 bound specifically to HER2-expressing cells in vitro and in vivo. The HER2 binding affinity of [177Lu]Lu-PEP49989 was similar to the affinity of [177Lu]Lu-ABY-027 containing the parental ABD035 variant. The renal uptake of [177Lu]Lu-PEP49989 was 1.4-fold higher, but hepatic and splenic uptake was 1.7-2-fold lower than the uptake of [177Lu]Lu-ABY-027. The median survival of xenograft-bearing mice treated with 21 MBq [177Lu]Lu-PEP49989 (> 90 days) was significantly longer than the survival of mice treated with vehicle (38 days) or trastuzumab (45 days). Treatment using a combination of [177Lu]Lu-PEP49989 and trastuzumab increased the number of complete tumour remissions. The renal and hepatic toxicity was minimal to mild. CONCLUSION In preclinical studies, [177Lu]Lu-PEP49989 demonstrated favourable biodistribution and a strong antitumour effect, which was further enhanced by co-treatment with trastuzumab.
Collapse
Affiliation(s)
- Yongsheng Liu
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 751 85, Sweden
| | - Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 751 85, Sweden
- Affibody AB, Solna, 171 65, Sweden
| | - Yunqi Liao
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 751 85, Sweden
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 751 85, Sweden
| | - Vitalina Bodenko
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 751 85, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, 751 23, Sweden
| | - Mark Konijnenberg
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | - Fredrik Y Frejd
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 751 85, Sweden
- Affibody AB, Solna, 171 65, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 751 85, Sweden.
| |
Collapse
|
2
|
Zhang J, Lin Y, Gao J, Pan Y, Hou G, Guo C, Gao F. Development and biological evaluation of 68Ga-labeled peptides for potential application in HER2-positive colorectal cancer. Bioorg Chem 2024; 151:107645. [PMID: 39059074 DOI: 10.1016/j.bioorg.2024.107645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
Colorectal cancer (CRC) is among the most lethal and prevalent malignancies in the world. Human epidermal growth factor receptor 2 (HER2) is a promising target for the diagnosis and treatment of CRC. In this study, we aimed to design, synthesize and label peptide-based positron emission tomography (PET) tracers targeting HER2-positive CRC, namely [68Ga]Ga-ES-01 and [68Ga]Ga-ES-02. The results show that [68Ga]Ga-ES-01 and [68Ga]Ga-ES-02 possessed hydrophilicity, rapid pharmacokinetic properties and excellent stabilities. [68Ga]Ga-ES-02 demonstrated higher binding affinity (Kd = 24.29 ± 4.95 nM) toward the HER2 in CRC. In HER2-positive HT-29 CRC xenograft mouse model, PET study showed specific tumor uptake after injection of [68Ga]Ga-ES-02 (SUV15min max = 0.87 ± 0.03; SUV30min max = 0.64 ± 0.02). In biodistribution study, the T/M ratios of 68Ga-ES-02 at 30 min after injection reached a maximum of 4.07 ± 0.34. In summary, we successfully synthesized and evaluated two novel peptide-based PET tracers. Our data demonstrate that [68Ga]Ga-ES-01/02 is capable of HER2-positive colorectal cancer, with [68Ga]Ga-ES-02 showing superior imaging effect, enhanced targeting, and increased specificity.
Collapse
Affiliation(s)
- Jinglin Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yixiang Lin
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jingyue Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuan Pan
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Guihua Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chun Guo
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
3
|
Hu X, Hu H, Li D, Wang P, Cai J. Affibody-based molecular probe 99mTc-(HE) 3Z HER2:V2 for non-invasive HER2 detection in ovarian and breast cancer xenografts. Open Med (Wars) 2024; 19:20241027. [PMID: 39247440 PMCID: PMC11377979 DOI: 10.1515/med-2024-1027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/25/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
Purpose This study aimed to assess the biodistribution and bioactivity of the affibody molecular probe 99mTc-(HE)3ZHER2:V2, prepared by genetic recombination, and to investigate its potential for targeted human epidermal growth factor receptor 2 (HER2) imaging in SKOV3 ovarian cancer and MDA-MB-361 breast cancer xenografts. Methods Affibody molecules were generated through genetic recombination. The radiochemical purity of the 99mTc-labeled HER2 affibody was determined using reverse phase high performance liquid chromatography (RP-HPLC). Evaluation of HER2 affinity in SKOV3 ovarian cancer cells and MDA-MB-361 breast cancer cells (HER2-positive) was conducted by calculating equilibrium dissociation constants. Biodistribution of the 99mTc-labeled affibody molecular probe was assessed in Balb/c mice bearing SKOV3 tumors. Tumor targeting specificity was evaluated in Balb/c mice using SKOV3, MDA-MB-361, and AT-3 (HER2-negative) xenografts. Results Affibody (HE)3ZHER2:V2, generated through recombinant gene expression, was successfully labeled with 99mTc, achieving a radiochemical purity of (96.0 ± 1.7)% (n = 3) as determined by RP-HPLC. This molecular probe exhibited specific binding to HER2-positive SKOV3 cells, demonstrating intense radioactive uptake. Biodistribution analysis showed rapid accumulation of 99mTc-(HE)3ZHER2:V2 in HER2-positive tumors post-administration, primarily clearing through the urinary system. Single-photon emission computed tomography imaging conducted 1-3 h after intravenous injection of 99mTc-(HE)3ZHER2:V2 into HER2-positive SKOV3 and MDA-MB-361 nude mouse models confirmed targeted uptake of the molecular probe by the tumors. Conclusions The molecular probe 99mTc-(HE)3ZHER2:V2 developed in this study effectively targets HER2 for imaging HER2-positive SKOV3 and MDA-MB-361 xenografts in vivo. It exhibits rapid blood clearance without evident toxic effects, suggesting its potential as a valuable marker for detecting HER2 expression in tumor cells.
