1
|
Ndlovu H, Mokoala KMG, Lawal I, Emmett L, Sathekge MM. Prostate-specific Membrane Antigen: Alpha-labeled Radiopharmaceuticals. PET Clin 2024; 19:371-388. [PMID: 38658230 DOI: 10.1016/j.cpet.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Novel prostate-specific membrane antigen (PSMA) ligands labeled with α-emitting radionuclides are sparking a growing interest in prostate cancer treatment. These targeted alpha therapies (TATs) have attractive physical properties that deem them effective in progressive metastatic castrate-resistant prostate cancer (mCRPC). Among the PSMA TAT radiopharmaceuticals, [225Ac]Ac-PSMA has been used extensively on a compassionate basis and is currently undergoing phase I trials. Notably, TAT has the potential to improve quality of life and has favorable antitumor activity and outcomes in multiple scenarios other than in mCRPC. In addition, resistance mechanisms to TAT may be amenable to combination therapies.
Collapse
Affiliation(s)
- Honest Ndlovu
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa; Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - Kgomotso M G Mokoala
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa; Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - Ismaheel Lawal
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa; Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Louise Emmett
- Theranostics and Nuclear Medicine, St Vincent's Hospital Sydney, Australia
| | - Mike M Sathekge
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa; Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa.
| |
Collapse
|
2
|
Taunk NK, Escorcia FE, Lewis JS, Bodei L. Radiopharmaceuticals for Cancer Diagnosis and Therapy: New Targets, New Therapies-Alpha-Emitters, Novel Targets. Cancer J 2024; 30:218-223. [PMID: 38753757 PMCID: PMC11232930 DOI: 10.1097/ppo.0000000000000720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ABSTRACT Radiopharmaceutical therapy has emerged as a promising approach for the treatment of various cancers. The exploration of novel targets such as tumor-specific antigens, overexpressed receptors, and intracellular biomolecules using antibodies, peptides, or small molecules has expanded the scope of radiopharmaceutical therapy, enabling precise and effective cancer treatment for an increasing number of tumor types. Alpha emitters, characterized by their high linear energy transfer and short path length, offer unique advantages in targeted therapy due to their potent cytotoxicity against cancer cells while sparing healthy tissues. This article reviews recent advancements in identifying novel targets for radiopharmaceutical therapy and applications in utilizing α-emitters for targeted treatment.
Collapse
Affiliation(s)
- Neil K. Taunk
- Department of Radiation Oncology and Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Freddy E. Escorcia
- Molecular Imaging Branch, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jason S. Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lisa Bodei
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
3
|
Filippi L, Urso L, Evangelista L. PARP-Targeted Radiotheranostics with Auger Electrons: An Updated Overview. Curr Issues Mol Biol 2024; 46:3039-3049. [PMID: 38666920 PMCID: PMC11048897 DOI: 10.3390/cimb46040190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Auger electrons (AEs) represent an intriguing topic in the field of radionuclide therapy. They are emitted by several radionuclides commonly used in nuclear medicine (indium-111, iodine-123, iodine-125), allowing for highly localized energy deposition and thus exerting a radiotoxic effect on specific cellular and sub-cellular targets. However, due to their short range in matter, AEs have had limited use in therapeutic applications so far. In recent years, the synthesis of various radiopharmaceuticals capable of binding to the enzyme poly(ADP-ribose) polymerase 1 has reignited interest in this type of therapy, laying the groundwork for a theranostic approach based on radionuclides emitting AEs. The enzyme PARP-1 operates enzymatically in close proximity to DNA that represents the prime target of radionuclide therapies. Following this trend, several PARP-targeted radiopharmaceuticals for AE-based theranostics have been developed. We provide an updated overview of preclinical studies focused on the applications of this new theranostic approach in glioblastoma, breast, prostate and ovarian carcinoma, and pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Luca Filippi
- Nuclear Medicine Unit, Department of Oncohaematology, Fondazione PTV Policlinico Tor Vergata University Hospital, 00133 Rome, Italy
| | - Luca Urso
- Department of Translational Medicine, University of Ferrara, 44124 Ferrara, Italy;
- Nuclear Medicine Unit, Onco-Haematology Department, University Hospital of Ferrara, 44124 Ferrara, Italy
| | - Laura Evangelista
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy;
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| |
Collapse
|
4
|
Pavone AM, Benfante V, Giaccone P, Stefano A, Torrisi F, Russo V, Serafini D, Richiusa S, Pometti M, Scopelliti F, Ippolito M, Giannone AG, Cabibi D, Asti M, Vettorato E, Morselli L, Merone M, Lunardon M, Andrighetto A, Tuttolomondo A, Cammarata FP, Verona M, Marzaro G, Mastrotto F, Parenti R, Russo G, Comelli A. Biodistribution Assessment of a Novel 68Ga-Labeled Radiopharmaceutical in a Cancer Overexpressing CCK2R Mouse Model: Conventional and Radiomics Methods for Analysis. Life (Basel) 2024; 14:409. [PMID: 38541733 PMCID: PMC10972008 DOI: 10.3390/life14030409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 01/12/2025] Open
Abstract
The aim of the present study consists of the evaluation of the biodistribution of a novel 68Ga-labeled radiopharmaceutical, [68Ga]Ga-NODAGA-Z360, injected into Balb/c nude mice through histopathological analysis on bioptic samples and radiomics analysis of positron emission tomography/computed tomography (PET/CT) images. The 68Ga-labeled radiopharmaceutical was designed to specifically bind to the cholecystokinin receptor (CCK2R). This receptor, naturally present in healthy tissues such as the stomach, is a biomarker for numerous tumors when overexpressed. In this experiment, Balb/c nude mice were xenografted with a human epidermoid carcinoma A431 cell line (A431 WT) and overexpressing CCK2R (A431 CCK2R+), while controls received a wild-type cell line. PET images were processed, segmented after atlas-based co-registration and, consequently, 112 radiomics features were extracted for each investigated organ / tissue. To confirm the histopathology at the tissue level and correlate it with the degree of PET uptake, the studies were supported by digital pathology. As a result of the analyses, the differences in radiomics features in different body districts confirmed the correct targeting of the radiopharmaceutical. In preclinical imaging, the methodology confirms the importance of a decision-support system based on artificial intelligence algorithms for the assessment of radiopharmaceutical biodistribution.
