1
|
Zierke MA, Rangger C, Samadikhah K, Kreutz C, Schmid AM, Haubner R. 68Ga-Labeled TRAP-Based Glycoside Trimers for Imaging of the Functional Liver Reserve. J Med Chem 2024; 67:19668-19677. [PMID: 39413281 DOI: 10.1021/acs.jmedchem.4c02006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
The exclusive asialoglycoprotein receptor (ASGR) expression on hepatocytes makes it an attractive target for imaging of the functional liver reserve. Here, we present a set of TRAP-based glycoside trimers and evaluate their imaging properties compared to the gold standard [99mTc]Tc-GSA. The click-chemistry-based synthesis approach provided easy access to trimeric low-molecular-weight compounds. Labeling with 68Ga was carried out in high radiochemical yields (>99%). Complexes showed high stability and hydrophilicity. Protein binding ranged between 10 and 25%. Highest binding affinity (IC50) and best liver accumulation were found for [68Ga]Ga-T3N3, followed by [68Ga]Ga-T3G3 and [68Ga]Ga-T0G3. Rapid elimination from the rest of the body resulted in excellent target-to-background ratios. Our studies confirmed that high ASGR uptake depends on the correct spacer design and that N-acetylgalactosamine improves targeting properties in vivo. Thus, [68Ga]Ga-T3N3 represents a new low-molecular-weight radiopharmaceutical with pharmacokinetics similar to those of [99mTc]Tc-GSA.
Collapse
Affiliation(s)
- Maximilian A Zierke
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| | - Christine Rangger
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| | - Kimia Samadikhah
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, 73076 Tübingen, Germany
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Andreas M Schmid
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, 73076 Tübingen, Germany
| | - Roland Haubner
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Huang C, Shen Y, Galgano SJ, Goenka AH, Hecht EM, Kambadakone A, Wang ZJ, Chu LC. Advancements in early detection of pancreatic cancer: the role of artificial intelligence and novel imaging techniques. Abdom Radiol (NY) 2024:10.1007/s00261-024-04644-7. [PMID: 39467913 DOI: 10.1007/s00261-024-04644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Early detection is crucial for improving survival rates of pancreatic ductal adenocarcinoma (PDA), yet current diagnostic methods can often fail at this stage. Recently, there has been significant interest in improving risk stratification and developing imaging biomarkers, through novel imaging techniques, and most notably, artificial intelligence (AI) technology. This review provides an overview of these advancements, with a focus on deep learning methods for early detection of PDA.
Collapse
Affiliation(s)
| | - Yiqiu Shen
- New York University Langone Health, New York, USA
| | | | | | | | | | - Zhen Jane Wang
- University of California, San Francisco, San Francisco, USA
| | - Linda C Chu
- Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
3
|
Stangl S, Nguyen NT, Brosch-Lenz J, Šimeček J, Weber WA, Kossatz S, Notni J. Efficiency of succinylated gelatin and amino acid infusions for kidney uptake reduction of radiolabeled αvβ6-integrin targeting peptides: considerations on clinical safety profiles. Eur J Nucl Med Mol Imaging 2024; 51:3191-3201. [PMID: 38717591 PMCID: PMC11369040 DOI: 10.1007/s00259-024-06738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/26/2024] [Indexed: 09/03/2024]
Abstract
PURPOSE 68Ga-Trivehexin is an investigational PET radiopharmaceutical (NCT05799274) targeting αvβ6-integrin for PET imaging of carcinomas. 177Lu-D0301 is a structurally related therapeutic peptide tetramer. However, it showed considerable kidney uptake in rodents, impeding clinical applicability. We therefore evaluated the impact of different kidney protection strategies on the biodistribution of both agents in normal and tumor-bearing mice. METHODS Ex-vivo biodistribution of 68Ga-Trivehexin (90 min p.i.) and 177Lu-D0301 (90 min and 24 h p.i.) was determined in healthy C57BL/6N and H2009 (human lung adenocarcinoma) xenografted CB17-SCID mice without and with co-infusion of 100 µL of solutions containing 2.5% arginine + 2.5% lysine (Arg/Lys), 4% succinylated gelatin (gelofusine, gelo), or combinations thereof. Arg/Lys was injected either i.p. 30 min before and after the radiopharmaceutical, or i.v. 2 min before the radiopharmaceutical. Gelo was administered either i.v. 2 min prior activity, or pre-mixed and injected together with the radiopharmaceutical (n = 5 per group). C57BL/6N mice were furthermore imaged by PET (90 min p.i.) and SPECT (24 h p.i.). RESULTS Kidney uptake of 68Ga-Trivehexin in C57BL/6N mice was reduced by 15% (Arg/Lys i.p.), 25% (Arg/Lys i.v.), and 70% (gelo i.v.), 90 min p.i., relative to control. 177Lu-D0301 kidney uptake was reduced by 2% (Arg/Lys i.p.), 41% (Arg/Lys i.v.), 61% (gelo i.v.) and 66% (gelo + Arg/Lys i.v.) 24 h p.i., compared to control. Combination of Arg/Lys and gelo provided no substantial benefit. Gelo furthermore reduced kidney uptake of 177Lu-D0301 by 76% (90 min p.i.) and 85% (24 h p.i.) in H2009 bearing SCID mice. Since tumor uptake was not (90 min p.i.) or only slightly reduced (15%, 24 h p.i.), the tumor/kidney ratio was improved by factors of 3.3 (90 min p.i.) and 2.6 (24 h p.i.). Reduction of kidney uptake was demonstrated by SPECT, which also showed that the remaining activity was located in the cortex. CONCLUSIONS The kidney uptake of both investigated radiopharmaceuticals was more efficiently reduced by gelofusine (61-85%) than Arg/Lys (25-41%). Gelofusine appears particularly suitable for reducing renal uptake of αvβ6-integrin targeted 177Lu-labeled peptide multimers because its application led to approximately three times higher tumor-to-kidney ratios. Since the incidence of severe adverse events (anaphylaxis) with succinylated gelatin products (reportedly 0.0062-0.038%) is comparable to that of gadolinium-based MRI or iodinated CT contrast agents (0.008% and 0.04%, respectively), clinical use of gelofusine during radioligand therapy appears feasible if similar risk management strategies as for contrast agents are applied.
Collapse
Affiliation(s)
- Stefan Stangl
- Department of Nuclear Medicine, University Hospital Klinikum Rechts Der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Nghia Trong Nguyen
- Department of Nuclear Medicine, University Hospital Klinikum Rechts Der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Julia Brosch-Lenz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts Der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | | | - Wolfgang A Weber
- Department of Nuclear Medicine, University Hospital Klinikum Rechts Der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts Der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany.
- Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany.
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Munich, Germany.
| | - Johannes Notni
- TRIMT GmbH, Radeberg, Germany.