Collapse
Affiliation(s)
- Xianwen Hu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Huichuan, Zunyi, 563003, China
| | - Hongyu Hu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Huichuan, Zunyi, 563003, China
| | - Dandan Li
- Department of Obstetrics, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, Guizhou, Zunyi, 563003, China
| | - Pan Wang
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, China
| | - Jiong Cai
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, China
| |
Collapse
|
4
|
Li S, Wang K, Zhu X, Pan D, Wang L, Guo X, Gao X, Luo Q, Wang X. The diagnostic value of 68Ga-NOTA-MAL-Cys-MZHER 2:342 PET/CT imaging for HER2-positive lung adenocarcinoma. Front Med (Lausanne) 2024; 11:1447500. [PMID: 39193019 PMCID: PMC11347437 DOI: 10.3389/fmed.2024.1447500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Background The human epidermal growth factor receptor 2 gene (HER2) has been identified as a potential therapeutic target in lung adenocarcinoma (LUAD). Non-invasive positron emission tomography (PET) imaging provides a reliable strategy for in vivo determination of HER2 expression through whole-body detection of abnormalities. The PET tracer 68Ga-NOTA-MAL-Cys-MZHER2:342 has shown promising results for HER2-positive breast and gastric cancers. This study aims to evaluate the performance of 68Ga-NOTA-MAL-Cys-MZHER2:342 in vitro and in vivo models and in clinical patients with HER2-positive LUAD. Methods NOTA-MAL-Cys-MZHER2:342 was synthesized and labeled with 68Ga. Cell uptake, cell binding ability, and stability studies of 68Ga-NOTA-MAL-Cys-MZHER2:342 were assessed both in the Calu-3 lung cancer (LC) cell line and normal mice. In vivo assessment in tumor-bearing mice was conducted using microPET imaging and biodistribution experiments. Additionally, preliminary PET/CT imaging analysis was performed on HER2-positive LC patients. Results 68Ga-NOTA-MAL-Cys-MZHER2:342 was prepared with a radiochemical purity (RCP) exceeding 95%. The tracer demonstrated high cell uptake in HER2-overexpressing Calu-3 cells, with an IC50 of 158.9, an adequate 1.73 nM. Good stability was exhibited both in vitro and in vivo. MicroPET imaging of Calu-3-bearing mice revealed high tumor uptake and notable tumor-to-background ratios. Positive outcomes were also observed in two HER2-positive LUAD patients. Conclusion 68Ga-NOTA-MAL-Cys-MZHER2:342 demonstrated satisfactory stability, sensitivity, and specificity. These findings suggest that 68Ga-NOTA-MAL-Cys-MZHER2:342 PET/CT imaging provides a novel tool for non-invasive visual assessment of HER2 expression in LUAD patients.
Collapse
Affiliation(s)
- Shu Li
- Department of Pulmonary and Critical Care Medicine, Jiangnan University Medical Center, Jiangnan University (Wuxi No. 2 People's Hospital), Wuxi, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Ke Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Xue Zhu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Ling Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Xu Guo
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaomin Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Qing Luo
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Xun Wang
- Department of Pulmonary and Critical Care Medicine, Jiangnan University Medical Center, Jiangnan University (Wuxi No. 2 People's Hospital), Wuxi, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Nantong University Medical School, Nantong, Jiangsu, China
| |
Collapse
|
5
|
Guo X, Zhou N, Liu J, Ding J, Liu T, Song G, Zhu H, Yang Z. Comparison of an Affibody-based Molecular Probe and 18F-FDG for Detecting HER2-Positive Breast Cancer at PET/CT. Radiology 2024; 311:e232209. [PMID: 38888484 DOI: 10.1148/radiol.232209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Background Human epidermal growth factor receptor 2 (HER2) affibody-based tracers could be an alternative to nonspecific radiotracers for noninvasive detection of HER2 expression in breast cancer lesions at PET/CT. Purpose To compare an affibody-based tracer, Al18F-NOTA-HER2-BCH, and fluorine 18 (18F) fluorodeoxyglucose (FDG) for detecting HER2-positive breast cancer lesions on PET/CT images. Materials and Methods In this prospective study conducted from June 2020 to July 2023, participants with HER2-positive breast cancer underwent both Al18F-NOTA-HER2-BCH and 18F-FDG PET/CT. HER2 positivity was confirmed with pathologic assessment (immunohistochemistry test results of 3+, or 2+ followed by fluorescence in situ hybridization, indicated HER2 amplification). Two independent readers visually assessed the uptake of tracers on images. Lesion uptake was quantified using the maximum standardized uptake value (SUVmax) and target to background ratio (TBR) and compared using a general linear mixed model. Results A total of 42 participants (mean age, 56.3 years ± 10.1 [SD]; 41 female) with HER2-positive breast cancer were included; 42 (100%) had tumors that were detected with Al18F-NOTA-HER2-BCH PET/CT and 40 (95.2%) had tumors detected with 18F-FDG PET/CT. Primary tumors in two of 21 participants, lymph node metastases in four of 21 participants, bone metastases in four of 15 participants, and liver metastases in three of nine participants were visualized only with Al18F-NOTA-HER2-BCH. Lung metastasis in one of nine participants was visualized only with 18F-FDG. Al18F-NOTA-HER2-BCH enabled depiction of more suspected HER2-positive primary tumors (26 vs 21) and lymph node (170 vs 130), bone (92 vs 66), and liver (55 vs 27) metastases than 18F-FDG. The SUVmax and TBR values of primary tumors and lymph node, bone, and liver metastases were all higher on Al18F-NOTA-HER2-BCH images than on 18F-FDG images (median SUVmax range, 10.4-13.5 vs 3.4-6.2; P value range, <.001 to .02; median TBR range, 2.7-17.6 vs 1.2-7.8; P value range, <.001 to .001). No evidence of differences in the SUVmax and TBR for chest wall or lung metastases was observed between Al18F-NOTA-HER2-BCH and 18F-FDG (P value range, .06 to .53). Conclusion PET/CT with the affibody-based tracer Al18F-NOTA-HER2-BCH enabled detection of more primary lesions and lymph node, bone, and liver metastases than PET/CT using 18F-FDG. ClinicalTrials.gov Identifier: NCT04547309 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Ulaner in this issue.