Collapse
Affiliation(s)
- Anna Maria Pavone
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.M.P.); (V.R.); (R.P.)
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (V.B.); (P.G.); (A.C.)
| | - Viviana Benfante
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (V.B.); (P.G.); (A.C.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy;
| | - Paolo Giaccone
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (V.B.); (P.G.); (A.C.)
- Research Unit of Computer Systems and Bioinformatics, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy;
| | - Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy; (S.R.); (F.P.C.); (G.R.)
- Laboratori Nazionali del Sud, National Institute for Nuclear Physics, INFN-LNS, 95123 Catania, Italy
| | - Filippo Torrisi
- Medicine and Surgery Department, University of Enna “Kore”, 94019 Enna, Italy;
| | - Vincenzo Russo
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.M.P.); (V.R.); (R.P.)
| | - Davide Serafini
- Legnaro National Laboratories, Italian Institute of Nuclear Physics, Viale Dell’Università 2, 35020 Padova, Italy; (D.S.); (L.M.); (A.A.)
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Selene Richiusa
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy; (S.R.); (F.P.C.); (G.R.)
| | - Marco Pometti
- Nuclear Medicine Department, Cannizzaro Hospital, 95126 Catania, Italy; (M.P.); (F.S.); (M.I.)
| | - Fabrizio Scopelliti
- Nuclear Medicine Department, Cannizzaro Hospital, 95126 Catania, Italy; (M.P.); (F.S.); (M.I.)
| | - Massimo Ippolito
- Nuclear Medicine Department, Cannizzaro Hospital, 95126 Catania, Italy; (M.P.); (F.S.); (M.I.)
| | - Antonino Giulio Giannone
- Pathologic Anatomy Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (A.G.G.); (D.C.)
| | - Daniela Cabibi
- Pathologic Anatomy Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (A.G.G.); (D.C.)
| | - Mattia Asti
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42122 Reggio Emilia, Italy;
| | - Elisa Vettorato
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy;
| | - Luca Morselli
- Legnaro National Laboratories, Italian Institute of Nuclear Physics, Viale Dell’Università 2, 35020 Padova, Italy; (D.S.); (L.M.); (A.A.)
| | - Mario Merone
- Research Unit of Computer Systems and Bioinformatics, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy;
| | - Marcello Lunardon
- Department of Physics and Astronomy, University of Padova, Via Marzolo 8, 35131 Padova, Italy;
| | - Alberto Andrighetto
- Legnaro National Laboratories, Italian Institute of Nuclear Physics, Viale Dell’Università 2, 35020 Padova, Italy; (D.S.); (L.M.); (A.A.)
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy;
| | - Francesco Paolo Cammarata
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy; (S.R.); (F.P.C.); (G.R.)
- Laboratori Nazionali del Sud, National Institute for Nuclear Physics, INFN-LNS, 95123 Catania, Italy
| | - Marco Verona
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (M.V.); (G.M.); (F.M.)
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (M.V.); (G.M.); (F.M.)
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (M.V.); (G.M.); (F.M.)
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.M.P.); (V.R.); (R.P.)
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy; (S.R.); (F.P.C.); (G.R.)
- Laboratori Nazionali del Sud, National Institute for Nuclear Physics, INFN-LNS, 95123 Catania, Italy
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (V.B.); (P.G.); (A.C.)
| |
Collapse
|
5
|
Derdau V, Elmore CS, Hartung T, McKillican B, Mejuch T, Rosenbaum C, Wiebe C. The Future of (Radio)-Labeled Compounds in Research and Development within the Life Science Industry. Angew Chem Int Ed Engl 2023; 62:e202306019. [PMID: 37610759 DOI: 10.1002/anie.202306019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/24/2023]
Abstract
In this review the applications of isotopically labeled compounds are discussed and put into the context of their future impact in the life sciences. Especially discussing their use in the pharma and crop science industries to follow their fate in the environment, in vivo or in complex matrices to understand the potential harm of new chemical structures and to increase the safety of human society.