- Institute of Pathology, School of Medicine and Health, Technische Universität München, München, Germany.
| |
Collapse
|
4
|
Rehm J, Winzer R, Notni J, Hempel S, Distler M, Folprecht G, Kotzerke J. Concomitant metastatic head-and-neck cancer and pancreatic cancer assessed by αvβ6-integrin PET/CT using 68Ga-Trivehexin: incidental detection of a brain metastasis. Eur J Nucl Med Mol Imaging 2024; 51:3469-3471. [PMID: 38771514 PMCID: PMC11368998 DOI: 10.1007/s00259-024-06750-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024]
Affiliation(s)
- Jana Rehm
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Robert Winzer
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Sebastian Hempel
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marius Distler
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gunnar Folprecht
- Medical Clinic I, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jörg Kotzerke
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
Wang B, Jiang Y, Zhu J, Wu H, Wu J, Li L, Huang J, Xiao Z, He Y. Fully-automated production of [ 68Ga]Ga-Trivehexin for clinical application and its biodistribution in healthy volunteers. Front Oncol 2024; 14:1445415. [PMID: 39156699 PMCID: PMC11327152 DOI: 10.3389/fonc.2024.1445415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Background The αvβ6-integrin targeting trimeric ligand [68Ga]Ga-Trivehexin has emerged as a promising candidate for clinical application due to its clinical imaging potentials in various malignant cancers. Our objective was to develop a simplified and reproducible module-based automated synthesis protocol to expand its availability in clinical application. Methods The pH value and the precursor load of radiolabeling were explored using an iQS-TS fully-automated module. Radiochemical purity was evaluated by radio-HPLC and radio-TLC. The ethanol content, radionuclide purity and identity, bacterial endotoxins, sterility, and stability of the final product [68Ga]Ga-Trivehexin were all tested. Biodistribution of [68Ga]Ga-Trivehexin in healthy volunteers was also conducted. Results The synthesis was explored and established using fully-automated module with outstanding radiochemical purity (>99%). Considering molar activity and economic costs, a pH of 3.6 and precursor dose of 30 μg were determined to be optimal. All relevant quality control parameters were tested and met the requirement of European Pharmacopoeia. In vitro stability test and imaging in healthy volunteer indicated the practical significance in clinical routines. Conclusions A fully-automated synthesis protocol for [68Ga]Ga-Trivehexin using the iQS-TS synthesis module was achieved and conformed to the clinical quality standards. Clinical trial registration ClinicalTrials.gov, NCT05835570. Registered 28 April 2023, https://www.clinicaltrials.gov/study/NCT05835570.
Collapse
Affiliation(s)
- Binchen Wang
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yaqun Jiang
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiaxu Zhu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huiqin Wu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianyuan Wu
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ling Li
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianying Huang
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhiwei Xiao
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yong He
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Das SS, Ahlawat S, Thakral P, Malik D, Simecek J, Cb V, Koley M, Gupta J, Sen I. Potential Efficacy of 68 Ga-Trivehexin PET/CT and Immunohistochemical Validation of αvβ6 Integrin Expression in Patients With Head and Neck Squamous Cell Carcinoma and Pancreatic Ductal Adenocarcinoma. Clin Nucl Med 2024; 49:733-740. [PMID: 38768077 DOI: 10.1097/rlu.0000000000005278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
PURPOSE αvβ6 integrin is exclusively expressed in epithelial cells and is upregulated in many carcinomas, such as pancreatic ductal adenocarcinomas (PDACs) and head and neck squamous cell carcinomas (H&NSCCs). Trivehexin is a recently synthesized trimerized αvβ6 integrin selective nonapeptide, which can be labeled with a positron emitter like 68 Ga. This is a pilot study to assess the potential role of 68 Ga-Trivehexin PET/CT in patients with H&NSCC and PDAC and their correlation with αvβ6 integrin expression by the tumor tissue on immunohistochemistry (IHC). PATIENTS AND METHODS Thirty-two patients with suspected H&NSCC (n = 20) or PDAC (n = 12) underwent whole-body 68 Ga-Trivehexin PET/CT and 18 F-FDG PET/CT scans on 2 separate days. All 32 patients underwent biopsy from the tumor site for histopathological diagnosis and IHC for αvβ6 integrin expression. The degree of αvβ6 integrin expression on IHC was scored using the immunoreactive score and modified 4-point immunoreactive score classification. RESULTS The 68 Ga-Trivehexin PET images demonstrated increased tracer uptake (mean SUV max 5.9 ± 3.3) in the primary and metastatic lesions with good lesion delineation in 8 out of the 9 cases of PDACs. However, FDG PET showed increased tracer uptake in 7 cases (6.2 ± 2.6). Among various cases of H&NSCC, increased uptakes of 68 Ga-Trivehexin (6.6 ± 4.5) and 18 F-FDG (12.7 ± 6.7) were seen in 17 out of the 18 patients. The 2 cases of inflammatory changes with suspected disease recurrence showed increased tracer uptake in 18 F-FDG PET (7.98 ± 3.1) and no significant uptake in 68 Ga-Trivehexin PET (2.2 ± 0.34).IHC showed higher expression of αvβ6 integrins in lesions with higher uptake of 68 Ga-Trivehexin. A higher sensitivity, specificity, and accuracy of 68 Ga-Trivehexin PET over 18 F-FDG PET was seen for detection of primary and metastatic lesions. CONCLUSIONS 68 Ga-Trivehexin is a promising noninvasive molecular imaging agent for tumors expressing αvβ6 integrin, especially in cases where 18 F-FDG PET/CT scan may be suboptimal due to its low uptake, or due to its nonspecific uptake around tumor sites.
Collapse
Affiliation(s)
| | - Sunita Ahlawat
- Histopathology, Fortis Memorial Research Institute, Gurgaon, Haryana, India
| | | | | | | | | | | | | | - Ishita Sen
- From the Departments of Nuclear Medicine
| |
Collapse
|
7
|
Zheng X, Xue S, Zhao Z, Jin S, He S, Jia L, Li Z, Vanhove C, De Vos F, Kuang Z, Wang T, Neyt S, Zhang L, Li X. The development of 177Lu-DOTA-CC-PSMA following a unified "Click Chemistry" protocol of synthesizing metal nuclide-conjugated radiopharmaceuticals. EJNMMI Radiopharm Chem 2024; 9:56. [PMID: 39083135 PMCID: PMC11291776 DOI: 10.1186/s41181-024-00287-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Currently, the synthesis pathway of metal nuclide-labeled radiopharmaceuticals is mainly divided into two steps: first, connecting the chelator with the target molecule, and second, labeling the metal nuclide to the chelator. However, the second step of the reaction to label the metal nuclide requires high temperature (90-100 °C), which tends to denature and inactivate the target molecule, leading to loss of biological activities, especially the targeting ability. A feasible solution may be the click chemistry labeling method, which consists of reacting a metal nuclide with a chelating agent to generate an intermediate and then synthesizing a radiopharmaceutical agent via the click chemistry intermediate and the target molecule-alkyne compound. In this study, through the click chemistry of 177Lu-DOTA-N3 with prostate-specific membrane antigen (PSMA)-alkyne compound, 177Lu-labeled PSMA-targeted molecular probe was synthesized and evaluated for its potential to be cleared from the bloodstream and rapidly distributed to tissues and organs, achieving a high target/non-target ratio. 177Lu-PSMA-617 was utilized as an analogue for comparison in terms of synthesizing efficiency and PSMA-targeting ability. RESULTS A novel 177Lu-labeled PSMA radioligand was successfully synthesized through the click chemistry of 177Lu-DOTA-N3 with PSMA-alkyne compound, and abbreviated as 177Lu-DOTA-CC-PSMA, achieving a radiochemical yield of 77.07% ± 0.03% (n = 6) and a radiochemical purity of 97.62% ± 1.49% (n = 6) when purified by SepPak C18 column. Notably, 177Lu-DOTA-CC-PSMA was characterized as a hydrophilic compound that exhibited stability at room temperature and commendable pharmacokinetic properties, such as the superior uptake (19.75 ± 3.02%ID/g at 0.5 h) and retention (9.14 ± 3.16%ID/g at 24 h) within xenografts of 22Rv1 tumor-bearing mice. SPECT/CT imaging indicated that radioactivity in both kidneys and bladder was essentially eliminated after 24 h, while 177Lu-DOTA-CC-PSMA was further enriched and retained in PSMA-expressing tumors, resulting in the high target/non-target ratio. CONCLUSION This study demonstrated the potential of click chemistry to unify the synthesis of metal radiopharmaceuticals, and 177Lu-DOTA-CC-PSMA was found for rapid clearance and appropriate chemical stability as a PSMA-targeted radioligand.