Collapse
Affiliation(s)
- Xiaoyi Guo
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine (X.G., N.Z., J.L., J.D., T.L., H.Z., Z.Y.), and Department of Breast Oncology (G.S.), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Nina Zhou
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine (X.G., N.Z., J.L., J.D., T.L., H.Z., Z.Y.), and Department of Breast Oncology (G.S.), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jiayue Liu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine (X.G., N.Z., J.L., J.D., T.L., H.Z., Z.Y.), and Department of Breast Oncology (G.S.), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jin Ding
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine (X.G., N.Z., J.L., J.D., T.L., H.Z., Z.Y.), and Department of Breast Oncology (G.S.), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Teli Liu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine (X.G., N.Z., J.L., J.D., T.L., H.Z., Z.Y.), and Department of Breast Oncology (G.S.), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Guohong Song
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine (X.G., N.Z., J.L., J.D., T.L., H.Z., Z.Y.), and Department of Breast Oncology (G.S.), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hua Zhu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine (X.G., N.Z., J.L., J.D., T.L., H.Z., Z.Y.), and Department of Breast Oncology (G.S.), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhi Yang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine (X.G., N.Z., J.L., J.D., T.L., H.Z., Z.Y.), and Department of Breast Oncology (G.S.), Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
6
|
Eissler N, Altena R, Alhuseinalkhudhur A, Bragina O, Feldwisch J, Wuerth G, Loftenius A, Brun N, Axelsson R, Tolmachev V, Sörensen J, Frejd FY. Affibody PET Imaging of HER2-Expressing Cancers as a Key to Guide HER2-Targeted Therapy. Biomedicines 2024; 12:1088. [PMID: 38791050 PMCID: PMC11118066 DOI: 10.3390/biomedicines12051088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a major prognostic and predictive marker overexpressed in 15-20% of breast cancers. The diagnostic reference standard for selecting patients for HER2-targeted therapy is based on the analysis of tumor biopsies. Previously patients were defined as HER2-positive or -negative; however, with the approval of novel treatment options, specifically the antibody-drug conjugate trastuzumab deruxtecan, many breast cancer patients with tumors expressing low levels of HER2 have become eligible for HER2-targeted therapy. Such patients will need to be reliably identified by suitable diagnostic methods. Biopsy-based diagnostics are invasive, and repeat biopsies are not always feasible. They cannot visualize the heterogeneity of HER2 expression, leading to a substantial number of misdiagnosed patients. An alternative and highly accurate diagnostic method is molecular imaging with radiotracers. In the case of HER2, various studies demonstrate the clinical utility and feasibility of such approaches. Radiotracers based on Affibody® molecules, small, engineered affinity proteins with a size of ~6.5 kDa, are clinically validated molecules with favorable characteristics for imaging. In this article, we summarize the HER2-targeted therapeutic landscape, describe our experience with imaging diagnostics for HER2, and review the currently available clinical data on HER2-Affibody-based molecular imaging as a novel diagnostic tool in breast cancer and beyond.
Collapse
Affiliation(s)
| | - Renske Altena
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Solna, Sweden
- Medical Unit Breast, Endocrine Tumors and Sarcoma, Theme Cancer, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, 17164 Solna, Sweden
- Medical Radiation Physics and Nuclear Medicine, Functional Unit of Nuclear Medicine, Karolinska University Hospital, 14157 Huddinge, Sweden
| | - Ali Alhuseinalkhudhur
- Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, 75310 Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, 75310 Uppsala, Sweden
| | - Olga Bragina
- Department of Nuclear Therapy and Diagnostic, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634055 Tomsk, Russia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | | | | | | | | | - Rimma Axelsson
- Medical Radiation Physics and Nuclear Medicine, Functional Unit of Nuclear Medicine, Karolinska University Hospital, 14157 Huddinge, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 75310 Uppsala, Sweden
| | - Jens Sörensen
- Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, 75310 Uppsala, Sweden
| | - Fredrik Y. Frejd
- Affibody AB, 17165 Solna, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, 75310 Uppsala, Sweden
| |
Collapse
|
7
|
Meng X, Kong X, Xia L, Wu R, Zhu H, Yang Z. The Role of Total-Body PET in Drug Development and Evaluation: Status and Outlook. J Nucl Med 2024; 65:46S-53S. [PMID: 38719239 DOI: 10.2967/jnumed.123.266978] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/23/2024] [Indexed: 07/16/2024] Open
Abstract
Total-body PET, an emerging technique, enables high-quality simultaneous total-body dynamic PET acquisition and accurate kinetic analysis. It has the potential to facilitate the study of multiple tracers while minimizing radiation dose and improving tracer-specific imaging. This advancement holds promise for enhancing the development and clinical evaluation of drugs, particularly radiopharmaceuticals. Multiple clinical trials are using a total-body PET scanner to explore existing and innovative radiopharmaceuticals. However, challenges persist, along with the opportunities, with regard to the use of total-body PET in drug development and evaluation. Specifically, considerations relate to the role of total-body PET in clinical pharmacologic evaluations and its integration into the theranostic paradigm. In this review, state-of-the-art total-body PET and its potential roles in pharmaceutical research are explored.
Collapse
Affiliation(s)
- Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Xiangxing Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Lei Xia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Runze Wu
- Beijing United Imaging Research Institute of Intelligent Imaging, Beijing, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| |
Collapse
|
8
|
Zhang M, Kang F, Xing T, Wang J, Ma T, Li G, Quan Z, Yang W, Chen X, Wang J. First-in-human validation of enzymolysis clearance strategy for decreasing renal radioactivity using modified [ 68Ga]Ga-HER2 Affibody. Eur J Nucl Med Mol Imaging 2024; 51:1713-1724. [PMID: 38216779 DOI: 10.1007/s00259-023-06584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/11/2023] [Indexed: 01/14/2024]
Abstract
PURPOSE Enzymolysis clearance strategy, characterized by releasing the non-reabsorbable radioactive fragment under the specific cleavage of enzymes, is confirmed to be a safe and effective way to reduce the renal radioactivity accumulation in mice. However, the effectiveness of this strategy in humans remains unknown. Human epidermal growth factor receptor 2 (HER2) is overexpressed in various types of tumors, and radiolabeled HER2 Affibody is believed to be an attractive tool for HER2-targeted theranostics. However, its wide application is limited by the high and persistent renal uptake. In this study, we intend to validate the effectiveness of enzymolysis clearance strategy in reducing renal accumulation by using a modified HER2 Affibody. MATERIALS AND METHODS A new HER2 Affibody ligand, NOTA-MVK-ZHER2:2891, containing a cleavable Met-Val-Lys (MVK) linker was synthesized and labeled with 68Ga. The microPET imaging study was performed in SKOV-3 tumor mice to assess the uptakes of the control ligand and the MVK one in tumors and kidneys. Seven healthy volunteers were included for biodistribution and dosimetric studies with both the control and MVK ligands performed 1 week apart. Urine and blood samples from healthy volunteers were collected for in vivo metabolism study of the two ligands. Four HER2-positive and two HER2-negative patients were recruited for [68Ga]Ga-NOTA-MVK-ZHER2:2891 PET/CT imaging at 2 and 4 h post-injection (p.i.). RESULTS [68Ga]Ga-NOTA-MVK-ZHER2:2891 was stable both in PBS and in mouse serum. MicroPET images showed that the tumor uptake of [68Ga]Ga-NOTA-MVK-ZHER2:2891 was comparable to that of [68Ga]Ga-NOTA-ZHER2:2891 at all the time points, while the kidney uptake was significantly reduced 40 min p.i. (P < 0.05). The biodistribution study in healthy volunteers showed that the kidney uptake of MVK ligand was significantly lower than that of the control ligand at 1 h p.i. (P < 0.05), with the SUVmean of 34.3 and 45.8, respectively, while the uptakes of the two ligands in the other organs showed negligible difference. The effective doses of the MVK ligand and the control one were 26.1 and 28.7 µSv/MBq, respectively. The enzymolysis fragment of [68Ga]Ga-NOTA-Met-OH was observed in the urine samples of healthy volunteers injected with the MVK ligand, indicating that the enzymolysis clearance strategy worked in humans. The PET/CT study of patients showed that the range of SUVmax of HER2-positive lesions was 9.4-21, while that of HER2-negative lesions was 2.7-6.2, which suggested that the MVK modification did not affect the ability of ZHER2:2891 structure to bind with HER2. CONCLUSION We for the first time demonstrated that enzymolysis clearance strategy can effectively reduce renal radioactivity accumulation in humans. This strategy is expected to decrease renal radiation dose of peptide and small protein-based radiotracers, especially in the field of radionuclide therapy.
