1
|
Zhou W, Franc BL, DeMartini WB, Rosen EL. Estrogen Receptor-targeted PET Imaging for Breast Cancer. Radiology 2024; 312:e240315. [PMID: 39136565 PMCID: PMC11366667 DOI: 10.1148/radiol.240315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 09/04/2024]
Abstract
Two complementary patient cases are presented to highlight the importance of estrogen receptor (ER)-targeting imaging in treatment planning and selection for endocrine therapy in breast cancer patients. This article will discuss the radiopharmaceuticals and biology, imaging interpretation, and current clinical applications of ER-targeting imaging using fluorine 18 fluoroestradiol PET.
Collapse
Affiliation(s)
- Wenhui Zhou
- From the Department of Radiology, Stanford University Medical Center,
300 Pasteur Dr, H1MD330, MC 5621, Stanford, CA 94305
| | - Benjamin L. Franc
- From the Department of Radiology, Stanford University Medical Center,
300 Pasteur Dr, H1MD330, MC 5621, Stanford, CA 94305
| | - Wendy B. DeMartini
- From the Department of Radiology, Stanford University Medical Center,
300 Pasteur Dr, H1MD330, MC 5621, Stanford, CA 94305
| | - Eric L. Rosen
- From the Department of Radiology, Stanford University Medical Center,
300 Pasteur Dr, H1MD330, MC 5621, Stanford, CA 94305
| |
Collapse
|
2
|
Li T, Zhang J, Yan Y, Tan M, Chen Y. Applications of FAPI PET/CT in the diagnosis and treatment of breast and the most common gynecologic malignancies: a literature review. Front Oncol 2024; 14:1358070. [PMID: 38505595 PMCID: PMC10949888 DOI: 10.3389/fonc.2024.1358070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
The fibroblast activating protein (FAP) is expressed by some fibroblasts found in healthy tissues. However, FAP is overexpressed in more than 90% of epithelial tumors, including breast and gynecological tumors. As a result, the FAP ligand could be used as a target for diagnosis and treatment purposes. Positron emission tomography/computed tomography (PET/CT) is a hybrid imaging technique commonly used to locate and assess the tumor's molecular and metabolic functions. PET imaging involves the injection of a radiotracer that tends to accumulate more in metabolically active lesions such as cancer. Several radiotracers have been developed to target FAP in PET/CT imaging, such as the fibroblast-activation protein inhibitor (FAPI). These tracers bind to FAP with high specificity and affinity, allowing for the non-invasive detection and quantification of FAP expression in tumors. In this review, we discussed the applications of FAPI PET/CT in the diagnosis and treatment of breast and the most common gynecologic malignancies. Radiolabeled FAPI can improve the detection, staging, and assessment of treatment response in breast and the most common gynecologic malignancies, but the problem with normal hormone-responsive organs remains insurmountable. Compared to the diagnostic applications of FAPI, further research is needed for future therapeutic applications.
Collapse
Affiliation(s)
- Tengfei Li
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Jintao Zhang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuanzhuo Yan
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Min Tan
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Ndlovu H, Lawal IO, Mokoala KMG, Sathekge MM. Imaging Molecular Targets and Metabolic Pathways in Breast Cancer for Improved Clinical Management: Current Practice and Future Perspectives. Int J Mol Sci 2024; 25:1575. [PMID: 38338854 PMCID: PMC10855575 DOI: 10.3390/ijms25031575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and leading cause of cancer-related deaths worldwide. Timely decision-making that enables implementation of the most appropriate therapy or therapies is essential for achieving the best clinical outcomes in breast cancer. While clinicopathologic characteristics and immunohistochemistry have traditionally been used in decision-making, these clinical and laboratory parameters may be difficult to ascertain or be equivocal due to tumor heterogeneity. Tumor heterogeneity is described as a phenomenon characterized by spatial or temporal phenotypic variations in tumor characteristics. Spatial variations occur within tumor lesions or between lesions at a single time point while temporal variations are seen as tumor lesions evolve with time. Due to limitations associated with immunohistochemistry (which requires invasive biopsies), whole-body molecular imaging tools such as standard-of-care [18F]FDG and [18F]FES PET/CT are indispensable in addressing this conundrum. Despite their proven utility, these standard-of-care imaging methods are often unable to image a myriad of other molecular pathways associated with breast cancer. This has stimulated interest in the development of novel radiopharmaceuticals targeting other molecular pathways and processes. In this review, we discuss validated and potential roles of these standard-of-care and novel molecular approaches. These approaches' relationships with patient clinicopathologic and immunohistochemical characteristics as well as their influence on patient management will be discussed in greater detail. This paper will also introduce and discuss the potential utility of novel PARP inhibitor-based radiopharmaceuticals as non-invasive biomarkers of PARP expression/upregulation.