Collapse
Affiliation(s)
- Xiaobei Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Vista Pharmaceutical Technology Co. Ltd, Shanghai, 201800, China
| | - Shuai Xue
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Department of Nuclear Medicine, Pudong Hospital, Fudan University, Shanghai, 201399, China
| | - Zhongqi Zhao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuxin Jin
- Shanghai Vista Pharmaceutical Technology Co. Ltd, Shanghai, 201800, China
| | - Shuhua He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Vista Pharmaceutical Technology Co. Ltd, Shanghai, 201800, China
| | - Lina Jia
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Vista Pharmaceutical Technology Co. Ltd, Shanghai, 201800, China
| | - Zheng Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Vista Pharmaceutical Technology Co. Ltd, Shanghai, 201800, China
| | - Christian Vanhove
- Institute of Biomedical Engineering and Technology, Faculty of Engineering and Architecture, Ghent University, Ghent, 9000, Belgium
| | - Filip De Vos
- Department of Radiopharmacy, Faculty of Pharmacy, Ghent University, Ghent, 9000, Belgium
| | - Zijun Kuang
- Shanghai Vista Pharmaceutical Technology Co. Ltd, Shanghai, 201800, China
| | - Tiantian Wang
- Shanghai Vista Pharmaceutical Technology Co. Ltd, Shanghai, 201800, China
| | - Sara Neyt
- Institute of Biomedical Engineering and Technology, Faculty of Engineering and Architecture, Ghent University, Ghent, 9000, Belgium.
| | - Lan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
| | - Xiao Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
- Department of Nuclear Medicine, Pudong Hospital, Fudan University, Shanghai, 201399, China.
| |
Collapse
|
8
|
Quigley NG, Zierke MA, Ludwig BS, Richter F, Nguyen NT, Reissig F, Šimeček J, Kossatz S, Notni J. The importance of tyrosines in multimers of cyclic RGD nonapeptides: towards αvβ6-integrin targeted radiotherapeutics. RSC Med Chem 2024; 15:2018-2029. [PMID: 38911160 PMCID: PMC11187563 DOI: 10.1039/d4md00073k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/18/2024] [Indexed: 06/25/2024] Open
Abstract
In a recent paper in this journal (RSC Med. Chem., 2023, 14, 2429), we described an unusually strong impact of regiospecific exchange of phenylalanines by tyrosines in 10 gallium-68-labeled trimers of certain cyclic RGD peptides, c[XRGDLAXp(NMe)K] (X = F or Y), on non-specific organ uptakes. We found that there was, in part, no correlation of liver uptake with established polarity proxies, such as the octanol-water distribution coefficient (log D). Since this observation could not be explained straightforwardly, we suggested that the symmetry of the compounds had resulted in a synergistic interaction of certain components of the macromolecules. In the present work, we investigated whether a comparable effect also occurred for a series of 5 tetramers labeled with lutetium-177. We found that in contrast to the trimers, liver uptake of the tetramers was well correlated to their polarity, indicating that the unusual observations along the trimer series indeed was a unique feature, probably related to their particular symmetry. Since the Lu-177 labeled tetramers are also potential agents for treatment of a variety of αvβ6-integrin expressing cancers, these were evaluated in mice bearing human lung adenocarcinoma xenografts. Due to their tumor-specific uptake and retention in biodistribution and SPECT imaging experiments, these compounds are considered a step forward on the way to αvβ6-integrin-targeted anticancer agents. Furthermore, we noticed that the presence of tyrosines in general had a positive impact on the in vivo performance of our peptide multimers. In view of the fact that a corresponding rule was already proposed in the context of protein engineering, we argue in favor of considering peptide multimers as a special class of small or medium-sized proteins. In summary, we contend that the performance of peptide multimers is less determined by the in vitro characteristics (particularly, affinity and selectivity) of monomers, but rather by the peptides' suitability for the overall macromolecular design concept, and peptides containing tyrosines are preferred.
Collapse
Affiliation(s)
- Neil Gerard Quigley
- Institute of Pathology, School of Medicine and Health, Technische Universität München Munich Germany
| | | | - Beatrice Stefanie Ludwig
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine and Health, Technische Universität München Munich Germany
| | - Frauke Richter
- Institute of Pathology, School of Medicine and Health, Technische Universität München Munich Germany
| | - Nghia Trong Nguyen
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine and Health, Technische Universität München Munich Germany
| | - Falco Reissig
- TRIMT GmbH Carl-Eschebach-Str. 7 D-01454 Radeberg Germany
| | - Jakub Šimeček
- TRIMT GmbH Carl-Eschebach-Str. 7 D-01454 Radeberg Germany
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine and Health, Technische Universität München Munich Germany
| | - Johannes Notni
- Institute of Pathology, School of Medicine and Health, Technische Universität München Munich Germany
- TRIMT GmbH Carl-Eschebach-Str. 7 D-01454 Radeberg Germany
| |
Collapse
|
9
|
Quigley NG, Steiger K, Färber SF, Richter F, Weichert W, Notni J. Sensitive Positron Emission Tomography Imaging of PD-L1 Expression in Human Breast and Lung Carcinoma Xenografts Using the Radiometalated Peptide Ga-68-TRAP-WL12. Mol Pharm 2024; 21:1827-1837. [PMID: 38291706 DOI: 10.1021/acs.molpharmaceut.3c01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Noninvasive imaging of the immune checkpoint protein programmed death ligand 1 (PD-L1; synonyms: CD274, B7-H1) holds great promise to improve patient selection and, thus, response rates for immune checkpoint therapy (ICT) with monoclonal antibodies targeting the PD1/PD-L1 axis. The PD-L1 specific peptide WL12 (cyclo(AcY-(NMe)A-N-P-H-L-Hyp-W-S-W(Me)-(NMe)Nle-(NMe)Nle-O-C)-G-NH2) was functionalized with the Gallium-68 chelator TRAP by means of click chemistry (CuAAC). The resulting conjugate TRAP-WL12 was labeled with Gallium-68 within 16 min, with approximately 90% radiochemical yield and 99% radiochemical purity, affording Ga-68-TRAP-WL12 with molar activities typically exceeding 100 MBq/nmol. This radiotracer was characterized by positron emission tomography (PET) imaging and ex vivo biodistribution in murine xenografts of nontransfected PD-L1 expressing tumor cell lines, MDA-MB-231 (human breast carcinoma), and H2009 (human lung adenocarcinoma). It showed a favorable biodistribution profile with rapid renal clearance and low background (tumor-to-blood ratio = 26.6, 3 h p.i.). Conjugation of the Ga-68-TRAP moiety to WL12 successfully mitigated the nonspecific uptake of this peptide in organs, particularly the liver. This was demonstrated by comparing Ga-68-TRAP-WL12 with the archetypical Ga-68-DOTA-WL12, for which tumor-to-liver ratios of 1.4 and 0.5, respectively, were found. Although immunohistochemistry (IHC) revealed a low PD-L1 expression in MDA-MB-213 and H2009 xenografts that corresponds well to the clinical situation, PET showed high tumor uptakes (6.6 and 7.3% injected activity per gram of tissue (iA/g), respectively) for Ga-68-TRAP-WL12. Thus, this tracer has the potential for routine clinical PD-L1 PET imaging because it detects even very low PD-L1 expression densities with high sensitivity and may open an avenue to replace PD-L1 IHC of biopsies as the standard means to select potential responders for ICT.