Collapse
Affiliation(s)
- Volker Derdau
- Sanofi-Aventis Deutschland GmbH, Research & Development, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, G876, 65926, Frankfurt am Main, Germany
| | - Charles S Elmore
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Mölndal, Sweden
| | - Thomas Hartung
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Bruce McKillican
- Syngenta Crop Protection, LLC, North America Product Safety (retired), USA
| | - Tom Mejuch
- BASF SE, Agricultural Solutions, Ludwigshafen, Germany
| | | | | |
Collapse
|
6
|
Khazaei Monfared Y, Heidari P, Klempner SJ, Mahmood U, Parikh AR, Hong TS, Strickland MR, Esfahani SA. DNA Damage by Radiopharmaceuticals and Mechanisms of Cellular Repair. Pharmaceutics 2023; 15:2761. [PMID: 38140100 PMCID: PMC10748326 DOI: 10.3390/pharmaceutics15122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
DNA is an organic molecule that is highly vulnerable to chemical alterations and breaks caused by both internal and external factors. Cells possess complex and advanced mechanisms, including DNA repair, damage tolerance, cell cycle checkpoints, and cell death pathways, which together minimize the potentially harmful effects of DNA damage. However, in cancer cells, the normal DNA damage tolerance and response processes are disrupted or deregulated. This results in increased mutagenesis and genomic instability within the cancer cells, a known driver of cancer progression and therapeutic resistance. On the other hand, the inherent instability of the genome in rapidly dividing cancer cells can be exploited as a tool to kill by imposing DNA damage with radiopharmaceuticals. As the field of targeted radiopharmaceutical therapy (RPT) is rapidly growing in oncology, it is crucial to have a deep understanding of the impact of systemic radiation delivery by radiopharmaceuticals on the DNA of tumors and healthy tissues. The distribution and activation of DNA damage and repair pathways caused by RPT can be different based on the characteristics of the radioisotope and molecular target. Here we provide a comprehensive discussion of the biological effects of RPTs, with the main focus on the role of varying radioisotopes in inducing direct and indirect DNA damage and activating DNA repair pathways.
Collapse
Affiliation(s)
- Yousef Khazaei Monfared
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| | - Pedram Heidari
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| | - Samuel J. Klempner
- Division of Hematology-Oncology, Department of Medicine, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.J.K.); (A.R.P.); (M.R.S.)
| | - Umar Mahmood
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| | - Aparna R. Parikh
- Division of Hematology-Oncology, Department of Medicine, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.J.K.); (A.R.P.); (M.R.S.)
| | - Theodore S. Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Matthew R. Strickland
- Division of Hematology-Oncology, Department of Medicine, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.J.K.); (A.R.P.); (M.R.S.)
| | - Shadi A. Esfahani
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| |
Collapse
|
7
|
Inderjeeth A, Iravani A, Subramaniam S, Conduit C, Sandhu S. Novel radionuclide therapy combinations in prostate cancer. Ther Adv Med Oncol 2023; 15:17588359231187202. [PMID: 37547444 PMCID: PMC10399256 DOI: 10.1177/17588359231187202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/21/2023] [Indexed: 08/08/2023] Open
Abstract
Prostate cancer remains the commonest cancer diagnosed in males and a leading cause of cancer-related death. Men with metastatic castration-resistant prostate cancer (mCRPC) who have progressed on chemotherapy and androgen receptor pathway inhibitors (ARPI) have limited treatment options, significant morbidity, and poor outcomes. Prostate-specific membrane antigen (PSMA)-directed radionuclide therapy (RNT) is emerging as an efficacious and well-tolerated therapy; however, disease progression is universal. Several ongoing RNT trials focus on combination strategies to improve efficacy and durability of treatment response, including combinations with ARPIs, chemotherapy, immunotherapy, and targeted therapies. Further, efforts are underway to expand the role of PSMA-directed RNT to earlier stages of disease including hormone-sensitive and localized prostate cancer. In this review, we discuss the rationale and ongoing RNT combination therapeutic trials in prostate cancer and summarize the efficacy and toxicity associated with RNT.
