1
|
Previti S, Bodin S, Rémond E, Vimont D, Hindié E, Morgat C, Cavelier F. Rational design of NT-PSMA heterobivalent probes for prostate cancer theranostics. RSC Med Chem 2024:d4md00491d. [PMID: 39371434 PMCID: PMC11451938 DOI: 10.1039/d4md00491d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024] Open
Abstract
Targeting the prostate-specific membrane antigen (PSMA) with radiopharmaceuticals for imaging and/or therapy has demonstrated significant advancement in the management of prostate cancer patients. However, PSMA targeting remains unsuccessful in prostate cancers with low expression of PSMA, which account for 15% of cases. The neurotensin receptor-1 (NTS1) has been highlighted as a suitable oncotarget for imaging and therapy of PSMA-negative prostate cancer lesions. Therefore, heterobivalent probes targeting both PSMA and NTS1 could improve the prostate cancer management. Herein, we report the development of a branched hybrid probe (JMV 7489) designed to target PSMA and/or NTS1 bearing relevant pharmacophores and DOTA as the chelating agent. The new ligand was synthesized with a hybrid approach, which includes both syntheses in batch and in the solid phase. Saturation binding experiments were next performed on HT-29 and PC3-PIP cells to derive K d and B max values. On the PC3-PIP cells, [68Ga]Ga-JMV 7489 displayed good affinity towards PSMA (K d = 53 ± 17 nM; B max = 1393 ± 29 fmol/106 cells) in the same range as the corresponding reference monomer. A lower affinity value towards NTS1 was depicted (K d = 157 ± 71 nM; B max = 241 ± 42 fmol/106 cells on PC3-PIP cells; K d = 246 ± 1 nM; B max = 151 ± 44 fmol/106 cells on HT-29 cells) and, surprisingly, it was also the case for the corresponding monomer [68Ga]Ga-JMV 7089. These results indicate that the DOTA macrocycle and the linker are critical elements to design heterobivalent probes targeting PSMA and NTS1 with high affinity towards NTS1.
Collapse
Affiliation(s)
- Santo Previti
- Pôle Chime Balard, IBMM, UMR 5247 CNRS, Université Montpellier ENSCM F-34000 Montpellier France +33 448792134
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina Viale Stagno d'Alcontres 31 98166 Messina Italy +39 090 676 5669
| | - Sacha Bodin
- CNRS, EPHE, INCIA UMR 5287, University of Bordeaux F-33400 Talence France
- Department of Nuclear Medicine, CHU Bordeaux F-33000 Bordeaux France
| | - Emmanuelle Rémond
- Pôle Chime Balard, IBMM, UMR 5247 CNRS, Université Montpellier ENSCM F-34000 Montpellier France +33 448792134
| | - Delphine Vimont
- CNRS, EPHE, INCIA UMR 5287, University of Bordeaux F-33400 Talence France
| | - Elif Hindié
- CNRS, EPHE, INCIA UMR 5287, University of Bordeaux F-33400 Talence France
- Department of Nuclear Medicine, CHU Bordeaux F-33000 Bordeaux France
- Institut Universitaire de France F-75000 Paris France
| | - Clément Morgat
- CNRS, EPHE, INCIA UMR 5287, University of Bordeaux F-33400 Talence France
- Department of Nuclear Medicine, CHU Bordeaux F-33000 Bordeaux France
| | - Florine Cavelier
- Pôle Chime Balard, IBMM, UMR 5247 CNRS, Université Montpellier ENSCM F-34000 Montpellier France +33 448792134
| |
Collapse
|
2
|
Lepareur N. Cold Kit Labeling: The Future of 68Ga Radiopharmaceuticals? Front Med (Lausanne) 2022; 9:812050. [PMID: 35223907 PMCID: PMC8869247 DOI: 10.3389/fmed.2022.812050] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/07/2022] [Indexed: 12/11/2022] Open
Abstract
Over the last couple of decades, gallium-68 (68Ga) has gained a formidable interest for PET molecular imaging of various conditions, from cancer to infection, through cardiac pathologies or neuropathies. It has gained routine use, with successful radiopharmaceuticals such as somatostatin analogs ([68Ga]Ga-DOTATOC and [68Ga]GaDOTATATE) for neuroendocrine tumors, and PSMA ligands for prostate cancer. It represents a major clinical impact, particularly in the context of theranostics, coupled with their 177Lu-labeled counterparts. Beside those, a bunch of new 68Ga-labeled molecules are in the preclinical and clinical pipelines, with some of them showing great promise for patient care. Increasing clinical demand and regulatory issues have led to the development of automated procedures for the production of 68Ga radiopharmaceuticals. However, the widespread use of these radiopharmaceuticals may rely on simple and efficient radiolabeling methods, undemanding in terms of equipment and infrastructure. To make them technically and economically accessible to the medical community and its patients, it appears mandatory to develop a procedure similar to the well-established kit-based 99mTc chemistry. Already available commercial kits for the production of 68Ga radiopharmaceuticals have demonstrated the feasibility of using such an approach, thus paving the way for more kit-based 68Ga radiopharmaceuticals to be developed. This article discusses the development of 68Ga cold kit radiopharmacy, including technical issues, and regulatory aspects.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis, Rennes, France