Collapse
Affiliation(s)
- Neil Gerard Quigley
- Institute of Pathology, School of Medicine, Technische Universität München, Trogerstr. 18, München D-81675, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technische Universität München, Trogerstr. 18, München D-81675, Germany
| | - Stefanie Felicitas Färber
- Institute of Pathology, School of Medicine, Technische Universität München, Trogerstr. 18, München D-81675, Germany
| | - Frauke Richter
- Institute of Pathology, School of Medicine, Technische Universität München, Trogerstr. 18, München D-81675, Germany
| | - Wilko Weichert
- Institute of Pathology, School of Medicine, Technische Universität München, Trogerstr. 18, München D-81675, Germany
| | - Johannes Notni
- Institute of Pathology, School of Medicine, Technische Universität München, Trogerstr. 18, München D-81675, Germany
- TRIMT GmbH, Carl-Eschebach-Str. 7, Radeberg D-01454, Germany
| |
Collapse
|
10
|
Wang J, Seo JW, Kare AJ, Schneider M, Tumbale SK, Wu B, Raie MN, Pandrala M, Iagaru A, Brunsing RL, Charville GW, Park WG, Ferrara KW. Spatial transcriptomic analysis drives PET imaging of tight junction protein expression in pancreatic cancer theranostics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574209. [PMID: 38249519 PMCID: PMC10798647 DOI: 10.1101/2024.01.07.574209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
We apply spatial transcriptomics and proteomics to select pancreatic cancer surface receptor targets for molecular imaging and theranostics using an approach that can be applied to many cancers. Selected cancer surfaceome epithelial markers were spatially correlated and provided specific cancer localization, whereas the spatial correlation between cancer markers and immune- cell or fibroblast markers was low. While molecular imaging of cancer-associated fibroblasts and integrins has been proposed for pancreatic cancer, our data point to the tight junction protein claudin-4 as a theranostic target. Claudin-4 expression increased ∼16 fold in cancer as compared with normal pancreas, and the tight junction localization conferred low background for imaging in normal tissue. We developed a peptide-based molecular imaging agent targeted to claudin-4 with accumulation to ∼25% injected activity per cc (IA/cc) in metastases and ∼18% IA/cc in tumors. Our work motivates a new approach for data-driven selection of molecular targets.
Collapse
|
11
|
Quigley NG, Richter F, Kossatz S, Notni J. Complexity of αvβ6-integrin targeting RGD peptide trimers: emergence of non-specific binding by synergistic interaction. RSC Med Chem 2023; 14:2564-2573. [PMID: 38099056 PMCID: PMC10718521 DOI: 10.1039/d3md00365e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/13/2023] [Indexed: 12/17/2023] Open
Abstract
Multimerization is an established strategy to design bioactive macromolecules with enhanced avidity, which has been widely employed to increase the target-specific binding and uptake of imaging probes and pharmaceuticals. However, the factors governing the general biodistribution of multimeric probes are less well understood but are nonetheless decisive for their clinical application. We found that regiospecific exchange of phenylalanine by tyrosine (chemically equivalent to addition of single oxygen atoms) can have an unexpected, dramatic impact on the in vivo behavior of gallium-68 labeled αvβ6-integrin binding peptides trimers. For example, introduction of one and two Tyr, equivalent to just 1 and 2 additional oxygens and molecular weight increases of 0.38% and 0.76% for our >4 kDa constructs, reduced non-specific liver uptake by 50% and 72%, respectively. The observed effect did not correlate to established polarity measures such as log D, and generally defies explanation by reductionist approaches. We conclude that multimers should be viewed not just as molecular combinations of peptides whose properties simply add up, but as whole entities with higher intrinsic complexity and thus a strong tendency to exhibit newly emerged properties that, on principle, cannot be predicted from the characteristics of the monomers used.
Collapse
Affiliation(s)
- Neil Gerard Quigley
- Institute of Pathology, School of Medicine, Technische Universität München Trogerstr. 18 D-81675 München Germany
| | - Frauke Richter
- Institute of Pathology, School of Medicine, Technische Universität München Trogerstr. 18 D-81675 München Germany
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine, Technische Universität München Munich Germany
| | - Johannes Notni
- Institute of Pathology, School of Medicine, Technische Universität München Trogerstr. 18 D-81675 München Germany
- TRIMT GmbH Carl-Eschebach-Str. 7 D-01454 Radeberg Germany
| |
Collapse
|
12
|
Lawaetz M, Binderup T, Christensen A, Juhl K, Lelkaitis G, Lykke E, Knudsen L, von Buchwald C, Kjaer A. Urokinase-Type Plasminogen Activator Receptor (uPAR) Expression and [ 64Cu]Cu-DOTA-AE105 uPAR-PET/CT in Patient-Derived Xenograft Models of Oral Squamous Cell Carcinoma. Mol Imaging Biol 2023; 25:1034-1044. [PMID: 37749438 PMCID: PMC10728257 DOI: 10.1007/s11307-023-01858-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE [64Cu]Cu-DOTA-AE105 urokinase-type plasminogen activator receptor (uPAR)-PET/CT is a novel and promising imaging modality for cancer visualization, although it has not been tested in head and neck cancer patients nor in preclinical models that closely resemble these heterogenous tumors, i.e., patient-derived xenograft (PDX) models. The aim of the present study was to establish and validate oral squamous cell carcinoma (OSCC) PDX models and to evaluate [64Cu]Cu-uPAR-PET/CT for tumor imaging in these models. PROCEDURES PDX flank tumor models were established by engrafting tumor tissue from three patients with locally advanced OSCC into immunodeficient mice. [64Cu]Cu-DOTA-AE105 was injected in passage 2 (P2) mice, and [64Cu]Cu-uPAR-PET/CT was performed 1 h and 24 h after injection. After the last PET scan, all animals were euthanized, and tumors dissected for autoradiography and immunohistochemical (IHC) staining. RESULTS Three PDX models were established, and all of them showed histological stability and unchanged heterogenicity, uPAR expression, and Ki67 expression through passages. A significant correlation between uPAR expression and tumor growth was found. All tumors of all models (n=29) showed tumor uptake of [64Cu]Cu-DOTA-AE105. There was a clear visual concordance between the distribution of uPAR expression (IHC) and [64Cu]Cu-DOTA-AE105 uptake pattern in tumor tissue (autoradiography). No significant correlation was found between IHC (H-score) and PET-signal (SUVmax) (r=0.34; p=0.07). CONCLUSIONS OSCC PDX models in early passages histologically mimic donor tumors and could serve as a valuable platform for the development of uPAR-targeted imaging and therapeutic modalities. Furthermore, [64Cu]Cu-uPAR-PET/CT showed target- and tumor-specific uptake in OSCC PDX models demonstrating the diagnostic potential of this modality for OSCC patients.
Collapse
Affiliation(s)
- Mads Lawaetz
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Tina Binderup
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Christensen
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karina Juhl
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Giedrius Lelkaitis
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Eva Lykke
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Line Knudsen
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian von Buchwald
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Davarci G, Wängler C, Eberhardt K, Geppert C, Schirrmacher R, Freudenberg R, Pretze M, Wängler B. Radiosynthesis of Stable 198Au-Nanoparticles by Neutron Activation of α vβ 3-Specific AuNPs for Therapy of Tumor Angiogenesis. Pharmaceuticals (Basel) 2023; 16:1670. [PMID: 38139797 PMCID: PMC10747377 DOI: 10.3390/ph16121670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
This paper reports on the development of stable tumor-specific gold nanoparticles (AuNPs) activated by neutron irradiation as a therapeutic option for the treatment of cancer with high tumor angiogenesis. The AuNPs were designed with different mono- or dithiol-ligands and decorated with different amounts of Arg-Gly-Asp (RGD) peptides as a tumor-targeting vector for αvβ3 integrin, which is overexpressed in tissues with high tumor angiogenesis. The AuNPs were evaluated for avidity in vitro and showed favorable properties with respect to tumor cell accumulation. Furthermore, the therapeutic properties of the [198Au]AuNPs were evaluated in vitro on U87MG cells in terms of cell survival, suggesting that these [198Au]AuNPs are a useful basis for future therapeutic concepts.