Collapse
Affiliation(s)
- Andrisha–Jade Inderjeeth
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Amir Iravani
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Shalini Subramaniam
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Bankstown-Lidcombe Hospital, Bankstown, NSW, Australia
| | - Ciara Conduit
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Sir Peter MacCallum Cancer Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | | |
Collapse
|
8
|
Giraudet AL, Vinceneux A, Pretet V, Paquet E, Lajusticia AS, Khayi F, Badel JN, Boyle H, Flechon A, Kryza D. Rationale for Prostate-Specific-Membrane-Antigen-Targeted Radionuclide Theranostic Applied to Metastatic Clear Cell Renal Carcinoma. Pharmaceuticals (Basel) 2023; 16:995. [PMID: 37513907 PMCID: PMC10383345 DOI: 10.3390/ph16070995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA), whose high expression has been demonstrated in metastatic aggressive prostate adenocarcinoma, is also highly expressed in the neovessels of various solid tumors, including clear cell renal cell carcinoma (ccRCC). In the VISION phase III clinical trial, PSMA-targeted radioligand therapy (PRLT) with lutetium 177 demonstrated a 4-month overall survival OS benefit compared to the best standard of care in heavily pretreated metastatic prostate cancer. Despite the improvement in the management of metastatic clear cell renal cell carcinoma (mccRCC) with antiangiogenic tyrosine kinase inhibitor (TKI) and immunotherapy, there is still a need for new treatments for patients who progress despite these drugs. In this study, we discuss the rationale of PRLT applied to the treavtment of mccRCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - David Kryza
- Lumen Nuclear Medicine Department, Hospices Civils de Lyon, 69437 Lyon, France
- UNIV Lyon-Université Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS Villeurbanne, 69100 Villeurbanne, France
| |
Collapse
|
9
|
Klauser PC, Chopra S, Cao L, Bobba KN, Yu B, Seo Y, Chan E, Flavell RR, Evans MJ, Wang L. Covalent Proteins as Targeted Radionuclide Therapies Enhance Antitumor Effects. ACS CENTRAL SCIENCE 2023; 9:1241-1251. [PMID: 37396859 PMCID: PMC10311652 DOI: 10.1021/acscentsci.3c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Indexed: 07/04/2023]
Abstract
Molecularly targeted radionuclide therapies (TRTs) struggle with balancing efficacy and safety, as current strategies to increase tumor absorption often alter drug pharmacokinetics to prolong circulation and normal tissue irradiation. Here we report the first covalent protein TRT, which, through reacting with the target irreversibly, increases radioactive dose to the tumor without altering the drug's pharmacokinetic profile or normal tissue biodistribution. Through genetic code expansion, we engineered a latent bioreactive amino acid into a nanobody, which binds to its target protein and forms a covalent linkage via the proximity-enabled reactivity, cross-linking the target irreversibly in vitro, on cancer cells, and on tumors in vivo. The radiolabeled covalent nanobody markedly increases radioisotope levels in tumors and extends tumor residence time while maintaining rapid systemic clearance. Furthermore, the covalent nanobody conjugated to the α-emitter actinium-225 inhibits tumor growth more effectively than the noncovalent nanobody without causing tissue toxicity. Shifting the protein-based TRT from noncovalent to covalent mode, this chemical strategy improves tumor responses to TRTs and can be readily scaled to diverse protein radiopharmaceuticals engaging broad tumor targets.
Collapse
Affiliation(s)
- Paul C. Klauser
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Shalini Chopra
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
- Department
of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California 94158, United States
| | - Li Cao
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Kondapa Naidu Bobba
- Department
of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California 94158, United States
| | - Bingchen Yu
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Youngho Seo
- Department
of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California 94158, United States
| | - Emily Chan
- Department
of Pathology, University of California San
Francisco, San Francisco, California 94158, United States
| | - Robert R. Flavell
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
- Department
of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California 94158, United States
| | - Michael J. Evans
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
- Department
of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California 94158, United States
| | - Lei Wang
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
10
|
Aso A, Nabetani H, Matsuura Y, Kadonaga Y, Shirakami Y, Watabe T, Yoshiya T, Mochizuki M, Ooe K, Kawakami A, Jinno N, Toyoshima A, Haba H, Wang Y, Cardinale J, Giesel FL, Shimoyama A, Kaneda-Nakashima K, Fukase K. Evaluation of Astatine-211-Labeled Fibroblast Activation Protein Inhibitor (FAPI): Comparison of Different Linkers with Polyethylene Glycol and Piperazine. Int J Mol Sci 2023; 24:ijms24108701. [PMID: 37240044 DOI: 10.3390/ijms24108701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Fibroblast activation proteins (FAP) are overexpressed in the tumor stroma and have received attention as target molecules for radionuclide therapy. The FAP inhibitor (FAPI) is used as a probe to deliver nuclides to cancer tissues. In this study, we designed and synthesized four novel 211At-FAPI(s) possessing polyethylene glycol (PEG) linkers between the FAP-targeting and 211At-attaching moieties. 211At-FAPI(s) and piperazine (PIP) linker FAPI exhibited distinct FAP selectivity and uptake in FAPII-overexpressing HEK293 cells and the lung cancer cell line A549. The complexity of the PEG linker did not significantly affect selectivity. The efficiencies of both linkers were almost the same. Comparing the two nuclides, 211At was superior to 131I in tumor accumulation. In the mouse model, the antitumor effects of the PEG and PIP linkers were almost the same. Most of the currently synthesized FAPI(s) contain PIP linkers; however, in our study, we found that PEG linkers exhibit equivalent performance. If the PIP linker is inconvenient, a PEG linker is expected to be an alternative.