Collapse
Affiliation(s)
- Mingru Zhang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Tong Xing
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Junling Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Taoqi Ma
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Guiyu Li
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Zhiyong Quan
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Weidong Yang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| |
Collapse
|
9
|
Bragina O, Tashireva L, Loos D, Chernov V, Hober S, Tolmachev V. Evaluation of Approaches for the Assessment of HER2 Expression in Breast Cancer by Radionuclide Imaging Using the Scaffold Protein [ 99mTc]Tc-ADAPT6. Pharmaceutics 2024; 16:445. [PMID: 38675107 PMCID: PMC11053875 DOI: 10.3390/pharmaceutics16040445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Due to its small size and high affinity binding, the engineered scaffold protein ADAPT6 is a promising targeting probe for radionuclide imaging of human epidermal growth factor receptor type 2 (HER2). In a Phase I clinical trial, [99mTc]Tc-ADAPT6 demonstrated safety, tolerability and capacity to visualize HER2 expression in primary breast cancer. In this study, we aimed to select the optimal parameters for distinguishing between breast cancers with high and low expression of HER2 using [99mTc]Tc-ADAPT6 in a planned Phase II study. HER2 expression was evaluated in primary tumours and metastatic axillary lymph nodes (mALNs). SPECT/CT imaging of twenty treatment-naive breast cancer patients was performed 2 h after injection of [99mTc]Tc-ADAPT6. The imaging data were compared with the data concerning HER2 expression obtained by immunohistochemical evaluation of samples obtained by core biopsy. Maximum Standard Uptake Values (SUVmax) afforded the best performance for both primary tumours and mALNs (areas under the receiver operating characteristic curve (ROC AUC) of 1.0 and 0.97, respectively). Lesion-to-spleen ratios provided somewhat lower performance. However, the ROC AUCs were still over 0.90 for both primary tumours and mALNs. Thus, lesion-to-spleen ratios should be further evaluated to find if these could be applied to imaging using stand-alone SPECT cameras that do not permit SUV calculations.
Collapse
Affiliation(s)
- Olga Bragina
- Department of Nuclear Therapy and Diagnostics, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (O.B.); (V.C.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634009, Russia;
| | - Liubov Tashireva
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634009, Russia;
- Laboratory of Molecular Cancer Therapy, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia
- Department of General and Molecular Pathology, Tomsk National Research Medical Center, Tomsk 634014, Russia;
| | - Dmitriy Loos
- Department of General and Molecular Pathology, Tomsk National Research Medical Center, Tomsk 634014, Russia;
| | - Vladimir Chernov
- Department of Nuclear Therapy and Diagnostics, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (O.B.); (V.C.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634009, Russia;
| | - Sophia Hober
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden;
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 81 Uppsala, Sweden
| |
Collapse
|
10
|
Mohr P, van Sluis J, Lub-de Hooge MN, Lammertsma AA, Brouwers AH, Tsoumpas C. Advances and challenges in immunoPET methodology. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1360710. [PMID: 39355220 PMCID: PMC11440922 DOI: 10.3389/fnume.2024.1360710] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/05/2024] [Indexed: 10/03/2024]
Abstract
Immuno-positron emission tomography (immunoPET) enables imaging of specific targets that play a role in targeted therapy and immunotherapy, such as antigens on cell membranes, targets in the disease microenvironment, or immune cells. The most common immunoPET applications use a monoclonal antibody labeled with a relatively long-lived positron emitter such as 89Zr (T 1/2 = 78.4 h), but smaller antibody-based constructs labeled with various other positron emitting radionuclides are also being investigated. This molecular imaging technique can thus guide the development of new drugs and may have a pivotal role in selecting patients for a particular therapy. In early phase immunoPET trials, multiple imaging time points are used to examine the time-dependent biodistribution and to determine the optimal imaging time point, which may be several days after tracer injection due to the slow kinetics of larger molecules. Once this has been established, usually only one static scan is performed and semi-quantitative values are reported. However, total PET uptake of a tracer is the sum of specific and nonspecific uptake. In addition, uptake may be affected by other factors such as perfusion, pre-/co-administration of the unlabeled molecule, and the treatment schedule. This article reviews imaging methodologies used in immunoPET studies and is divided into two parts. The first part summarizes the vast majority of clinical immunoPET studies applying semi-quantitative methodologies. The second part focuses on a handful of studies applying pharmacokinetic models and includes preclinical and simulation studies. Finally, the potential and challenges of immunoPET quantification methodologies are discussed within the context of the recent technological advancements provided by long axial field of view PET/CT scanners.
Collapse
Affiliation(s)
- Philipp Mohr
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joyce van Sluis
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan A Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adrienne H Brouwers
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Charalampos Tsoumpas
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
11
|
Wang L, Yan J, XinyuWang, Xu Y, Pan D, Chen C, Shao Y, Song X, Qi K, Yang M, Tu J. Evaluation of chicken chorioallantoic membrane model for tumor imaging and drug development: Promising findings. Animal Model Exp Med 2024. [PMID: 38230452 DOI: 10.1002/ame2.12380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND The chicken chorioallantoic membrane (CAM) model is a potential alternative to the mouse model based on the 3R principles. However, its value for determination of the in vivo behaviors of radiolabeled peptides through positron emission tomography (PET) imaging needed investigation. Herein, the chicken CAM tumor models were established, and their feasibility was evaluated for evaluating the imaging properties of radiolabeled peptides using a 68 Ga-labeled HER2 affibody. METHODS Two human breast cancer cell lines were inoculated into chicken CAM and mice, respectively. The tumor-targeting potential and pharmacokinetic profile of a 68 Ga-labeled affibody, 68 Ga-MZHER, in both tumor models were also determined. RESULTS The tumor-formation time in chicken CAM model was shorter than that of mouse model. The uptake values of human epithelial growth factor receptor-2 (HER2)-positive Bcap37 tumors in chicken CAM and mouse models were 5.36 ± 0.26% ID/g and 5.26 ± 0.43% ID/g at 30 min postinjection of 68 Ga-MZHER, respectively. At the same time points, the uptake values of HER2-negative MDA-MB-231 tumors in the chicken CAM models and mouse models were 1.57 ± 0.15% ID/g and 1.67 ± 0.25% ID/g, respectively. Ex vivo biodistribution confirmed that more radioactivity accumulated in Bcap37 tumors than in MDA-MD-231 tumors in both CAM and mouse models. CONCLUSION In this study, the CAM tumor model was successfully prepared. The chicken CAM model is a novel tool for quickly determining the in vivo properties of radiolabeled peptides targeting biomarkers. It may be beneficial for early monitoring of the therapeutic effect of a new drug through PET imaging with specific peptides.
