1
|
Budenkotte T, Apostolova I, Opfer R, Krüger J, Klutmann S, Buchert R. Automated identification of uncertain cases in deep learning-based classification of dopamine transporter SPECT to improve clinical utility and acceptance. Eur J Nucl Med Mol Imaging 2024; 51:1333-1344. [PMID: 38133688 PMCID: PMC10957699 DOI: 10.1007/s00259-023-06566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE Deep convolutional neural networks (CNN) are promising for automatic classification of dopamine transporter (DAT)-SPECT images. Reporting the certainty of CNN-based decisions is highly desired to flag cases that might be misclassified and, therefore, require particularly careful inspection by the user. The aim of the current study was to design and validate a CNN-based system for the identification of uncertain cases. METHODS A network ensemble (NE) combining five CNNs was trained for binary classification of [123I]FP-CIT DAT-SPECT images as "normal" or "neurodegeneration-typical reduction" with high accuracy (NE for classification, NEfC). An uncertainty detection module (UDM) was obtained by combining two additional NE, one trained for detection of "reduced" DAT-SPECT with high sensitivity, the other with high specificity. A case was considered "uncertain" if the "high sensitivity" NE and the "high specificity" NE disagreed. An internal "development" dataset of 1740 clinical DAT-SPECT images was used for training (n = 1250) and testing (n = 490). Two independent datasets with different image characteristics were used for testing only (n = 640, 645). Three established approaches for uncertainty detection were used for comparison (sigmoid, dropout, model averaging). RESULTS In the test data from the development dataset, the NEfC achieved 98.0% accuracy. 4.3% of all test cases were flagged as "uncertain" by the UDM: 2.5% of the correctly classified cases and 90% of the misclassified cases. NEfC accuracy among "certain" cases was 99.8%. The three comparison methods were less effective in labelling misclassified cases as "uncertain" (40-80%). These findings were confirmed in both additional test datasets. CONCLUSION The UDM allows reliable identification of uncertain [123I]FP-CIT SPECT with high risk of misclassification. We recommend that automatic classification of [123I]FP-CIT SPECT images is combined with an UDM to improve clinical utility and acceptance. The proposed UDM method ("high sensitivity versus high specificity") might be useful also for DAT imaging with other ligands and for other binary classification tasks.
Collapse
Affiliation(s)
- Thomas Budenkotte
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ivayla Apostolova
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | | | | | - Susanne Klutmann
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ralph Buchert
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
2
|
Champendal M, Müller H, Prior JO, Dos Reis CS. A scoping review of interpretability and explainability concerning artificial intelligence methods in medical imaging. Eur J Radiol 2023; 169:111159. [PMID: 37976760 DOI: 10.1016/j.ejrad.2023.111159] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE To review eXplainable Artificial Intelligence/(XAI) methods available for medical imaging/(MI). METHOD A scoping review was conducted following the Joanna Briggs Institute's methodology. The search was performed on Pubmed, Embase, Cinhal, Web of Science, BioRxiv, MedRxiv, and Google Scholar. Studies published in French and English after 2017 were included. Keyword combinations and descriptors related to explainability, and MI modalities were employed. Two independent reviewers screened abstracts, titles and full text, resolving differences through discussion. RESULTS 228 studies met the criteria. XAI publications are increasing, targeting MRI (n = 73), radiography (n = 47), CT (n = 46). Lung (n = 82) and brain (n = 74) pathologies, Covid-19 (n = 48), Alzheimer's disease (n = 25), brain tumors (n = 15) are the main pathologies explained. Explanations are presented visually (n = 186), numerically (n = 67), rule-based (n = 11), textually (n = 11), and example-based (n = 6). Commonly explained tasks include classification (n = 89), prediction (n = 47), diagnosis (n = 39), detection (n = 29), segmentation (n = 13), and image quality improvement (n = 6). The most frequently provided explanations were local (78.1 %), 5.7 % were global, and 16.2 % combined both local and global approaches. Post-hoc approaches were predominantly employed. The used terminology varied, sometimes indistinctively using explainable (n = 207), interpretable (n = 187), understandable (n = 112), transparent (n = 61), reliable (n = 31), and intelligible (n = 3). CONCLUSION The number of XAI publications in medical imaging is increasing, primarily focusing on applying XAI techniques to MRI, CT, and radiography for classifying and predicting lung and brain pathologies. Visual and numerical output formats are predominantly used. Terminology standardisation remains a challenge, as terms like "explainable" and "interpretable" are sometimes being used indistinctively. Future XAI development should consider user needs and perspectives.