Collapse
Affiliation(s)
- Ayaka Aso
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Hinako Nabetani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Yoshifumi Matsuura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Yuichiro Kadonaga
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Yoshifumi Shirakami
- Division of Science, Institute for Radiation Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Tadashi Watabe
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Taku Yoshiya
- Peptide Institute, Inc., 7-2-9 Saito-asagi, Ibaraki 567-0085, Osaka, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Osaka, Japan
| | | | - Kazuhiro Ooe
- Radioisotope Research Center, Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Atsuko Kawakami
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki 567-0047, Osaka, Japan
| | - Naoya Jinno
- R&D Division, Alpha Fusion Inc., 10-1 Mihogaoka, Ibaraki 567-0047, Osaka, Japan
| | - Atsushi Toyoshima
- Division of Science, Institute for Radiation Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Hiromitsu Haba
- RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako 351-0198, Saitama, Japan
| | - Yang Wang
- RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako 351-0198, Saitama, Japan
| | - Jens Cardinale
- Department of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Frederik Lars Giesel
- Division of Science, Institute for Radiation Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Department of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Atsushi Shimoyama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Kazuko Kaneda-Nakashima
- Division of Science, Institute for Radiation Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Core for Medicine and Science Collaborative Research and Education, Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Division of Science, Institute for Radiation Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Core for Medicine and Science Collaborative Research and Education, Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| |
Collapse
|
11
|
Grønningsæter SR, Blakkisrud J, Selboe S, Revheim ME, Bruland ØS, Bønsdorff TB, Larsen SG, Stokke C. Radiation safety considerations for the use of radium-224-calciumcarbonate-microparticles in patients with peritoneal metastasis. Front Med (Lausanne) 2023; 10:1058914. [PMID: 36844217 PMCID: PMC9945525 DOI: 10.3389/fmed.2023.1058914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Aim Two ongoing phase I studies are investigating the use of radium-224 adsorbed to calcium carbonate micro particles (224Ra-CaCO3-MP) to treat peritoneal metastasis originating from colorectal or ovarian cancer. The aim of this work was to study the level of radiation exposure from the patients to workers at the hospital, carers and members of the public. Method Six patients from the phase 1 trial in patients with colorectal cancer were included in this study. Two days after cytoreductive surgery, they were injected with 7 MBq of 224Ra-CaCO3-MP. At approximately 3, 24 and 120 h after injection, the patients underwent measurements with an ionization chamber and a scintillator-based iodide detector, and whole body gamma camera imaging. The patient was modelled as a planar source to calculate dose rate as a function of distance. Scenarios varying in duration and distance from the patient were created to estimate the potential effective doses from external exposure. Urine and blood samples were collected at approximately 3, 6, 24, 48 and 120 h after injection of 224Ra-CaCO3-MP, to estimate the activity concentration of 224Ra and 212Pb. Results The patients' median effective whole-body half-life of 224Ra-CaCO3-MP ranged from 2.6 to 3.5 days, with a mean value of 3.0 days. In the scenarios with exposure at the hospital (first 8 days), sporadic patient contact resulted in a range of 3.9-6.8 μSv per patient, and daily contact resulted in 4.3-31.3 μSv depending on the scenario. After discharge from the hospital, at day 8, the highest effective dose was received by those with close daily contact; 18.7-83.0 μSv. The highest activity concentrations of 224Ra and 212Pb in urine and blood were found within 6 h, with maximum values of 70 Bq/g for 224Ra and 628 Bq/g for 212Pb. Conclusion The number of patients treated with 224Ra-CaCO3-MP that a single hospital worker - involved in extensive care - can receive per year, before effective doses of 6 mSv from external exposure is exceeded, is in the order of 200-400. Members of the public and family members are expected to receive well below 0.25 mSv, and therefore, no restrictions to reduce external exposure should be required.
Collapse
Affiliation(s)
| | - Johan Blakkisrud
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Silje Selboe
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Mona-Elisabeth Revheim
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øyvind Sverre Bruland
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Stein Gunnar Larsen
- Department of Gastroenterological Surgery, Oslo University Hospital, Oslo, Norway
| | - Caroline Stokke
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Salerno KE, Roy S, Ribaudo C, Fisher T, Patel RB, Mena E, Escorcia FE. A Primer on Radiopharmaceutical Therapy. Int J Radiat Oncol Biol Phys 2023; 115:48-59. [PMID: 35970373 PMCID: PMC9772089 DOI: 10.1016/j.ijrobp.2022.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022]
Abstract
The goal of this article is to serve as a primer for the United States-based radiation oncologist who may be interested in learning more about radiopharmaceutical therapy (RPT). Specifically, we define RPT, review the data behind its current and anticipated indications, and discuss important regulatory considerations for incorporating it into clinical practice. RPT represents an opportunity for radiation oncologists to leverage 2 key areas of expertise, namely therapeutic radiation therapy and oncology, and apply them in a distinct context in collaboration with nuclear medicine and medical oncology colleagues. Although not every radiation oncologist will incorporate RPT into their day-to-day practice, it is important to understand the role for this modality and how it can be appropriately used in select patients.