Collapse
Affiliation(s)
- Lizhen Wang
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - XinyuWang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Chongyang Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Ying Shao
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiangjun Song
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Kezong Qi
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Jian Tu
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
12
|
Hernandez MC, Yazaki P, Mortimer JE, Yamauchi D, Poku E, Park J, Frankel P, Kim J, Colcher DM, Wong J, Fong Y, Shively J, Woo Y. Pilot study of HER2 targeted 64 Cu-DOTA-tagged PET imaging in gastric cancer patients. Nucl Med Commun 2023; 44:1151-1155. [PMID: 37901917 PMCID: PMC10872802 DOI: 10.1097/mnm.0000000000001761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
OBJECTIVE Human epidermal growth factor receptor 2 (HER2) is an important biomarker for targeted gastric cancer (GC) immunotherapy. However, heterogeneous HER2 overexpression in GC, loss of HER2 expression during therapy, and inability to non-invasively identify HER2 overexpressing tumors impede effective targeting therapies. Improved HER2-specific functional imaging can address these challenges. Trastuzumab is a HER2-directed mAb to treat HER2 overexpressing cancers. The 64 Cu-DOTA-trastuzumab radiotracer is used to detect HER2+ metastatic breast cancer. We aimed to develop 64 Cu-DOTA-trastuzumab PET-CT to detect and characterize tumor uptake in HER2+ or - GC patients. METHODS We conducted a single-arm phase II pilot study exploring the feasibility of 64 Cu-DOTA-trastuzumab for PET imaging of HER2 overexpressing GC compared to HER2 non-expressing tumors. Eight patients with biopsy-confirmed gastric adenocarcinoma were included. Immunohistochemistry was used to evaluate primary tumor biopsies for HER2 overexpression. Patients were injected with 45 mg of cold trastuzumab followed by 5 mg of 64 Cu-DOTA-trastuzumab. PET-CT scans were performed 24-48 h post radiotracer injection and compared to standard staging CT scans. RESULTS We observed limited toxicity following 64 Cu-DOTA-trastuzumab injections. While there was uptake of the radiotracer in portions of HER2+ lesions, there was no statistically significant distinction between tumor and background by standardized uptake value analysis. CONCLUSION Despite the potential of 64 Cu-DOTA-trastuzumab PET imaging of HER2+ metastatic breast cancer, a 5 mg dose of this radiotracer injected 24-48 h before imaging was insufficient to identify HER2+ GC. These results inform future GC imaging studies to optimize biomarker-targeted therapies based on dosage and timing for more clinically relevant imaging.
Collapse
Affiliation(s)
- Matthew C. Hernandez
- Division of Surgical Oncology, Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Paul Yazaki
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - Joanne E. Mortimer
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA
| | | | - Erasmus Poku
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Jinha Park
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Paul Frankel
- Department of Biostatistics, Beckman Research Institute, Duarte, CA
| | - Joseph Kim
- Division of Surgical Oncology, Department of Surgery, UK Healthcare, University of Kentucky, Lexington, KY
| | - David M. Colcher
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA
| | - Jeffrey Wong
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Yuman Fong
- Division of Surgical Oncology, Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - John Shively
- Department of Immunology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Yanghee Woo
- Division of Surgical Oncology, Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, CA
| |
Collapse
|
13
|
Liu J, Guo X, Wen L, Wang L, Liu F, Song G, Zhu H, Zhou N, Yang Z. Comparison of renal clearance of [ 18F]AlF-RESCA-HER2-BCH and [ 18F]AlF-NOTA-HER2-BCH in mice and breast cancer patients. Eur J Nucl Med Mol Imaging 2023; 50:2775-2786. [PMID: 37093312 DOI: 10.1007/s00259-023-06232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE A novel HER2 affibody-based molecular probe, [18F]AlF-RESCA-HER2-BCH, was developed for reducing renal uptake, evaluated, and compared with [18F]AlF-NOTA-HER2-BCH. METHODS In preclinical studies, micro-PET/CT was performed using HER2-positive gastric cancer patient-derived xenografts (PDX) model at 0.5-1 (dynamic), 2, 4, and 6 h post-injection. For blocking experiment, 0.5 mg cold affibody was co-injected with probes. Biodistribution were performed on HER2-positive PDX models at 2 h post-injection. For clinical study, PET/CT images were acquired at 2 h and 4 h after injection of 231.29 ± 17.77 MBq [18F]AlF-NOTA-HER2-BCH or [18F]AlF-RESCA-HER2-BCH in five breast cancer patients (4 HER2-positive and 1 HER2-low). Standardized uptake values (SUVs) were measured in tumors and source-organs for semi-quantitative analysis. The OLINDA/EXM software (version 1.2) was used to calculate the radiation doses. RESULTS [18F]AlF-NOTA-HER2-BCH and [18F]AlF-RESCA-HER2-BCH were stably labeled with [18F]F, with high binding specificity and affinity to HER2. Micro-PET/CT of both tracers could clearly visualize HER2-positive PDX tumors with high uptake of 16.24 ± 1.74% ID/g and 14.39 ± 2.45% ID/g at 2 h post-injection. The renal accumulation of [18F]AlF-RESCA-HER2-BCH was significantly lower than that of [18F]AlF-NOTA-HER2-BCH (5.16 ± 0.22% ID/g vs. 158.73 ± 5.44% ID/g at 2 h, p < 0.0001). In the clinical study, both [18F]AlF-NOTA-HER2-BCH and [18F]AlF-RESCA-HER2-BCH demonstrated favorable tumor targeting and image contrast. [18F]AlF-RESCA-HER2-BCH showed a higher SUVmax in both primary tumor and metastases, and a significantly higher target-to-nontarget ratio in metastases than [18F]AlF-NOTA-HER2-BCH. Moreover, [18F]AlF-RESCA-HER2-BCH had lower renal accumulation (43.56 ± 7.88 vs. 79.81 ± 3.81 at 2 h, p < 0.0001; 33.23 ± 6.89 vs. 78.63 ± 4.00 at 4 h, p < 0.0001) as well as a significantly lower renal absorbed dose than [18F]AlF-NOTA-HER2-BCH (0.4450 ± 0.1117 mGy/MBq vs. 0.8030 ± 0.1604 mGy/MBq, p < 0.01). CONCLUSIONS [18F]AlF-RESCA-HER2-BCH tended to provide better image contrast than [18F]AlF-NOTA-HER2-BCH with a higher target-to-nontarget ratio in detection of metastases. Notably, [18F]AlF-RESCA-HER2-BCH had lower renal accumulation than [18F]AlF-NOTA-HER2-BCH.