Collapse
Affiliation(s)
- Mélanie Champendal
- School of Health Sciences HESAV, HES-SO, University of Applied Sciences Western Switzerland, Lausanne, CH, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne, CH, Switzerland.
| | - Henning Müller
- Informatics Institute, University of Applied Sciences Western Switzerland (HES-SO Valais) Sierre, CH, Switzerland; Medical faculty, University of Geneva, CH, Switzerland.
| | - John O Prior
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, CH, Switzerland; Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital (CHUV), Lausanne, CH, Switzerland.
| | - Cláudia Sá Dos Reis
- School of Health Sciences HESAV, HES-SO, University of Applied Sciences Western Switzerland, Lausanne, CH, Switzerland.
| |
Collapse
|
3
|
Zhao H, Zheng C, Zhang H, Rao M, Li Y, Fang D, Huang J, Zhang W, Yuan G. Diagnosis of thyroid disease using deep convolutional neural network models applied to thyroid scintigraphy images: a multicenter study. Front Endocrinol (Lausanne) 2023; 14:1224191. [PMID: 37635985 PMCID: PMC10453808 DOI: 10.3389/fendo.2023.1224191] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Objectives The aim of this study was to improve the diagnostic performance of nuclear medicine physicians using a deep convolutional neural network (DCNN) model and validate the results with two multicenter datasets for thyroid disease by analyzing clinical single-photon emission computed tomography (SPECT) image data. Methods In this multicenter retrospective study, 3194 SPECT thyroid images were collected for model training (n=2067), internal validation (n=514) and external validation (n=613). First, four pretrained DCNN models (AlexNet, ShuffleNetV2, MobileNetV3 and ResNet-34) for were tested multiple medical image classification of thyroid disease types (i.e., Graves' disease, subacute thyroiditis, thyroid tumor and normal thyroid). The best performing model was then subjected to fivefold cross-validation to further assess its performance, and the diagnostic performance of this model was compared with that of junior and senior nuclear medicine physicians. Finally, class-specific attentional regions were visualized with attention heatmaps using gradient-weighted class activation mapping. Results Each of the four pretrained neural networks attained an overall accuracy of more than 0.85 for the classification of SPECT thyroid images. The improved ResNet-34 model performed best, with an accuracy of 0.944. For the internal validation set, the ResNet-34 model showed higher accuracy (p < 0.001) when compared to that of the senior nuclear medicine physician, with an improvement of nearly 10%. Our model achieved an overall accuracy of 0.931 for the external dataset, a significantly higher accuracy than that of the senior physician (0.931 vs. 0.868, p < 0.001). Conclusion The DCNN-based model performed well in terms of diagnosing thyroid scintillation images. The DCNN model showed higher sensitivity and greater specificity in identifying Graves' disease, subacute thyroiditis, and thyroid tumors compared to those of nuclear medicine physicians, illustrating the feasibility of deep learning models to improve the diagnostic efficiency for assisting clinicians.
Collapse
|
4
|
Nazir S, Dickson DM, Akram MU. Survey of explainable artificial intelligence techniques for biomedical imaging with deep neural networks. Comput Biol Med 2023; 156:106668. [PMID: 36863192 DOI: 10.1016/j.compbiomed.2023.106668] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 01/12/2023] [Accepted: 02/10/2023] [Indexed: 02/21/2023]
Abstract
Artificial Intelligence (AI) techniques of deep learning have revolutionized the disease diagnosis with their outstanding image classification performance. In spite of the outstanding results, the widespread adoption of these techniques in clinical practice is still taking place at a moderate pace. One of the major hindrance is that a trained Deep Neural Networks (DNN) model provides a prediction, but questions about why and how that prediction was made remain unanswered. This linkage is of utmost importance for the regulated healthcare domain to increase the trust in the automated diagnosis system by the practitioners, patients and other stakeholders. The application of deep learning for medical imaging has to be interpreted with caution due to the health and safety concerns similar to blame attribution in the case of an accident involving autonomous cars. The consequences of both a false positive and false negative cases are far reaching for patients' welfare and cannot be ignored. This is exacerbated by the fact that the state-of-the-art deep learning algorithms comprise of complex interconnected structures, millions of parameters, and a 'black box' nature, offering little understanding of their inner working unlike the traditional machine learning algorithms. Explainable AI (XAI) techniques help to understand model predictions which help develop trust in the system, accelerate the disease diagnosis, and meet adherence to regulatory requirements. This survey provides a comprehensive review of the promising field of XAI for biomedical imaging diagnostics. We also provide a categorization of the XAI techniques, discuss the open challenges, and provide future directions for XAI which would be of interest to clinicians, regulators and model developers.