- Univ Rennes, Inrae, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer), UMR_A 1341, UMR_S 1241, Rennes, France
| |
Collapse
|
3
|
van Dam MA, Vuijk FA, Stibbe JA, Houvast RD, Luelmo SAC, Crobach S, Shahbazi Feshtali S, de Geus-Oei LF, Bonsing BA, Sier CFM, Kuppen PJK, Swijnenburg RJ, Windhorst AD, Burggraaf J, Vahrmeijer AL, Mieog JSD. Overview and Future Perspectives on Tumor-Targeted Positron Emission Tomography and Fluorescence Imaging of Pancreatic Cancer in the Era of Neoadjuvant Therapy. Cancers (Basel) 2021; 13:6088. [PMID: 34885196 PMCID: PMC8656821 DOI: 10.3390/cancers13236088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Despite recent advances in the multimodal treatment of pancreatic ductal adenocarcinoma (PDAC), overall survival remains poor with a 5-year cumulative survival of approximately 10%. Neoadjuvant (chemo- and/or radio-) therapy is increasingly incorporated in treatment strategies for patients with (borderline) resectable and locally advanced disease. Neoadjuvant therapy aims to improve radical resection rates by reducing tumor mass and (partial) encasement of important vascular structures, as well as eradicating occult micrometastases. Results from recent multicenter clinical trials evaluating this approach demonstrate prolonged survival and increased complete surgical resection rates (R0). Currently, tumor response to neoadjuvant therapy is monitored using computed tomography (CT) following the RECIST 1.1 criteria. Accurate assessment of neoadjuvant treatment response and tumor resectability is considered a major challenge, as current conventional imaging modalities provide limited accuracy and specificity for discrimination between necrosis, fibrosis, and remaining vital tumor tissue. As a consequence, resections with tumor-positive margins and subsequent early locoregional tumor recurrences are observed in a substantial number of patients following surgical resection with curative intent. Of these patients, up to 80% are diagnosed with recurrent disease after a median disease-free interval of merely 8 months. These numbers underline the urgent need to improve imaging modalities for more accurate assessment of therapy response and subsequent re-staging of disease, thereby aiming to optimize individual patient's treatment strategy. In cases of curative intent resection, additional intra-operative real-time guidance could aid surgeons during complex procedures and potentially reduce the rate of incomplete resections and early (locoregional) tumor recurrences. In recent years intraoperative imaging in cancer has made a shift towards tumor-specific molecular targeting. Several important molecular targets have been identified that show overexpression in PDAC, for example: CA19.9, CEA, EGFR, VEGFR/VEGF-A, uPA/uPAR, and various integrins. Tumor-targeted PET/CT combined with intraoperative fluorescence imaging, could provide valuable information for tumor detection and staging, therapy response evaluation with re-staging of disease and intraoperative guidance during surgical resection of PDAC. METHODS A literature search in the PubMed database and (inter)national trial registers was conducted, focusing on studies published over the last 15 years. Data and information of eligible articles regarding PET/CT as well as fluorescence imaging in PDAC were reviewed. Areas covered: This review covers the current strategies, obstacles, challenges, and developments in targeted tumor imaging, focusing on the feasibility and value of PET/CT and fluorescence imaging for integration in the work-up and treatment of PDAC. An overview is given of identified targets and their characteristics, as well as the available literature of conducted and ongoing clinical and preclinical trials evaluating PDAC-targeted nuclear and fluorescent tracers.