Collapse
Affiliation(s)
- Jiayue Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoyi Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Li Wen
- Guizhou University School of Medicine, Guizhou University, Guiyang, China
| | - Lixin Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Futao Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Guohong Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Nina Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
14
|
Lugat A, Bailly C, Chérel M, Rousseau C, Kraeber-Bodéré F, Bodet-Milin C, Bourgeois M. Immuno-PET: Design options and clinical proof-of-concept. Front Med (Lausanne) 2022; 9:1026083. [PMID: 36314010 PMCID: PMC9613928 DOI: 10.3389/fmed.2022.1026083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022] Open
Abstract
Radioimmunoconjugates have been used for over 30 years in nuclear medicine applications. In the last few years, advances in cancer biology knowledge have led to the identification of new molecular targets specific to certain patient subgroups. The use of these targets in targeted therapies approaches has allowed the developments of specifically tailored therapeutics for patients. As consequence of the PET-imaging progresses, nuclear medicine has developed powerful imaging tools, based on monoclonal antibodies, to in vivo characterization of these tumor biomarkers. This imaging modality known as immuno-positron emission tomography (immuno-PET) is currently in fastest-growing and its medical value lies in its ability to give a non-invasive method to assess the in vivo target expression and distribution and provide key-information on the tumor targeting. Currently, immuno-PET presents promising probes for different nuclear medicine topics as staging/stratification tool, theranostic approaches or predictive/prognostic biomarkers. To develop a radiopharmaceutical drug that can be used in immuno-PET approach, it is necessary to find the best compromise between the isotope choice and the immunologic structure (full monoclonal antibody or derivatives). Through some clinical applications, this paper review aims to discuss the most important aspects of the isotope choice and the usable proteic structure that can be used to meet the clinical needs.
Collapse
Affiliation(s)
- Alexandre Lugat
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France
| | - Clément Bailly
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France,Nuclear Medicine Department, University Hospital, Nantes, France
| | - Michel Chérel
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France,Department of Nuclear Medicine, Institut de Cancérologie de l'Ouest (ICO) – Site Gauducheau, Saint-Herblain, France
| | - Caroline Rousseau
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France,Department of Nuclear Medicine, Institut de Cancérologie de l'Ouest (ICO) – Site Gauducheau, Saint-Herblain, France
| | - Françoise Kraeber-Bodéré
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France,Nuclear Medicine Department, University Hospital, Nantes, France
| | - Caroline Bodet-Milin
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France,Nuclear Medicine Department, University Hospital, Nantes, France
| | - Mickaël Bourgeois
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France,Nuclear Medicine Department, University Hospital, Nantes, France,ARRONAX Cyclotron, Saint-Herblain, France,*Correspondence: Mickaël Bourgeois
| |
Collapse
|
15
|
Miao H, Sun Y, Jin Y, Hu X, Song S, Zhang J. Application of a Novel 68Ga-HER2 Affibody PET/CT Imaging in Breast Cancer Patients. Front Oncol 2022; 12:894767. [PMID: 35712499 PMCID: PMC9195516 DOI: 10.3389/fonc.2022.894767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background Breast cancer is a heterogeneous disease, and the human epidermal growth factor receptor 2 (HER2) expression may vary considerably between primary and metastatic lesions, or even within a single lesion. Repeated biopsies cannot always be performed. In this feasibility trial, we assessed whether a novel 68Ga-NOTA-MAL-MZHER2 (68Ga-HER2) affibody PET/CT could determine the HER2 status of each lesion if there was a clinical need for it. Methods 68Ga-HER2 affibody PET/CT was performed in breast cancer patients if HER2 status remained unclear after standard examinations (including bone scan, 18F-FDG PET/CT, CT, and feasible biopsy). All available images for each patient were evaluated through an independent review of two committee-certified radiologists with nuclear medicine expertise. In case of discrepancy, adjudication by a third radiologist was performed as needed. All radiologists were blinded to the clinical information. Results Twenty-four patients were enrolled. 68Ga-HER2 affibody PET/CT was requested by physicians due to the following reasons: 6 with multiple primary cancers, 13 with metastases not amenable to biopsy or repeated biopsy, 6 with inconsistent HER2 status between primary and metastatic lesions, and 4 with different HER2 status within different metastases. The final PET report revealed that the 68Ga-HER2 affibody tumor uptake was considered positive in 16 patients, negative in 7 patients, and equivocal in one patient. The heterogeneity of 68Ga-HER2 affibody uptake was observed, with a maximal 8.5-fold difference within one patient and a maximal 11-fold difference between patients. 68Ga-HER2 affibody PET/CT demonstrated a high diagnostic accuracy in differentiating HER2-enriched breast cancer, with a sensitivity of 91.7% and a specificity of 84.6%, regardless of prior lines of anti-HER2 therapies. Conclusion 68Ga-HER2 affibody PET/CT imaging could provide valuable information on HER2 expression of each tumor in the body of patients, which may help in personalized clinical decision-making. Its value is now under systemic assessment.
Collapse
Affiliation(s)
- Haitao Miao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yuyun Sun
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yizi Jin
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xichun Hu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shaoli Song
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jian Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Phase I Clinical Trial Center, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
16
|
Altunay B, Morgenroth A, Mottaghy FM. Use of Radionuclide-Based Imaging Methods in Breast Cancer. Semin Nucl Med 2022; 52:561-573. [PMID: 35624034 DOI: 10.1053/j.semnuclmed.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 12/21/2022]
Abstract
Breast cancer is one of the most commonly occurring cancers in women globally and is the primary cause of cancer mortality in females. Thus, early and effective breast cancer diagnosis is crucial for enhancing the survival rate. Current standard diagnostic techniques to assess the hormone receptor status in biopsies include immunohistochemistry and fluorescence in situ hybridization. However, in recent years, there has been an increase in research on noninvasive techniques for molecular imaging of hormone receptors. These methods offer many advantages over conventional imaging, as repeated measurements can be used to capture heterogeneous tumor expression throughout the body, as well as transformations in receptor status during disease progression. Thus, the noninvasive method, as an adjunct to conventional imaging, offers the potential to improve patient selection, optimize dose and schedule, and streamline the assessment of response.