Collapse
Affiliation(s)
- Sajid Nazir
- Department of Computing, Glasgow Caledonian University, Glasgow, UK.
| | - Diane M Dickson
- Department of Podiatry and Radiography, Research Centre for Health, Glasgow Caledonian University, Glasgow, UK
| | - Muhammad Usman Akram
- Computer and Software Engineering Department, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
5
|
Apostolova I, Schiebler T, Lange C, Mathies FL, Lehnert W, Klutmann S, Buchert R. Stereotactical normalization with multiple templates representative of normal and Parkinson-typical reduction of striatal uptake improves the discriminative power of automatic semi-quantitative analysis in dopamine transporter SPECT. EJNMMI Phys 2023; 10:25. [PMID: 36991245 DOI: 10.1186/s40658-023-00544-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND The specific binding ratio (SBR) of 123I-FP-CIT in the putamen is widely used to support the interpretation of dopamine transporter (DAT) SPECT. Automatic methods for computation of the putamen SBR often include stereotactical normalization of the individual DAT-SPECT image to an anatomical standard space. This study compared using a single 123I-FP-CIT template image as target for stereotactical normalization versus multiple templates representative of normal and different levels of Parkinson-typical reduction of striatal 123I-FP-CIT uptake. METHODS 1702 clinical 123I-FP-CIT SPECT images were stereotactically normalized (affine) to the anatomical space of the Montreal Neurological Institute (MNI) with SPM12 either using a single custom-made 123I-FP-CIT template representative of normal striatal uptake or using eight different templates representative of normal and different levels of Parkinson-typical reduction of striatal FP-CIT uptake with and without attenuation and scatter correction. In the latter case, SPM finds the linear combination of the multiple templates that best matches the patient's image. The putamen SBR was obtained using hottest voxels analysis in large unilateral regions-of-interest predefined in MNI space. The histogram of the putamen SBR in the whole sample was fitted by the sum of two Gaussians. The power to differentiate between reduced and normal SBR was estimated by the effect size of the distance between the two Gaussians computed as the differences between their mean values scaled to their pooled standard deviation. RESULTS The effect size of the distance between the two Gaussians was 3.83 with the single template versus 3.96 with multiple templates for stereotactical normalization. CONCLUSIONS Multiple templates representative of normal and different levels of Parkinson-typical reduction for stereotactical normalization of DAT-SPECT might provide improved separation between normal and reduced putamen SBR that could result in slightly improved power for the detection of nigrostriatal degeneration.
Collapse
Affiliation(s)
- Ivayla Apostolova
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Tassilo Schiebler
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Catharina Lange
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Franziska Lara Mathies
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Wencke Lehnert
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Susanne Klutmann
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ralph Buchert
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
6
|
Chiu PY, Hou PN, Hung GU, Hsieh TC, Chan PK, Kao CH. Real-World Testing of a Machine Learning-Derived Visual Scale for Tc99m TRODAT-1 for Diagnosing Lewy Body Disease: Comparison with a Traditional Approach Using Semiquantification. J Pers Med 2022; 12:1369. [PMID: 36143154 PMCID: PMC9505116 DOI: 10.3390/jpm12091369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives: Abnormal dopamine transporter (DAT) uptake is an important biomarker for diagnosing Lewy body disease (LBD), including Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). We evaluated a machine learning-derived visual scale (ML-VS) for Tc99m TRODAT-1 from one center and compared it with the striatal/background ratio (SBR) using semiquantification for diagnosing LBD in two other centers. Patients and Methods: This was a retrospective analysis of data from a history-based computerized dementia diagnostic system. MT-VS and SBR among normal controls (NCs) and patients with PD, PD with dementia (PDD), DLB, or Alzheimer’s disease (AD) were compared. Results: We included 715 individuals, including 122 NCs, 286 patients with PD, 40 with AD, 179 with DLB, and 88 with PDD. Compared with NCs, patients with PD exhibited a significantly higher prevalence of abnormal DAT uptake using all methods. Compared with the AD group, PDD and DLB groups exhibited a significantly higher prevalence of abnormal DAT uptake using all methods. The distribution of ML-VS was significantly different between PD and NC, DLB and AD, and PDD and AD groups (all p < 0.001). The correlation coefficient of ML-VS/SBR in all participants was 0.679. Conclusions: The ML-VS designed in one center is useful for differentiating PD from NC, DLB from AD, and PDD from AD in other centers. Its correlation with traditional approaches using different scanning machines is also acceptable. Future studies should develop models using data pools from multiple centers for increasing diagnostic accuracy.