Collapse
Affiliation(s)
- Martijn A. van Dam
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Floris A. Vuijk
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Judith A. Stibbe
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Ruben D. Houvast
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Saskia A. C. Luelmo
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Stijn Crobach
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | | | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, University Medical Center Leiden, 2333 ZA Leiden, The Netherlands;
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
| | - Bert A. Bonsing
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
- Percuros B.V., 2333 CL Leiden, The Netherlands
| | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | | | - Albert D. Windhorst
- Department of Radiology, Section of Nuclear Medicine, Amsterdam UMC, Location VUmc, 1081 HV Amsterdam, The Netherlands;
| | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - J. Sven D. Mieog
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| |
Collapse
|
4
|
Montemagno C, Cassim S, De Leiris N, Durivault J, Faraggi M, Pagès G. Pancreatic Ductal Adenocarcinoma: The Dawn of the Era of Nuclear Medicine? Int J Mol Sci 2021; 22:6413. [PMID: 34203923 PMCID: PMC8232627 DOI: 10.3390/ijms22126413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), accounting for 90-95% of all pancreatic tumors, is a highly devastating disease associated with poor prognosis. The lack of accurate diagnostic tests and failure of conventional therapies contribute to this pejorative issue. Over the last decade, the advent of theranostics in nuclear medicine has opened great opportunities for the diagnosis and treatment of several solid tumors. Several radiotracers dedicated to PDAC imaging or internal vectorized radiotherapy have been developed and some of them are currently under clinical consideration. The functional information provided by Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) could indeed provide an additive diagnostic value and thus help in the selection of patients for targeted therapies. Moreover, the therapeutic potential of β-- and α-emitter-radiolabeled agents could also overcome the resistance to conventional therapies. This review summarizes the current knowledge concerning the recent developments in the nuclear medicine field for the management of PDAC patients.
Collapse
Affiliation(s)
- Christopher Montemagno
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- Institute for Research on Cancer and Aging of Nice, Centre Antoine Lacassagne, CNRS UMR 7284 and IN-SERM U1081, Université Cote d’Azur, 06200 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Shamir Cassim
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Nicolas De Leiris
- Nuclear Medicine Department, Grenoble-Alpes University Hospital, 38000 Grenoble, France;
- Laboratoire Radiopharmaceutiques Biocliniques, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, 38000 Grenoble, France
| | - Jérôme Durivault
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Marc Faraggi
- Centre Hospitalier Princesse Grace, Nuclear Medicine Department, 98000 Monaco, Monaco;
| | - Gilles Pagès
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- Institute for Research on Cancer and Aging of Nice, Centre Antoine Lacassagne, CNRS UMR 7284 and IN-SERM U1081, Université Cote d’Azur, 06200 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| |
Collapse
|
5
|
Renard E, Moreau M, Bellaye PS, Guillemin M, Collin B, Prignon A, Denat F, Goncalves V. Positron Emission Tomography Imaging of Neurotensin Receptor-Positive Tumors with 68Ga-Labeled Antagonists: The Chelate Makes the Difference Again. J Med Chem 2021; 64:8564-8578. [PMID: 34107209 DOI: 10.1021/acs.jmedchem.1c00523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neurotensin receptor 1 (NTS1) is involved in the development and progression of numerous cancers, which makes it an interesting target for the development of diagnostic and therapeutic agents. A small molecule NTS1 antagonist, named [177Lu]Lu-IPN01087, is currently evaluated in phase I/II clinical trials for the targeted therapy of neurotensin receptor-positive cancers. In this study, we synthesized seven compounds based on the structure of NTS1 antagonists, bearing different chelating agents, and radiolabeled them with gallium-68 for PET imaging. These compounds were evaluated in vitro and in vivo in mice bearing a HT-29 xenograft. The compound [68Ga]Ga-bisNODAGA-16 showed a promising biodistribution profile with mainly signal in tumor (4.917 ± 0.776%ID/g, 2 h post-injection). Its rapid clearance from healthy tissues led to high tumor-to-organ ratios, resulting in highly contrasted PET images. These results were confirmed on subcutaneous xenografts of AsPC-1 tumor cells, a model of NTS1-positive human pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Emma Renard
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB UMR CNRS 6302, Université Bourgogne Franche-Comté, Dijon 21000, France
| | - Mathieu Moreau
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB UMR CNRS 6302, Université Bourgogne Franche-Comté, Dijon 21000, France
| | | | - Mélanie Guillemin
- Georges-François LECLERC Cancer Center - UNICANCER, Dijon 21000, France
| | - Bertrand Collin
- Georges-François LECLERC Cancer Center - UNICANCER, Dijon 21000, France
| | - Aurélie Prignon
- UMS28 Laboratoire d'Imagerie Moléculaire Positonique (LIMP), Sorbonne Université, Paris 75020, France
| | - Franck Denat
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB UMR CNRS 6302, Université Bourgogne Franche-Comté, Dijon 21000, France
| | - Victor Goncalves
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB UMR CNRS 6302, Université Bourgogne Franche-Comté, Dijon 21000, France
| |
Collapse
|