Collapse
Affiliation(s)
- Honest Ndlovu
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| | - Ismaheel O. Lawal
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA
| | - Kgomotso M. G. Mokoala
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| | - Mike M. Sathekge
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| |
Collapse
|
4
|
O'Brien SR, Ward R, Wu GG, Bagheri S, Kiani M, Challa A, Ulaner GA, Pantel AR, McDonald ES. Other Novel PET Radiotracers for Breast Cancer. PET Clin 2023; 18:557-566. [PMID: 37369615 DOI: 10.1016/j.cpet.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Many novel PET radiotracers have demonstrated potential use in breast cancer. Although not currently approved for clinical use in the breast cancer population, these innovative imaging agents may one day play a role in the diagnosis, staging, management, and even treatment of breast cancer.
Collapse
Affiliation(s)
- Sophia R O'Brien
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | - Rebecca Ward
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Grace G Wu
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Sina Bagheri
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA. https://twitter.com/Sina_Bagherii
| | - Mahsa Kiani
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Ashrit Challa
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Gary A Ulaner
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Irvine, CA 92618, USA; Radiology and Translational Genomics, University of Southern California, Los Angeles, CA 90033, USA
| | - Austin R Pantel
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Elizabeth S McDonald
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Chen Y, Guo ZN, He RQ, Huang ZG, Luo JY, Tang W, Huang SN, Chen G. How has the field of metastatic breast cancer in bones evolved over the past 22 years? J Bone Oncol 2023; 40:100480. [PMID: 37251089 PMCID: PMC10209145 DOI: 10.1016/j.jbo.2023.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/19/2023] [Accepted: 04/08/2023] [Indexed: 05/31/2023] Open
Abstract
Background Although knowledge on metastatic breast cancer in bones (MBCB) has increased rapidly over the past 22 years, a comprehensive and objective bibliometric analysis is still lacking. Materials and methods We used R, VOSviewer, and Citespace software to conduct a bibliometric analysis of 5,497 papers on MBCB from the Web of Science Core Collection (WOSCC) using author, institution, country/region, citation, and keyword indicators. Results A general strong sense of scholarly collaboration was noted in the MBCB field at the author, research institution, and country/region levels. We discovered some outstanding authors and highly productive institutions, but with less collaboration with other academic groups. Unbalanced and uncoordinated developments were observed among countries/regions in the field of MBCB research. We also found that by using various indicators and applying different analysis methods to them, we were able to broadly identify primary clinical practices, relevant clinical experiments, and directions for bioinformatics regarding MBCB, changes over the past 22 years, and current challenges in the field. The development of knowledge on MBCB is progressing greatly; however, MBCB is still incurable. Conclusion This study is the first to use bibliometrics to provide an overall analysis of the scientific output of MBCB studies. Palliative therapies for MBCB are mostly in a mature state. However, research on the molecular mechanisms and immune response to tumors related to the development of treatments to cure MBCB remains relatively immature. Therefore, further research should be undertaken in this area.
Collapse
Affiliation(s)
- Yi Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Zhen-Ning Guo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Jia-Yuan Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Wei Tang
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, No. 71 Hedi Rd, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, No. 71 Hedi Rd, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| |
Collapse
|
6
|
PET/CT with Fibroblast Activation Protein Inhibitors in Breast Cancer: Diagnostic and Theranostic Application-A Literature Review. Cancers (Basel) 2023; 15:cancers15030908. [PMID: 36765866 PMCID: PMC9913570 DOI: 10.3390/cancers15030908] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Growing studies have recently reported on the promising application of radiolabeled-fibroblast activation protein inhibitors (FAPIs) as diagnostic and therapeutic agents in various oncological populations. To exclusively evaluate the current evidence on the diagnostic and therapeutic role of FAPI radiotracers in patients with breast cancer (BC), a narrative review of the available literature was performed. A search algorithm from PubMed/MEDLINE, based on the combination of "PET" OR "positron emission tomography" and "FAPI" and "cancer", with a last update in February 2022, was applied. From 233 identified articles, 33 studies conducted in BC patients and with available data on PET imaging or radiolabeled-FAPI therapy were finally considered, for a total of 191 patients. Despite some clinical and methodological heterogeneity among the reviewed articles, 68Ga-FAPI PET/CT emerges as a valuable diagnostic tool in BC patients both at staging and restaging, also demonstrating several technical advantages and an overall better performance than 18F-FDG, especially in histotypes with well-known low 18F-FDG avidity. Moreover, although with still limited clinical evidence in BC, radiolabeled FAPIs emerge as promising therapeutic agents in a theranostic perspective, increasing the possibility of more personalized treatments. From these results, future research directions on FAPI radiotracers application in BC patients are suggested.
Collapse
|