Collapse
Affiliation(s)
- Güllü Davarci
- Molecular Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany;
| | - Carmen Wängler
- Biomedical Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany;
- Mannheim Institute for Intelligent Systems in Medicine MIISM, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Klaus Eberhardt
- Research Reactor TRIGA Mainz, Institute for Nuclear Chemistry, Johannes-Gutenberg-Universität Mainz, 55128 Mainz, Germany; (K.E.); (C.G.)
| | - Christopher Geppert
- Research Reactor TRIGA Mainz, Institute for Nuclear Chemistry, Johannes-Gutenberg-Universität Mainz, 55128 Mainz, Germany; (K.E.); (C.G.)
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Robert Freudenberg
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany;
| | - Marc Pretze
- Molecular Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany;
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany;
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany;
| |
Collapse
|
14
|
Bauer D, Cornejo MA, Hoang TT, Lewis JS, Zeglis BM. Click Chemistry and Radiochemistry: An Update. Bioconjug Chem 2023; 34:1925-1950. [PMID: 37737084 PMCID: PMC10655046 DOI: 10.1021/acs.bioconjchem.3c00286] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Indexed: 09/23/2023]
Abstract
The term "click chemistry" describes a class of organic transformations that were developed to make chemical synthesis simpler and easier, in essence allowing chemists to combine molecular subunits as if they were puzzle pieces. Over the last 25 years, the click chemistry toolbox has swelled from the canonical copper-catalyzed azide-alkyne cycloaddition to encompass an array of ligations, including bioorthogonal variants, such as the strain-promoted azide-alkyne cycloaddition and the inverse electron-demand Diels-Alder reaction. Without question, the rise of click chemistry has impacted all areas of chemical and biological science. Yet the unique traits of radiopharmaceutical chemistry have made it particularly fertile ground for this technology. In this update, we seek to provide a comprehensive guide to recent developments at the intersection of click chemistry and radiopharmaceutical chemistry and to illuminate several exciting trends in the field, including the use of emergent click transformations in radiosynthesis, the clinical translation of novel probes synthesized using click chemistry, and the advent of click-based in vivo pretargeting.
Collapse
Affiliation(s)
- David Bauer
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
| | - Mike A. Cornejo
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
| | - Tran T. Hoang
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Jason S. Lewis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York United States
| | - Brian M. Zeglis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York United States
- Ph.D.
Program
in Biochemistry, Graduate Center of the
City University of New York, New
York, New York 10016, United States
| |
Collapse
|
15
|
Pedrazzoli S. Currently Debated Topics on Surgical Treatment of Pancreatic Ductal Adenocarcinoma: A Narrative Review on Surgical Treatment of Borderline Resectable, Locally Advanced, and Synchronous or Metachronous Oligometastatic Tumor. J Clin Med 2023; 12:6461. [PMID: 37892599 PMCID: PMC10607532 DOI: 10.3390/jcm12206461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Previously considered inoperable patients (borderline resectable, locally advanced, synchronous oligometastatic or metachronous pancreatic adenocarcinoma (PDAC)) are starting to become resectable thanks to advances in chemo/radiotherapy and the reduction in operative mortality. METHODS This narrative review presents a chosen literature selection, giving a picture of the current state of treatment of these patients. RESULTS Neoadjuvant therapy (NAT) is generally recognized as the treatment of choice before surgery. However, despite the increased efficacy, the best pathological response is still limited to 10.9-27.9% of patients. There are still limited data on the selection of possible NAT responders and how to diagnose non-responders early. Multidetector computed tomography has high sensitivity and low specificity in evaluating resectability after NAT, limiting the resection rate of resectable patients. Ca 19-9 and Positron emission tomography are giving promising results. The prediction of early recurrence after a radical resection of synchronous or metachronous metastatic PDAC, thus identifying patients with poor prognosis and saving them from a resection of little benefit, is still ongoing, although some promising data are available. CONCLUSION In conclusion, high-level evidence demonstrating the benefit of the surgical treatment of such patients is still lacking and should not be performed outside of high-volume centers with interdisciplinary teams of surgeons and oncologists.
Collapse
|
16
|
Kimura RH, Iagaru A, Guo HH. Mini review of first-in-human integrin αvβ6 PET tracers. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1271208. [PMID: 39355045 PMCID: PMC11440954 DOI: 10.3389/fnume.2023.1271208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2024]
Abstract
This mini review of clinically-evaluated integrin αvβ6 PET-tracers reveals distinct differences in human-biodistribution patterns between linear peptides, including disulfide-stabilized formats, compared to head-to-tail cyclized peptides. All PET tracers mentioned in this mini review were able to delineate disease from normal tissues, but some αvβ6 PET tracers are better than others for particular clinical applications. Each αvβ6 PET tracer was validated for its ability to bind integrin αvβ6 with high affinity. However, all the head-to-tail cyclized peptide PET-tracers reviewed here did not accumulate in the GI-tract, in striking contrast to the linear and disulfide-bonded counterparts currently undergoing clinical evaluation in cancer, IPF and long COVID. Multiple independent investigators have reported the presence of β6 mRNA as well as αvβ6 protein in the GI-tract. Currently, there remains further need for biochemical, clinical, and structural data to satisfactorily explain the state-of-the-art in human αvβ6-imaging.
Collapse
Affiliation(s)
- Richard H. Kimura
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | | | | |
Collapse
|
17
|
Thakral P, Das SS, Dhiman S, Manda D, Virupakshappa CB, Malik D, Sen I. Validation of In-House Kit-Like Synthesis of 68Ga-Trivehexin and Its Biodistribution for Targeting the Integrin αvβ6 Expressing Tumors. Cancer Biother Radiopharm 2023; 38:468-474. [PMID: 37093129 DOI: 10.1089/cbr.2022.0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Background: Integrin αvβ6 has become an extremely promising theranostic target for precise delineation of fast-growing malignant cells in the recent years. The aim of the study was to validate the in-house kit-like synthesis of 68Ga-Trivehexin (integrin αvβ6) and to evaluate its uptake in patients with integrin αvβ6 expressing head and neck and pancreatic cancer. Materials and Methods: 68Ga-Trivehexin was synthesized by adding the variable amount of integrin αvβ6 (30-50 μg) to full volume (4-5 mL) Ga-68 in 0.05 M HCl and heating the reaction mixture at 90°C for 12 min at pH 3.5-4 to obtain the radiotracer with high radiochemical purity (RCP) and high yield. Quality control procedures were done to assess the RCP, stability, pyrogenicity and sterility of the radiotracer. 68Ga-Trivehexin was then administered in patients who met the eligibility criteria. Whole body PET/CT scans were done at variable time points post intravenous (i.v.) injection of 84-185 MBq of 68Ga-Trivehexin to assess its biodistribution and maximum uptake time. Results: 0.2 mCi of 68Ga/μg of Trivehexin at 90°C for 12 min was the optimal parameter to obtain 85%-88% of noncorrected yield and 99% of RCP. The 68Ga-Trivehexin showed in vitro stability upto 6 h and was also found to be sterile and pyrogen free. Intense radiotracer uptake was noticed in the tumor and no uptake was noticed in healthy tissues. PET/CT imaging at 60 min post injection was found to be the optimal time for imaging the tumors with 68Ga-Trivehexin. Conclusion: The protocol for in-house kit-like labeling of 68Ga-Trivehexin was safe, reproducible, and cost-effective. 68Ga-Trivehexin is an extremely promising agent for noninvasive molecular imaging of integrin αvβ6 expressing tumors.