Collapse
Affiliation(s)
- Pai-Yi Chiu
- Department of Neurology, Show Chwan Memorial Hospital, Changhua 50008, Taiwan
- Department of Applied Mathematics, Tunghai University, Taichung 40704, Taiwan
| | - Po-Nien Hou
- Department of Nuclear Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua 50544, Taiwan
| | - Guang-Uei Hung
- Department of Nuclear Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua 50544, Taiwan
| | - Te-Chun Hsieh
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Biomedical Imaging and Radiological Science, Elite Campus, China Medical University, Taichung 40402, Taiwan
| | - Pak-Ki Chan
- Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chia-Hung Kao
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung 40402, Taiwan
- Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, Elite Campus, School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
7
|
An Explainable Classification Method of SPECT Myocardial Perfusion Images in Nuclear Cardiology Using Deep Learning and Grad-CAM. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background: This study targets the development of an explainable deep learning methodology for the automatic classification of coronary artery disease, utilizing SPECT MPI images. Deep learning is currently judged as non-transparent due to the model’s complex non-linear structure, and thus, it is considered a «black box», making it hard to gain a comprehensive understanding of its internal processes and explain its behavior. Existing explainable artificial intelligence tools can provide insights into the internal functionality of deep learning and especially of convolutional neural networks, allowing transparency and interpretation. Methods: This study seeks to address the identification of patients’ CAD status (infarction, ischemia or normal) by developing an explainable deep learning pipeline in the form of a handcrafted convolutional neural network. The proposed RGB-CNN model utilizes various pre- and post-processing tools and deploys a state-of-the-art explainability tool to produce more interpretable predictions in decision making. The dataset includes cases from 625 patients as stress and rest representations, comprising 127 infarction, 241 ischemic, and 257 normal cases previously classified by a doctor. The imaging dataset was split into 20% for testing and 80% for training, of which 15% was further used for validation purposes. Data augmentation was employed to increase generalization. The efficacy of the well-known Grad-CAM-based color visualization approach was also evaluated in this research to provide predictions with interpretability in the detection of infarction and ischemia in SPECT MPI images, counterbalancing any lack of rationale in the results extracted by the CNNs. Results: The proposed model achieved 93.3% accuracy and 94.58% AUC, demonstrating efficient performance and stability. Grad-CAM has shown to be a valuable tool for explaining CNN-based judgments in SPECT MPI images, allowing nuclear physicians to make fast and confident judgments by using the visual explanations offered. Conclusions: Prediction results indicate a robust and efficient model based on the deep learning methodology which is proposed for CAD diagnosis in nuclear medicine.
Collapse
|
8
|
Thakur M, Kuresan H, Dhanalakshmi S, Lai KW, Wu X. Soft Attention Based DenseNet Model for Parkinson’s Disease Classification Using SPECT Images. Front Aging Neurosci 2022; 14:908143. [PMID: 35912076 PMCID: PMC9326232 DOI: 10.3389/fnagi.2022.908143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Deep learning algorithms have long been involved in the diagnosis of severe neurological disorders that interfere with patients’ everyday tasks, such as Parkinson’s disease (PD). The most effective imaging modality for detecting the condition is DaTscan, a variety of single-photon emission computerized tomography (SPECT) imaging method. The goal is to create a convolutional neural network that can specifically identify the region of interest following feature extraction. Methods The study comprised a total of 1,390 DaTscan imaging groups with PD and normal classes. The architecture of DenseNet-121 is leveraged with a soft-attention block added before the final classification layer. For visually analyzing the region of interest (ROI) from the images after classification, Soft Attention Maps and feature map representation are used. Outcomes The model obtains an overall accuracy of 99.2% and AUC-ROC score 99%. A sensitivity of 99.2%, specificity of 99.4% and f1-score of 99.1% is achieved that surpasses all prior research findings. Soft-attention map and feature map representation aid in highlighting the ROI, with a specific attention on the putamen and caudate regions. Conclusion With the deep learning framework adopted, DaTscan images reveal the putamen and caudate areas of the brain, which aid in the distinguishing of normal and PD cohorts with high accuracy and sensitivity.