Collapse
Affiliation(s)
- Kilian E Salerno
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Soumyajit Roy
- Radiation Oncology Department, Rush Medical Center, Chicago, Illinois
| | - Cathy Ribaudo
- Division of Radiation Safety, National Institutes of Health, Bethesda, Maryland
| | - Teresa Fisher
- Division of Radiation Safety, National Institutes of Health, Bethesda, Maryland
| | - Ravi B Patel
- Radiation Oncology Department, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Esther Mena
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Freddy E Escorcia
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
13
|
DNA Damage Repair Defects and Targeted Radionuclide Therapies for Prostate Cancer: Does Mutation Really Matter? A Systematic Review. Life (Basel) 2022; 13:life13010055. [PMID: 36676004 PMCID: PMC9860912 DOI: 10.3390/life13010055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The aim of the present review was to assess the impact of DNA damage repair (DDR) mutations on response and outcome of patients (pts) affected by advanced prostate cancer (PCa) submitted to radionuclide therapies with [223Ra]RaCl2 (223Ra-therapy) or prostate specific membrane antigen (PSMA) ligands. A systematic literature search according to PRISMA criteria was made by using two main databases. Only studies published up until to October 2022 in the English language with ≥10 enrolled patients were selected. Seven studies including 326 pts, of whom 201 (61.6%) harboring DDR defects, were selected. The majority of selected papers were retrospective and four out of seven (57.1%) had small sample size (<50 pts). Three out of seven (42.8%) studies reported a more favorable outcome (overall or progression free survival) after therapy with alpha emitters (223Ra-therapy or [225Ac]Ac-PSMA-617) in subjects with DDR defects with respect to those without mutations. In two studies employing alpha or beta emitters ([177Lu]/[225Ac]-PMSA), no significant benefit was registered in pts harboring DDR defects. In all but one paper, no significant difference in response rate was reported among pts with or without DDR mutations. Although preliminary and biased by the retrospective design, preliminary data suggest a trend towards a longer survival in PCa pts harboring DDR defects submitted to radionuclide targeted therapy with alpha emitters.
Collapse
|
14
|
Tong Q, Li R, Wang R, Zuo C, Li D, Jia G, Peng Y, Li X, Yang J, Xue S, Bai Q, Li X. The inhibiting effect of alpha-based TARE on embolized vessels and neovascularization. Front Bioeng Biotechnol 2022; 10:1021499. [PMID: 36277378 PMCID: PMC9585162 DOI: 10.3389/fbioe.2022.1021499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Transarterial embolization (TAE) is a personalized technology that offers precise delivery of chemotherapeutic drugs or selective internal radiation therapy for hepatocellular carcinoma (HCC). Beta-emitting radionuclide embolisms for TAE (β-based TARE) are commonly used in the clinic via inducing biochemical lethality on tumor cells, while alpha-emitting radionuclides-based embolisms for TAE (α-based TARE) are still under study. The feeding artery plays a key role in tumor growth, metastasis, and recurrence. In this research, the auricular central arteries (ACAs) of rabbits were embolized with silk fibroin-based microspheres (SFMs) or SFMs integrated with α (Ra-223) or β (I-131) radionuclides to investigate the influence on vessels. TARE-induced tissue necrosis and the following neovascularization were measured by pathological analysis and 68Ga-DOTA-RGD PET/CT. The results showed that, compared to I-131, Ra-223 enhanced the growth inhibition of human hepatoma cells Huh-7 and induced more DNA double-strand breaks in vascular smooth muscle cells. Unlike β-based TARE, which mainly led to extensive necrosis of surrounding tissues, α-based TARE induced irreversible necrosis of a limited area adjacent to the embolized vessels. RGD PET revealed the inhibition on neovascularization in α-based TARE (SUVmax = 0.053 ± 0.004) when compared with normal group (SUVmax = 0.099 ± 0.036), the SFMs-lipiodol group (SUVmax = 0.240 ± 0.040), and β-based TARE (SUVmax = 0.141 ± 0.026), owing to the avoidance of the embolism-induced neovascularization. In conclusion, α-based TARE provided a promising strategy for HCC treatments via destroying the embolized vessels and inhibiting neovascularization.