Collapse
Affiliation(s)
- Parul Thakral
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurgaon, India
| | - Subha Shankar Das
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurgaon, India
| | - Shweta Dhiman
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurgaon, India
| | - Divya Manda
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurgaon, India
| | - C B Virupakshappa
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurgaon, India
| | - Dharmender Malik
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurgaon, India
| | - Ishita Sen
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurgaon, India
| |
Collapse
|
18
|
Liang C, Huang W, Zhang Y, Zhang D, An S, Wu Q, Zhao H, Wang C, Huang G, Wei W, Liu J. ImmunoPET Imaging of CD47 with VHH-Derived Tracers in Pancreatic Cancers. Mol Pharm 2023; 20:4184-4195. [PMID: 37403817 DOI: 10.1021/acs.molpharmaceut.3c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignant tumor with insidious onset, rapid progression, and a very poor prognosis. CD47 is a transmembrane protein associated with the development and poor prognosis of pancreatic cancer. The aim of this study was to evaluate the diagnostic value of novel immunoPET tracers targeting CD47 in preclinical pancreatic cancer models. The association of CD47 expression with pancreatic cancer was analyzed using the Gene Expression Profiling Interactive Analysis platform. Immunohistochemical analysis of tissue microarrays was performed to detect CD47 expression in PDAC. CD47 expression levels on BxPC-3 and AsPC-1 cell membranes were compared using flow cytometry. A VHH (C2)-targeting human CD47 and its albumin-binding derivative (ABDC2) were labeled with 68Ga or 89Zr, respectively. The developed tracers were evaluated by immuno-positron emission tomography (immunoPET) imaging in tumor-bearing nude and CD47-humanized mice. [68Ga]Ga-NOTA-C2 effectively detected tumor lesions in nude mice models and further showed confirmative imaging capacity in CD47-humanized PDAC models. Compared with [68Ga]Ga-NOTA-C2, [89Zr]Zr-DFO-ABDC2 had a significantly prolonged circulation time, increased tumor uptake, and reduced accumulation in the kidneys. Finally, biodistribution and histological staining confirmed the results of the immunoPET imaging studies. In this study, we validated that two novel VHH-derived molecular imaging tracers for immunoPET imaging ([68Ga]Ga-NOTA-C2 and [89Zr]Zr-DFO-ABDC2) can effectively annotate CD47 expression and diagnose PDAC in a target-specific manner. Clinical application of the imaging strategies may help select patients for CD47-targeted therapies and assess the response thereafter.
Collapse
Affiliation(s)
- Chenyi Liang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Di Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuxian An
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qianyun Wu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Haitao Zhao
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Cheng Wang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
19
|
Bauer D, Sarrett SM, Lewis JS, Zeglis BM. Click chemistry: a transformative technology in nuclear medicine. Nat Protoc 2023; 18:1659-1668. [PMID: 37100960 PMCID: PMC10293801 DOI: 10.1038/s41596-023-00825-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/10/2023] [Indexed: 04/28/2023]
Abstract
The 2022 Nobel Prize in Chemistry was awarded to Professors K. Barry Sharpless, Morten Meldal and Carolyn Bertozzi for their pioneering roles in the advent of click chemistry. Sharpless and Meldal worked to develop the canonical click reaction-the copper-catalyzed azide-alkyne cycloaddition-while Bertozzi opened new frontiers with the creation of the bioorthogonal strain-promoted azide-alkyne cycloaddition. These two reactions have revolutionized chemical and biological science by facilitating selective, high yielding, rapid and clean ligations and by providing unprecedented ways to manipulate living systems. Click chemistry has affected every aspect of chemistry and chemical biology, but few disciplines have been impacted as much as radiopharmaceutical chemistry. The importance of speed and selectivity in radiochemistry make it an almost tailor-made application of click chemistry. In this Perspective, we discuss the ways in which the copper-catalyzed azide-alkyne cycloaddition, the strain-promoted azide-alkyne cycloaddition and a handful of 'next-generation' click reactions have transformed radiopharmaceutical chemistry, both as tools for more efficient radiosyntheses and as linchpins of technologies that have the potential to improve nuclear medicine.
Collapse
Affiliation(s)
- David Bauer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samantha M Sarrett
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Chemistry, Hunter College of the City University of New York, New York, NY, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
| | - Brian M Zeglis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Chemistry, Hunter College of the City University of New York, New York, NY, USA.
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA.
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
20
|
Lawaetz M, Christensen A, Juhl K, Karnov K, Lelkaitis G, Kanstrup Fiehn AM, Kjaer A, von Buchwald C. Potential of uPAR, αvβ6 Integrin, and Tissue Factor as Targets for Molecular Imaging of Oral Squamous Cell Carcinoma: Evaluation of Nine Targets in Primary Tumors and Metastases by Immunohistochemistry. Int J Mol Sci 2023; 24:ijms24043853. [PMID: 36835265 PMCID: PMC9962929 DOI: 10.3390/ijms24043853] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
No clinically approved tumor-specific imaging agents for head and neck cancer are currently available. The identification of biomarkers with a high and homogenous expression in tumor tissue and minimal expression in normal tissue is essential for the development of new molecular imaging targets in head and neck cancer. We investigated the expression of nine imaging targets in both primary tumor and matched metastatic tissue of 41 patients with oral squamous cell carcinoma (OSCC) to assess their potential as targets for molecular imaging. The intensity, proportion, and homogeneity in the tumor and the reaction in neighboring non-cancerous tissue was scored. The intensity and proportion were multiplied to obtain a total immunohistochemical (IHC) score ranging from 0-12. The mean intensity in the tumor tissue and normal epithelium were compared. The expression rate was high for the urokinase-type plasminogen activator receptor (uPAR) (97%), integrin αvβ6 (97%), and tissue factor (86%) with a median total immunostaining score (interquartile range) for primary tumors of 6 (6-9), 12 (12-12), and 6 (2.5-7.5), respectively. For the uPAR and tissue factor, the mean staining intensity score was significantly higher in tumors compared to normal epithelium. The uPAR, integrin αvβ6, and tissue factor are promising imaging targets for OSCC primary tumors, lymph node metastases, and recurrences.
Collapse
Affiliation(s)
- Mads Lawaetz
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Correspondence:
| | - Anders Christensen
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Karina Juhl
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kirstine Karnov
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Giedrius Lelkaitis
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Anne-Marie Kanstrup Fiehn
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Christian von Buchwald
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| |
Collapse
|
21
|
Lian Y, Zeng S, Wen S, Zhao X, Fang C, Zeng N. Review and Application of Integrin Alpha v Beta 6 in the Diagnosis and Treatment of Cholangiocarcinoma and Pancreatic Ductal Adenocarcinoma. Technol Cancer Res Treat 2023; 22:15330338231189399. [PMID: 37525872 PMCID: PMC10395192 DOI: 10.1177/15330338231189399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 08/02/2023] Open
Abstract
Integrin Alpha v Beta 6 is expressed primarily in solid epithelial tumors, such as cholangiocarcinoma, pancreatic cancer, and colorectal cancer. It has been considered a potential and promising molecular marker for the early diagnosis and treatment of cancer. Cholangiocarcinoma and pancreatic ductal adenocarcinoma share genetic, histological, and pathophysiological similarities due to the shared embryonic origin of the bile duct and pancreas. These cancers share numerous clinicopathological characteristics, including growth pattern, poor response to conventional radiotherapy and chemotherapy, and poor prognosis. This review focuses on the role of integrin Alpha v Beta 6 in cancer progression. It addition, it reviews how the marker can be used in molecular imaging and therapeutic targets. We propose further research explorations and questions that need to be addressed. We conclude that integrin Alpha v Beta 6 may serve as a potential biomarker for cancer disease progression and prognosis.