Collapse
Affiliation(s)
- Mahima Thakur
- Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Harisudha Kuresan
- Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Samiappan Dhanalakshmi
- Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Chennai, India
- *Correspondence: Samiappan Dhanalakshmi,
| | - Khin Wee Lai
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- Khin Wee Lai,
| | - Xiang Wu
- School of Medical Information Engineering, Xuzhou Medical University, Xuzhou, China
- Xiang Wu,
| |
Collapse
|
9
|
Papandrianos NI, Feleki A, Papageorgiou EI, Martini C. Deep Learning-Based Automated Diagnosis for Coronary Artery Disease Using SPECT-MPI Images. J Clin Med 2022; 11:jcm11133918. [PMID: 35807203 PMCID: PMC9267142 DOI: 10.3390/jcm11133918] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is a long-established estimation methodology for medical diagnosis using image classification illustrating conditions in coronary artery disease. For these procedures, convolutional neural networks have proven to be very beneficial in achieving near-optimal accuracy for the automatic classification of SPECT images. (2) Methods: This research addresses the supervised learning-based ideal observer image classification utilizing an RGB-CNN model in heart images to diagnose CAD. For comparison purposes, we employ VGG-16 and DenseNet-121 pre-trained networks that are indulged in an image dataset representing stress and rest mode heart states acquired by SPECT. In experimentally evaluating the method, we explore a wide repertoire of deep learning network setups in conjunction with various robust evaluation and exploitation metrics. Additionally, to overcome the image dataset cardinality restrictions, we take advantage of the data augmentation technique expanding the set into an adequate number. Further evaluation of the model was performed via 10-fold cross-validation to ensure our model's reliability. (3) Results: The proposed RGB-CNN model achieved an accuracy of 91.86%, while VGG-16 and DenseNet-121 reached 88.54% and 86.11%, respectively. (4) Conclusions: The abovementioned experiments verify that the newly developed deep learning models may be of great assistance in nuclear medicine and clinical decision-making.
Collapse
Affiliation(s)
- Nikolaos I. Papandrianos
- Department of Energy Systems, University of Thessaly, Gaiopolis Campus, 41500 Larisa, Greece; (A.F.); (E.I.P.)
- Correspondence: ; Tel.: +30-693-6064613
| | - Anna Feleki
- Department of Energy Systems, University of Thessaly, Gaiopolis Campus, 41500 Larisa, Greece; (A.F.); (E.I.P.)
| | - Elpiniki I. Papageorgiou
- Department of Energy Systems, University of Thessaly, Gaiopolis Campus, 41500 Larisa, Greece; (A.F.); (E.I.P.)
| | - Chiara Martini
- Department of Diagnostic, Parma University Hospital, Via Gramsci 14, 43125 Parma, Italy;
- Department of Medicine and Surgery, Section of Radiology, University of Parma, Maggiore Hospital, Via Gramsci 14, 43125 Parma, Italy
| |
Collapse
|
10
|
Huang N, Liu P, Yan Y, Xu L, Huang Y, Fu G, Lan Y, Yang S, Song J, Li Y. Predicting the Risk of Dental Implant Loss Using Deep Learning. J Clin Periodontol 2022; 49:872-883. [PMID: 35734921 DOI: 10.1111/jcpe.13689] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/15/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
Abstract
AIM To investigate the feasibility of predicting dental implant loss risk with deep learning (DL) based on preoperative cone-beam computed tomography. MATERIALS AND METHODS Six hundred and three patients who underwent implant surgery (279 high-risk patients who did and 324 low-risk patients who did not experience implant loss within 5 years) from January 2012 to January 2020 were enrolled. Three models, a logistic regression clinical model (CM) based on clinical features, a DL model based on radiography features, and an integrated model (IM) developed by combining CM with DL, were developed to predict the 5-year implant loss risk. The area under the receiver operating characteristic curve (AUC) was used to evaluate the model performance. Time to implant loss was considered for both groups, and Kaplan-Meier curves were created and compared by the log-rank test. RESULTS The IM exhibited the best performance in predicting implant loss risk [AUC = 0.90, 95% confidence interval (CI) 0.84-0.95], followed by the DL model (AUC = 0.87, 95% CI 0.80-0.92) and the CM (AUC = 0.72, 95% CI 0.63-0.79). CONCLUSION Our study offers preliminary evidence that both the DL model and IM performed well in predicting implant fate within 5 years and thus may greatly facilitate implant practitioners in assessing preoperative risks.