Collapse
Affiliation(s)
- Qianqian Tong
- School of Chemistry and Bioengineering, Yichun University, Yichun, Jiangxi, China
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Rou Li
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ruizhi Wang
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China
| | - Changjing Zuo
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Danni Li
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guorong Jia
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ye Peng
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaohong Li
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jian Yang
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shuai Xue
- School of Chemistry and Bioengineering, Yichun University, Yichun, Jiangxi, China
| | - Qingyun Bai
- School of Chemistry and Bioengineering, Yichun University, Yichun, Jiangxi, China
- *Correspondence: Qingyun Bai, ; Xiao Li,
| | - Xiao Li
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
- Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Qingyun Bai, ; Xiao Li,
| |
Collapse
|
15
|
Kvassheim M, Revheim MER, Stokke C. Quantitative SPECT/CT imaging of lead-212: a phantom study. EJNMMI Phys 2022; 9:52. [PMID: 35925521 PMCID: PMC9352840 DOI: 10.1186/s40658-022-00481-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022] Open
Abstract
Background Lead-212 (212Pb) is a promising radionuclide for targeted therapy, as it decays to α-particle emitter bismuth-212 (212Bi) via β-particle emission. This extends the problematic short half-life of 212Bi. In preparation for upcoming clinical trials with 212Pb, the feasibility of quantitative single photon-emission computed tomography/computed tomography (SPECT/CT) imaging of 212Pb was studied, with the purpose to explore the possibility of individualised patient dosimetric estimation. Results Both acquisition parameters (combining two different energy windows and two different collimators) and iterative reconstruction parameters (varying the iterations x subsets between 10 × 1, 15 × 1, 30 × 1, 30 × 2, 30 × 3, 30 × 4, and 30 × 30) were investigated to evaluate visual quality and quantitative uncertainties based on phantom images. Calibration factors were determined using a homogeneous phantom and were stable when the total activity imaged exceeded 1 MBq for all the imaging protocols studied, but they increased sharply as the activity decayed below 1 MBq. Both a 20% window centred on 239 keV and a 40% window on 79 keV, with dual scatter windows of 5% and 20%, respectively, could be used. Visual quality at the lowest activity concentrations was improved with the High Energy collimator and the 79 keV energy window. Fractional uncertainty in the activity quantitation, including uncertainties from calibration factors and small volume effects, in spheres of 2.6 ml in the NEMA phantom was 16–21% for all protocols with the 30 × 4 filtered reconstruction except the High Energy collimator with the 239 keV energy window. Quantitative analysis was possible both with and without filters, but the visual quality of the images improved with a filter. Conclusions Only minor differences were observed between the imaging protocols which were all determined suitable for quantitative imaging of 212Pb. As uncertainties generally decreased with increasing iterative updates in the reconstruction and recovery curves did not converge with few iterations, a high number of reconstruction updates are recommended for quantitative imaging. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-022-00481-z.
Collapse
Affiliation(s)
- Monika Kvassheim
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway. .,Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Mona-Elisabeth R Revheim
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Nuclear Medicine, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Caroline Stokke
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Kadassery KJ, King AP, Fayn S, Baidoo KE, MacMillan SN, Escorcia FE, Wilson JJ. H 2BZmacropa-NCS: A Bifunctional Chelator for Actinium-225 Targeted Alpha Therapy. Bioconjug Chem 2022; 33:1222-1231. [PMID: 35670495 PMCID: PMC9362842 DOI: 10.1021/acs.bioconjchem.2c00190] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Actinium-225 (225Ac) is one of the most promising radionuclides for targeted alpha therapy (TAT). With a half-life of 9.92 days and a decay chain that emits four high-energy α particles, 225Ac is well-suited for TAT when conjugated to macromolecular targeting vectors that exhibit extended in vivo circulation times. The implementation of 225Ac in these targeted constructs, however, requires a suitable chelator that can bind and retain this radionuclide in vivo. Previous work has demonstrated the suitability of a diaza-18-crown-6 macrocyclic chelator H2macropa for this application. Building upon these prior efforts, in this study, two rigid variants of H2macropa, which contain either one (H2BZmacropa) or two (H2BZ2macropa) benzene rings within the macrocyclic core, were synthesized and investigated for their potential use for 225Ac TAT. The coordination chemistry of these ligands with La3+, used as a nonradioactive model for Ac3+, was carried out. Both NMR spectroscopic and X-ray crystallographic studies of the La3+ complexes of these ligands revealed similar structural features to those found for the related complex of H2macropa. Thermodynamic stability constants of the La3+ complexes, however, were found to be 1 and 2 orders of magnitude lower than those of H2macropa for H2BZmacropa and H2BZ2macropa, respectively. The decrease in thermodynamic stability was rationalized via the use of density functional theory calculations. 225Ac radiolabeling and serum stability studies with H2BZmacropa showed that this chelator compares favorably with H2macropa. Based on these promising results, a bifunctional version of this chelator, H2BZmacropa-NCS, was synthesized and conjugated to the antibody codrituzumab (GC33), which targets the liver cancer biomarker glypican-3 (GPC3). The resulting GC33-BZmacropa conjugate and an analogous GC33-macropa conjugate were evaluated for their 225Ac radiolabeling efficiencies, antigen-binding affinities, and in vivo biodistribution in HepG2 liver cancer tumor-bearing mice. Although both conjugates were comparably effective in their radiolabeling efficiencies, [225Ac]Ac-GC33-BZmacropa showed slightly poorer serum stability and biodistribution than [225Ac]Ac-GC33-macropa. Together, these results establish H2BZmacropa-NCS as a new bifunctional chelator for the preparation of 225Ac radiopharmaceuticals.