Collapse
Affiliation(s)
- Yunyu Lian
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Silue Zeng
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Sai Wen
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Xingyang Zhao
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Chihua Fang
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Ning Zeng
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| |
Collapse
|
22
|
RGD Forever!-Past, Present, and Future of a 3-Letter-Code in Radiopharmacy and Life Sciences. Pharmaceuticals (Basel) 2022; 16:ph16010056. [PMID: 36678553 PMCID: PMC9866491 DOI: 10.3390/ph16010056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
"RGD" is frequently pictured as a ligand for αvβ3-integrin and useful for molecular targeting of angiogenesis-which is about as simplistic as the idea that laser beams are green or red and particularly useful for arming spaceships. There is, however, much more to RGD. In particular, targeting angiogenesis is likely not the most significant stronghold of RGD-comprising constructs. RGD is the one-letter code of a very short peptide sequence, arginine-lysine-aspartate, which is recognized by eight different integrins, namely, α(IIb)β3, α5β1, α8β1, and the five dimers that αv forms with β1, β3, β5, β6, and β8. These 8 RGD receptors form an own subset among the entire class of 24 known integrins, which furthermore comprises another three distinct groups (4 collagen receptors, 4 laminin receptors, and 8 leukocyte receptors). However, the 8 RGD-recognizing integrins are far from being alike. They do not even share the same tissue prevalences and functions, but are expressed on fundamentally different cell types and fulfill the most diverse biological tasks. For example, α(IIb)β3 is found on platelets and mediates thrombus formation, whereas αvβ6- and αvβ8-integrin are expressed on epithelial cells, activate TFG-β, and thus may promote cancer progression and invasion as well as fibrosis. Recent non-clinical experiments and clinical findings suggest that the highly specific expression of αvβ6-integrin by some carcinoma types, in combination with the availability of the corresponding small-molecule ligands, may open a multitude of new and promising avenues for improved cancer diagnosis and therapy, including, but not limited to, radiopharmaceutical approaches.
Collapse
|
23
|
Complexing the Oncolytic Adenoviruses Ad∆∆ and Ad-3∆-A20T with Cationic Nanoparticles Enhances Viral Infection and Spread in Prostate and Pancreatic Cancer Models. Int J Mol Sci 2022; 23:ijms23168884. [PMID: 36012152 PMCID: PMC9408166 DOI: 10.3390/ijms23168884] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Oncolytic adenoviruses (OAd) can be employed to efficiently eliminate cancer cells through multiple mechanisms of action including cell lysis and immune activation. Our OAds, AdΔΔ and Ad-3∆-A20T, selectively infect, replicate in, and kill adenocarcinoma cells with the added benefit of re-sensitising drug-resistant cells in preclinical models. Further modifications are required to enable systemic delivery in patients due to the rapid hepatic elimination and neutralisation by blood factors and antibodies. Here, we show data that support the use of coating OAds with gold nanoparticles (AuNPs) as a possible new method of virus modification to help augment tumour uptake. The pre-incubation of cationic AuNPs with AdΔΔ, Ad-3∆-A20T and wild type adenovirus (Ad5wt) was performed prior to infection of prostate/pancreatic cancer cell lines (22Rv, PC3, Panc04.03, PT45) and a pancreatic stellate cell line (PS1). Levels of viral infection, replication and cell viability were quantified 24–72 h post-infection in the presence and absence of AuNPs. Viral spread was assessed in organotypic cultures. The presence of AuNPs significantly increased the uptake of Ad∆∆, Ad-3∆-A20T and Ad5wt in all the cell lines tested (ranging from 1.5-fold to 40-fold), compared to virus alone, with the greatest uptake observed in PS1, a usually adenovirus-resistant cell line. Pre-coating the AdΔΔ and Ad-3∆-A20T with AuNPs also increased viral replication, leading to enhanced cell killing, with maximal effect in the most virus-insensitive cells (from 1.4-fold to 5-fold). To conclude, the electrostatic association of virus with cationic agents provides a new avenue to increase the dose in tumour lesions and potentially protect the virus from detrimental blood factor binding. Such an approach warrants further investigation for clinical translation.
Collapse
|
24
|
Huynh TT, Sreekumar S, Mpoy C, Rogers BE. Therapeutic Efficacy of 177Lu-Labeled A20FMDV2 Peptides Targeting ανβ6. Pharmaceuticals (Basel) 2022; 15:ph15020229. [PMID: 35215341 PMCID: PMC8876964 DOI: 10.3390/ph15020229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/27/2022] Open
Abstract
Integrin ανβ6 promotes migration and invasion of cancer cells, and its overexpression often correlates with poor survival. Therefore, targeting ανβ6 with radioactive peptides would be beneficial for cancer imaging and therapy. Previous studies have successfully developed radiotracers based on the peptide A20FMDV2 that showed good binding specificity for ανβ6. However, one concern of these ανβ6 integrin-targeting probes is that their rapid blood clearance and low tumor uptake would preclude them from being used for therapeutic purposes. In this study, albumin binders were used to increase tumor uptake for therapeutic applications while the non-albumin peptide was evaluated as a potential positron emission tomography (PET) imaging agent. All peptides used the DOTA chelator for radiolabeling with either 68Ga for imaging or 177Lu for therapy. PET imaging with [68Ga]Ga-DOTA-(PEG28)2-A20FMDV2 revealed specific tumor uptake in ανβ6-positive tumors. Albumin-binding peptides EB-DOTA-(PEG28)2-A20FMDV2 and IBA-DOTA-(PEG28)2-A20FMDV2 were radiolabeled with 177Lu. Biodistribution studies in normal mice showed longer blood circulation times for the albumin binding peptides compared to the non-albumin peptide. Therapy studies in mice demonstrated that both 177Lu-labeled albumin binding peptides resulted in significant tumor growth inhibition. We believe these are the first studies to demonstrate the therapeutic efficacy of a radiolabeled peptide targeting an ανβ6-positive tumor.
Collapse
Affiliation(s)
- Truc Thao Huynh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA; (T.T.H.); (S.S.); (C.M.)
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Sreeja Sreekumar
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA; (T.T.H.); (S.S.); (C.M.)
| | - Cedric Mpoy
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA; (T.T.H.); (S.S.); (C.M.)
| | - Buck Edward Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA; (T.T.H.); (S.S.); (C.M.)
- Correspondence:
| |
Collapse
|
25
|
Li Q, Lan T, Xie J, Lu Y, Zheng D, Su B. Integrin-Mediated Tumorigenesis and Its Therapeutic Applications. Front Oncol 2022; 12:812480. [PMID: 35223494 PMCID: PMC8873568 DOI: 10.3389/fonc.2022.812480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Integrins, a family of adhesion molecules generally exist on the cell surface, are essential for regulating cell growth and its function. As a bi-directional signaling molecule, they mediate cell-cell and cell-extracellular matrix interaction. The recognitions of their key roles in many human pathologies, including autoimmunity, thrombosis and neoplasia, have revealed their great potential as a therapeutic target. This paper focuses on the activation of integrins, the role of integrins in tumorigenesis and progression, and advances of integrin-dependent tumor therapeutics in recent years. It is expected that understanding function and signaling transmission will fully exploit potentialities of integrin as a novel target for tumors.