Collapse
Affiliation(s)
- Betül Altunay
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany; Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, Germany; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.
| |
Collapse
|
17
|
Pan D, Wang L, Wang X, Yan J, Xu Y, Yang M. Optimizing the performance of 68Ga labeled FSHR ligand in Prostate Cancer Model by Co-Administration of Aprotinin. Int J Radiat Biol 2022; 98:1571-1580. [PMID: 35389307 DOI: 10.1080/09553002.2022.2063431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE Radiolabeled FSH1 peptides are potential specific probes for FSHR imaging. However, moderate uptakes and fast washout from the tumors may limit its widespread use. In this study, 68Ga labeled modified FSH1 analogs was prepared and the imaging properties were determined in the prostate cancer model with or without aprotinin. METHODS NOTA-MAL-FSH4 was synthesized and labeled with 68Ga. The pharmacokinetic profile of the peptide after co-administration with aprotinin was determined through metabolism analyses and microPET imaging. RESULTS 68Ga-NOTA-MAL-FSH4 was successfully prepared. The IC50 value of displacement 68Ga-NOTA-MAL-FSH4 with FSH1 was 139.4 ± 1.16 nM. The PC-3 prostate tumor was visible after administration of the 68Ga labeled tracer. In vitro RP-HPLC analysis revealed that the average percentage of intact peptide in the plasma, liver and tumor was 8.30, 9.57 and 7.06% respectively. In presence of aprotinin, the amounts of intact peptide increased to 34.32%, 20.63% and 15.39% in the counterparts respectively. MicroPET imaging showed that the uptakes of PC-3 tumors at 60mins after co-administration of 100μg, 200μg or 400μg enzyme inhibitors were 2.91 ± 0.21%ID/g, 3.89 ± 0.16%ID/g and 9.21 ± 0.22%ID/g respectively. CONCLUSION With the aid of a serine protease inhibitor, the performance of the 68Ga labeled peptide was optimized, which may benefit further clinical application.
Collapse
Affiliation(s)
- Donghui Pan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Lizhen Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Xinyu Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Junjie Yan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Yuping Xu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Min Yang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| |
Collapse
|
18
|
Han J, Chen Y, Zhao Y, Zhao X, Zhang J, Wang J, Zhang Z. Pre-Clinical Study of the [ 18F]AlF-Labeled HER2 Affibody for Non-Invasive HER2 Detection in Gastric Cancer. Front Med (Lausanne) 2022; 9:803005. [PMID: 35252244 PMCID: PMC8890119 DOI: 10.3389/fmed.2022.803005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/18/2022] [Indexed: 12/24/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is an important biomarker in gastric cancer (GC) and directly influences the therapeutic effect. Fluorine is firmly bound to Al3+ forming [18F]AlF-1,4,7-triazacyclononanetriacetic acid (NOTA)-HER2 affibody is a promising radiolabeled tracer that can monitor the changes of HER2 expression combining the advantages of simple preparation and the properties of 18F. The aim of this study was to develop a quick method for the synthesis of [18F]AlF-NOTA-HER2 affibody and evaluate its utility for HER2+ GC imaging in mouse models. Moreover, 68Ga-NOTA-HER2 affibody imaging was also performed to highlight the superiority of [18F]AlF-NOTA-HER2 affibody imaging in resolution. The HER2 affibody was conjugated with NOTA and labeled using 18F based on the complexation of [18F]AlF by NOTA. Its quality control and stability were performed by high-pressure liquid chromatography (HPLC). The molecular specificity and binding affinity of the novel radiotracer were evaluated in the GC cell line with HER2 overexpression (NCI-N87) and negative expression (MKN74). Distribution studies and PET/CT imaging were performed in mouse models. 68Ga-NOTA-HER2 affibody PET/CT imaging was also performed. [18F]AlF-NOTA-HER2 affibody was efficiently prepared within 30 min with a non-decay-corrected maximum yield of 32.69% and a radiochemical purity of more than 98%. [18F]AlF-NOTA-HER2 affibody was highly stable in incubation medium for 4 h in vitro and in the blood of nude mice at 30 min post-injection (p.i.). In vitro studies revealed specific binding and high binding affinity of the probe in NCI-N87 cells, while no binding was seen in MKN74 cells. PET imaging showed that NCI-N87 xenografts were differentiated from MKN74 xenografts with excellent contrast and low abdominal background, which was confirmed by the distribution results. High-level accumulation of the [18F]AlF-NOTA-HER2 affibody in HER2+ tumors was blocked by excess unlabeled NOTA-HER2 affibody. [18F]AlF-NOTA-HER2 affibody has a higher image resolution than that of 68Ga-NOTA-HER2 affibody. [18F]AlF-NOTA-HER2 affibody could be produced facilely with high radiochemical yield and may serve as a novel molecular probe with tremendous clinical potential for the non-invasive whole-body detection of the HER2 status in GC with good image contrast and resolution. This method could provide an in vivo understanding of GC biology that will ultimately guide the accurate diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Jingya Han
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Chen
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Zhao
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinming Zhao
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, China
| | - Jingmian Zhang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianfang Wang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhaoqi Zhang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
19
|
Mini-review: Antibody-PET of receptor tyrosine kinase interplay and heterogeneity. Nucl Med Biol 2022; 108-109:70-75. [DOI: 10.1016/j.nucmedbio.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022]
|
20
|
Luo R, Liu H, Cheng Z. Protein scaffolds: Antibody alternative for cancer diagnosis and therapy. RSC Chem Biol 2022; 3:830-847. [PMID: 35866165 PMCID: PMC9257619 DOI: 10.1039/d2cb00094f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Although antibodies are well developed and widely used in cancer therapy and diagnostic fields, some defects remain, such as poor tissue penetration, long in vivo metabolic retention, potential cytotoxicity, patent limitation, and high production cost. These issues have led scientists to explore and develop novel antibody alternatives. Protein scaffolds are small monomeric proteins with stable tertiary structures and mutable residues, which emerged in the 1990s. By combining robust gene engineering and phage display techniques, libraries with sufficient diversity could be established for target binding scaffold selection. Given the properties of small size, high affinity, and excellent specificity and stability, protein scaffolds have been applied in basic research, and preclinical and clinical fields over the past two decades. To date, more than 20 types of protein scaffolds have been developed, with the most frequently used being affibody, adnectin, ANTICALIN®, DARPins, and knottin. In this review, we focus on the protein scaffold applications in cancer therapy and diagnosis in the last 5 years, and discuss the pros and cons, and strategies of optimization and design. Although antibodies are well developed and widely used in cancer therapy and diagnostic fields, some defects remain, such as poor tissue penetration, long in vivo metabolic retention, potential cytotoxicity, patent limitation, and high production cost.![]()
Collapse
Affiliation(s)
- Renli Luo
- Department of Molecular Medicine, College of Life and Health Sciences, Northeastern University Shenyang China
| | - Hongguang Liu
- Department of Molecular Medicine, College of Life and Health Sciences, Northeastern University Shenyang China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery Yantai Shandong 264117 China