Collapse
Affiliation(s)
- Nannan Huang
- Stomatological Hospital of Chongqing Medical University, Chongqing, P.R China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, P.R China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P.R China
| | - Peng Liu
- Stomatological Hospital of Chongqing Medical University, Chongqing, P.R China
| | - Youlong Yan
- Stomatological Hospital of Chongqing Medical University, Chongqing, P.R China
| | - Ling Xu
- Stomatological Hospital of Chongqing Medical University, Chongqing, P.R China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, P.R China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P.R China
| | - Yuanding Huang
- Stomatological Hospital of Chongqing Medical University, Chongqing, P.R China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, P.R China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P.R China
| | - Gang Fu
- Stomatological Hospital of Chongqing Medical University, Chongqing, P.R China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, P.R China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P.R China
| | - Yiqing Lan
- Stomatological Hospital of Chongqing Medical University, Chongqing, P.R China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, P.R China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P.R China
| | - Sheng Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing, P.R China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, P.R China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P.R China
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Chongqing, P.R China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, P.R China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P.R China
| | - Yuzhou Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, P.R China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, P.R China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P.R China
| |
Collapse
|
11
|
Decoding the dopamine transporter imaging for the differential diagnosis of parkinsonism using deep learning. Eur J Nucl Med Mol Imaging 2022; 49:2798-2811. [PMID: 35588012 PMCID: PMC9206631 DOI: 10.1007/s00259-022-05804-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
Purpose
This work attempts to decode the discriminative information in dopamine transporter (DAT) imaging using deep learning for the differential diagnosis of parkinsonism. Methods This study involved 1017 subjects who underwent DAT PET imaging ([11C]CFT) including 43 healthy subjects and 974 parkinsonian patients with idiopathic Parkinson’s disease (IPD), multiple system atrophy (MSA) or progressive supranuclear palsy (PSP). We developed a 3D deep convolutional neural network to learn distinguishable DAT features for the differential diagnosis of parkinsonism. A full-gradient saliency map approach was employed to investigate the functional basis related to the decision mechanism of the network. Furthermore, deep-learning-guided radiomics features and quantitative analysis were compared with their conventional counterparts to further interpret the performance of deep learning. Results The proposed network achieved area under the curve of 0.953 (sensitivity 87.7%, specificity 93.2%), 0.948 (sensitivity 93.7%, specificity 97.5%), and 0.900 (sensitivity 81.5%, specificity 93.7%) in the cross-validation, together with sensitivity of 90.7%, 84.1%, 78.6% and specificity of 88.4%, 97.5% 93.3% in the blind test for the differential diagnosis of IPD, MSA and PSP, respectively. The saliency map demonstrated the most contributed areas determining the diagnosis located at parkinsonism-related regions, e.g., putamen, caudate and midbrain. The deep-learning-guided binding ratios showed significant differences among IPD, MSA and PSP groups (P < 0.001), while the conventional putamen and caudate binding ratios had no significant difference between IPD and MSA (P = 0.24 and P = 0.30). Furthermore, compared to conventional radiomics features, there existed average above 78.1% more deep-learning-guided radiomics features that had significant differences among IPD, MSA and PSP. Conclusion This study suggested the developed deep neural network can decode in-depth information from DAT and showed potential to assist the differential diagnosis of parkinsonism. The functional regions supporting the diagnosis decision were generally consistent with known parkinsonian pathology but provided more specific guidance for feature selection and quantitative analysis. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-022-05804-x.
Collapse
|