Collapse
Affiliation(s)
- Qingling Li
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Ting Lan
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jian Xie
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- *Correspondence: Dali Zheng, ; Bohua Su,
| | - Bohua Su
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- *Correspondence: Dali Zheng, ; Bohua Su,
| |
Collapse
|
26
|
Poels TT, Vuijk FA, de Geus-Oei LF, Vahrmeijer AL, Oprea-Lager DE, Swijnenburg RJ. Molecular Targeted Positron Emission Tomography Imaging and Radionuclide Therapy of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:6164. [PMID: 34944781 PMCID: PMC8699493 DOI: 10.3390/cancers13246164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an inauspicious prognosis, mainly due to difficulty in early detection of the disease by the current imaging modalities. The upcoming development of tumour-specific tracers provides an alternative solution for more accurate diagnostic imaging techniques for staging and therapy response monitoring. The future goal to strive for, in a patient with PDAC, should definitely be first to receive a diagnostic dose of an antibody labelled with a radionuclide and to subsequently receive a therapeutic dose of the same labelled antibody with curative intent. In the first part of this paper, we summarise the available evidence on tumour-targeted diagnostic tracers for molecular positron emission tomography (PET) imaging that have been tested in humans, together with their clinical indications. Tracers such as radiolabelled prostate-specific membrane antigen (PSMA)-in particular, 18F-labelled PSMA-already validated and successfully implemented in clinical practice for prostate cancer, also seem promising for PDAC. In the second part, we discuss the theranostic applications of these tumour-specific tracers. Although targeted radionuclide therapy is still in its infancy, lessons can already be learned from early publications focusing on dose fractioning and adding a radiosensitiser, such as gemcitabine.
Collapse
Affiliation(s)
- Thomas T. Poels
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| | - Floris A. Vuijk
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (F.A.V.); (A.L.V.)
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (F.A.V.); (A.L.V.)
| | - Daniela E. Oprea-Lager
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| | - Rutger-Jan Swijnenburg
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| |
Collapse
|
27
|
Kossatz S, Beer AJ, Notni J. It's Time to Shift the Paradigm: Translation and Clinical Application of Non-αvβ3 Integrin Targeting Radiopharmaceuticals. Cancers (Basel) 2021; 13:cancers13235958. [PMID: 34885066 PMCID: PMC8657165 DOI: 10.3390/cancers13235958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Cancer cells often present a different set of proteins on their surface than normal cells. This also applies to integrins, a class of 24 cell surface receptors which mainly are responsible for physically anchoring cells in tissues, but also fulfil a plethora of other functions. If a certain integrin is found on tumor cells but not on normal ones, radioactive molecules (named tracers) that specifically bind to this integrin will accumulate in the cancer lesion if injected into the blood stream. The emitted radiation can be detected from outside the body and allows for localization and thus, diagnosis, of cancer. Only one of the 24 integrins, the subtype αvβ3, has hitherto been thoroughly investigated in this context. We herein summarize the most recent, pertinent research on other integrins, and argue that some of these approaches might ultimately improve the clinical management of the most lethal cancers, such as pancreatic carcinoma. Abstract For almost the entire period of the last two decades, translational research in the area of integrin-targeting radiopharmaceuticals was strongly focused on the subtype αvβ3, owing to its expression on endothelial cells and its well-established role as a biomarker for, and promoter of, angiogenesis. Despite a large number of translated tracers and clinical studies, a clinical value of αvβ3-integrin imaging could not be defined yet. The focus of research has, thus, been moving slowly but steadily towards other integrin subtypes which are involved in a large variety of tumorigenic pathways. Peptidic and non-peptidic radioligands for the integrins α5β1, αvβ6, αvβ8, α6β1, α6β4, α3β1, α4β1, and αMβ2 were first synthesized and characterized preclinically. Some of these compounds, targeting the subtypes αvβ6, αvβ8, and α6β1/β4, were subsequently translated into humans during the last few years. αvβ6-Integrin has arguably attracted most attention because it is expressed by some of the cancers with the worst prognosis (above all, pancreatic ductal adenocarcinoma), which substantiates a clinical need for the respective theranostic agents. The receptor furthermore represents a biomarker for malignancy and invasiveness of carcinomas, as well as for fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF), and probably even for Sars-CoV-2 (COVID-19) related syndromes. Accordingly, the largest number of recent first-in-human applications has been reported for radiolabeled compounds targeting αvβ6-integrin. The results indicate a substantial clinical value, which might lead to a paradigm change and trigger the replacement of αvβ3 by αvβ6 as the most popular integrin in theranostics.
Collapse
Affiliation(s)
- Susanne Kossatz
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
- Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | | | - Johannes Notni
- Department of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- TRIMT GmbH, 01454 Radeberg, Germany
- Correspondence: ; Tel.: +49-89-4140-6075; Fax: +49-89-4140-6949
| |
Collapse
|
28
|
Steiger K, Quigley NG, Groll T, Richter F, Zierke MA, Beer AJ, Weichert W, Schwaiger M, Kossatz S, Notni J. There is a world beyond αvβ3-integrin: Multimeric ligands for imaging of the integrin subtypes αvβ6, αvβ8, αvβ3, and α5β1 by positron emission tomography. EJNMMI Res 2021; 11:106. [PMID: 34636990 PMCID: PMC8506476 DOI: 10.1186/s13550-021-00842-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In the context of nuclear medicine and theranostics, integrin-related research and development was, for most of the time, focused predominantly on 'RGD peptides' and the subtype αvβ3-integrin. However, there are no less than 24 known integrins, and peptides without the RGD sequence as well as non-peptidic ligands play an equally important role as selective integrin ligands. On the other hand, multimerization is a well-established method to increase the avidity of binding structures, but multimeric radiopharmaceuticals have not made their way into clinics yet. In this review, we describe how these aspects have been interwoven in the framework of the German Research Foundation's multi-group interdisciplinary funding scheme CRC 824, yielding a series of potent PET imaging agents for selective imaging of various integrin subtypes. RESULTS The gallium-68 chelator TRAP was utilized to elaborate symmetrical trimers of various peptidic and non-peptidic integrin ligands. Preclinical data suggested a high potential of the resulting Ga-68-tracers for PET-imaging of the integrins α5β1, αvβ8, αvβ6, and αvβ3. For the first three, we provide some additional immunohistochemistry data in human cancers, which suggest several future clinical applications. Finally, application of αvβ3- and αvβ6-integrin tracers in pancreatic carcinoma patients revealed that unlike αvβ3-targeted PET, αvβ6-integrin PET is not characterized by off-target uptake and thus, enables a substantially improved imaging of this type of cancer. CONCLUSIONS Novel radiopharmaceuticals targeting a number of different integrins, above all, αvβ6, have proven their clinical potential and will play an increasingly important role in future theranostics.
Collapse
Affiliation(s)
- Katja Steiger
- Institut Für Pathologie Und Pathologische Anatomie, Technische Universität München, Munich, Germany
| | - Neil Gerard Quigley
- Institut Für Pathologie Und Pathologische Anatomie, Technische Universität München, Munich, Germany
| | - Tanja Groll
- Institut Für Pathologie Und Pathologische Anatomie, Technische Universität München, Munich, Germany
| | - Frauke Richter
- Institut Für Pathologie Und Pathologische Anatomie, Technische Universität München, Munich, Germany
| | | | | | - Wilko Weichert
- Institut Für Pathologie Und Pathologische Anatomie, Technische Universität München, Munich, Germany
| | - Markus Schwaiger
- Klinik Für Nuklearmedizin Und Zentralinstitut Für Translationale Krebsforschung (TranslaTUM), Klinikum Rechts Der Isar der Technischen Universität München, Munich, Germany
| | - Susanne Kossatz
- Klinik Für Nuklearmedizin Und Zentralinstitut Für Translationale Krebsforschung (TranslaTUM), Klinikum Rechts Der Isar der Technischen Universität München, Munich, Germany
| | - Johannes Notni
- Institut Für Pathologie Und Pathologische Anatomie, Technische Universität München, Munich, Germany. .,Experimental Radiopharmacy, Clinic for Nuclear Medicine, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| |
Collapse
|