| |
Collapse
|
21
|
Oprea-Lager DE, Cysouw MC, Boellaard R, Deroose CM, de Geus-Oei LF, Lopci E, Bidaut L, Herrmann K, Fournier LS, Bäuerle T, deSouza NM, Lecouvet FE. Bone Metastases Are Measurable: The Role of Whole-Body MRI and Positron Emission Tomography. Front Oncol 2021; 11:772530. [PMID: 34869009 PMCID: PMC8640187 DOI: 10.3389/fonc.2021.772530] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022] Open
Abstract
Metastatic tumor deposits in bone marrow elicit differential bone responses that vary with the type of malignancy. This results in either sclerotic, lytic, or mixed bone lesions, which can change in morphology due to treatment effects and/or secondary bone remodeling. Hence, morphological imaging is regarded unsuitable for response assessment of bone metastases and in the current Response Evaluation Criteria In Solid Tumors 1.1 (RECIST1.1) guideline bone metastases are deemed unmeasurable. Nevertheless, the advent of functional and molecular imaging modalities such as whole-body magnetic resonance imaging (WB-MRI) and positron emission tomography (PET) has improved the ability for follow-up of bone metastases, regardless of their morphology. Both these modalities not only have improved sensitivity for visual detection of bone lesions, but also allow for objective measurements of bone lesion characteristics. WB-MRI provides a global assessment of skeletal metastases and for a one-step "all-organ" approach of metastatic disease. Novel MRI techniques include diffusion-weighted imaging (DWI) targeting highly cellular lesions, dynamic contrast-enhanced MRI (DCE-MRI) for quantitative assessment of bone lesion vascularization, and multiparametric MRI (mpMRI) combining anatomical and functional sequences. Recommendations for a homogenization of MRI image acquisitions and generalizable response criteria have been developed. For PET, many metabolic and molecular radiotracers are available, some targeting tumor characteristics not confined to cancer type (e.g. 18F-FDG) while other targeted radiotracers target specific molecular characteristics, such as prostate specific membrane antigen (PSMA) ligands for prostate cancer. Supporting data on quantitative PET analysis regarding repeatability, reproducibility, and harmonization of PET/CT system performance is available. Bone metastases detected on PET and MRI can be quantitatively assessed using validated methodologies, both on a whole-body and individual lesion basis. Both have the advantage of covering not only bone lesions but visceral and nodal lesions as well. Hybrid imaging, combining PET with MRI, may provide complementary parameters on the morphologic, functional, metabolic and molecular level of bone metastases in one examination. For clinical implementation of measuring bone metastases in response assessment using WB-MRI and PET, current RECIST1.1 guidelines need to be adapted. This review summarizes available data and insights into imaging of bone metastases using MRI and PET.
Collapse
Affiliation(s)
- Daniela E. Oprea-Lager
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Matthijs C.F. Cysouw
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Christophe M. Deroose
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
- Nuclear Medicine & Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
- Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS – Humanitas Research Hospital, Milan, Italy
| | - Luc Bidaut
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- College of Science, University of Lincoln, Lincoln, United Kingdom
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Laure S. Fournier
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Paris Cardiovascular Research Center (PARCC), Institut National de la Santé et de la Recherche Médicale (INSERM), Radiology Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Hopital europeen Georges Pompidou, Université de Paris, Paris, France
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
| | - Tobias Bäuerle
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nandita M. deSouza
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Frederic E. Lecouvet
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
22
|
Review: Radionuclide Molecular Imaging Targeting HER2 in Breast Cancer with a Focus on Molecular Probes into Clinical Trials and Small Peptides. Molecules 2021; 26:molecules26216482. [PMID: 34770887 PMCID: PMC8588233 DOI: 10.3390/molecules26216482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
As the most frequently occurring cancer worldwide, breast cancer (BC) is the leading cause of cancer-related death in women. The overexpression of HER2 (human epidermal growth factor receptor 2) is found in about 15% of BC patients, and it is often associated with a poor prognosis due to the effect on cell proliferation, migration, invasion, and survival. As a result of the heterogeneity of BC, molecular imaging with HER2 probes can non-invasively, in real time, and quantitatively reflect the expression status of HER2 in tumors. This will provide a new approach for patients to choose treatment options and monitor treatment response. Furthermore, radionuclide molecular imaging has the potential of repetitive measurements, and it can help solve the problem of heterogeneous expression and conversion of HER2 status during disease progression or treatment. Different imaging probes of targeting proteins, such as monoclonal antibodies, antibody fragments, nanobodies, and affibodies, are currently in preclinical and clinical development. Moreover, in recent years, HER2-specific peptides have been widely developed for molecular imaging techniques for HER2-positive cancers. This article summarized different types of molecular probes targeting HER2 used in current clinical applications and the developmental trend of some HER2-specific peptides.
Collapse
|
23
|
Rinne SS, Orlova A, Tolmachev V. PET and SPECT Imaging of the EGFR Family (RTK Class I) in Oncology. Int J Mol Sci 2021; 22:ijms22073663. [PMID: 33915894 PMCID: PMC8036874 DOI: 10.3390/ijms22073663] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The human epidermal growth factor receptor family (EGFR-family, other designations: HER family, RTK Class I) is strongly linked to oncogenic transformation. Its members are frequently overexpressed in cancer and have become attractive targets for cancer therapy. To ensure effective patient care, potential responders to HER-targeted therapy need to be identified. Radionuclide molecular imaging can be a key asset for the detection of overexpression of EGFR-family members. It meets the need for repeatable whole-body assessment of the molecular disease profile, solving problems of heterogeneity and expression alterations over time. Tracer development is a multifactorial process. The optimal tracer design depends on the application and the particular challenges of the molecular target (target expression in tumors, endogenous expression in healthy tissue, accessibility). We have herein summarized the recent preclinical and clinical data on agents for Positron Emission Tomography (PET) and Single Photon Emission Tomography (SPECT) imaging of EGFR-family receptors in oncology. Antibody-based tracers are still extensively investigated. However, their dominance starts to be challenged by a number of tracers based on different classes of targeting proteins. Among these, engineered scaffold proteins (ESP) and single domain antibodies (sdAb) show highly encouraging results in clinical studies marking a noticeable trend towards the use of smaller sized agents for HER imaging.
Collapse
Affiliation(s)
- Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Vladimir Tolmachev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
- Correspondence: ; Tel.: +46-704-250-782
| |
Collapse
|