Collapse
Affiliation(s)
- Karthika J. Kadassery
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - A. Paden King
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Stanley Fayn
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kwamena E. Baidoo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Freddy E. Escorcia
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
17
|
Hydroxypyridinones as a Very Promising Platform for Targeted Diagnostic and Therapeutic Radiopharmaceuticals. Molecules 2021. [DOI: 10.3390/molecules26226997
expr 973886017 + 973118332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Hydroxypyridinones (HOPOs) have been used in the chelation therapy of iron and actinide metals. Their application in metal-based radiopharmaceuticals has also been increasing in recent years. This review article focuses on how multidentate HOPOs can be used in targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals. The general structure of radiometal-based targeted radiopharmaceuticals, a brief description of siderophores, the basic structure and properties of bidentate HOPO, some representative HOPO multidentate chelating agents, radiopharmaceuticals based on HOPO multidentate bifunctional chelators for gallium-68, thorium-227 and zirconium-89, as well as the future prospects of HOPO multidentate bifunctional chelators in other metal-based radiopharmaceuticals are described and discussed in turn. The HOPO metal-based radiopharmaceuticals that have shown good prospects in clinical and preclinical studies are gallium-68, thorium-227 and zirconium-89 radiopharmaceuticals. We expect HOPO multidentate bifunctional chelators to be a very promising platform for building novel targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals.
Collapse
|
18
|
Zhou X, Dong L, Shen L. Hydroxypyridinones as a Very Promising Platform for Targeted Diagnostic and Therapeutic Radiopharmaceuticals. Molecules 2021; 26:6997. [PMID: 34834087 PMCID: PMC8619595 DOI: 10.3390/molecules26226997&set/a 916769719+956065658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Hydroxypyridinones (HOPOs) have been used in the chelation therapy of iron and actinide metals. Their application in metal-based radiopharmaceuticals has also been increasing in recent years. This review article focuses on how multidentate HOPOs can be used in targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals. The general structure of radiometal-based targeted radiopharmaceuticals, a brief description of siderophores, the basic structure and properties of bidentate HOPO, some representative HOPO multidentate chelating agents, radiopharmaceuticals based on HOPO multidentate bifunctional chelators for gallium-68, thorium-227 and zirconium-89, as well as the future prospects of HOPO multidentate bifunctional chelators in other metal-based radiopharmaceuticals are described and discussed in turn. The HOPO metal-based radiopharmaceuticals that have shown good prospects in clinical and preclinical studies are gallium-68, thorium-227 and zirconium-89 radiopharmaceuticals. We expect HOPO multidentate bifunctional chelators to be a very promising platform for building novel targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals.
Collapse
Affiliation(s)
- Xu Zhou
- HTA Co., Ltd., Beijing 102413, China;
- China Isotope & Radiation Corporation, Beijing 100089, China;
| | - Linlin Dong
- China Isotope & Radiation Corporation, Beijing 100089, China;
| | - Langtao Shen
- HTA Co., Ltd., Beijing 102413, China;
- China Isotope & Radiation Corporation, Beijing 100089, China;
- National Isotope Center of Engineering and Technology, China Institute of Atomic Energy, Beijing 102413, China
- Correspondence:
| |
Collapse
|
19
|
Zhou X, Dong L, Shen L. Hydroxypyridinones as a Very Promising Platform for Targeted Diagnostic and Therapeutic Radiopharmaceuticals. Molecules 2021; 26:6997. [PMID: 34834087 PMCID: PMC8619595 DOI: 10.3390/molecules26226997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 01/30/2023] Open
Abstract
Hydroxypyridinones (HOPOs) have been used in the chelation therapy of iron and actinide metals. Their application in metal-based radiopharmaceuticals has also been increasing in recent years. This review article focuses on how multidentate HOPOs can be used in targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals. The general structure of radiometal-based targeted radiopharmaceuticals, a brief description of siderophores, the basic structure and properties of bidentate HOPO, some representative HOPO multidentate chelating agents, radiopharmaceuticals based on HOPO multidentate bifunctional chelators for gallium-68, thorium-227 and zirconium-89, as well as the future prospects of HOPO multidentate bifunctional chelators in other metal-based radiopharmaceuticals are described and discussed in turn. The HOPO metal-based radiopharmaceuticals that have shown good prospects in clinical and preclinical studies are gallium-68, thorium-227 and zirconium-89 radiopharmaceuticals. We expect HOPO multidentate bifunctional chelators to be a very promising platform for building novel targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals.
Collapse
Affiliation(s)
- Xu Zhou
- HTA Co., Ltd., Beijing 102413, China;
- China Isotope & Radiation Corporation, Beijing 100089, China;
| | - Linlin Dong
- China Isotope & Radiation Corporation, Beijing 100089, China;
| | - Langtao Shen
- HTA Co., Ltd., Beijing 102413, China;
- China Isotope & Radiation Corporation, Beijing 100089, China;
- National Isotope Center of Engineering and Technology, China Institute of Atomic Energy, Beijing 102413, China
| |
Collapse
|