1
|
Vashistha R, Vegh V, Moradi H, Hammond A, O’Brien K, Reutens D. Modular GAN: positron emission tomography image reconstruction using two generative adversarial networks. FRONTIERS IN RADIOLOGY 2024; 4:1466498. [PMID: 39328298 PMCID: PMC11425657 DOI: 10.3389/fradi.2024.1466498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 09/28/2024]
Abstract
Introduction The reconstruction of PET images involves converting sinograms, which represent the measured counts of radioactive emissions using detector rings encircling the patient, into meaningful images. However, the quality of PET data acquisition is impacted by physical factors, photon count statistics and detector characteristics, which affect the signal-to-noise ratio, resolution and quantitative accuracy of the resulting images. To address these influences, correction methods have been developed to mitigate each of these issues separately. Recently, generative adversarial networks (GANs) based on machine learning have shown promise in learning the complex mapping between acquired PET data and reconstructed tomographic images. This study aims to investigate the properties of training images that contribute to GAN performance when non-clinical images are used for training. Additionally, we describe a method to correct common PET imaging artefacts without relying on patient-specific anatomical images. Methods The modular GAN framework includes two GANs. Module 1, resembling Pix2pix architecture, is trained on non-clinical sinogram-image pairs. Training data are optimised by considering image properties defined by metrics. The second module utilises adaptive instance normalisation and style embedding to enhance the quality of images from Module 1. Additional perceptual and patch-based loss functions are employed in training both modules. The performance of the new framework was compared with that of existing methods, (filtered backprojection (FBP) and ordered subset expectation maximisation (OSEM) without and with point spread function (OSEM-PSF)) with respect to correction for attenuation, patient motion and noise in simulated, NEMA phantom and human imaging data. Evaluation metrics included structural similarity (SSIM), peak-signal-to-noise ratio (PSNR), relative root mean squared error (rRMSE) for simulated data, and contrast-to-noise ratio (CNR) for NEMA phantom and human data. Results For simulated test data, the performance of the proposed framework was both qualitatively and quantitatively superior to that of FBP and OSEM. In the presence of noise, Module 1 generated images with a SSIM of 0.48 and higher. These images exhibited coarse structures that were subsequently refined by Module 2, yielding images with an SSIM higher than 0.71 (at least 22% higher than OSEM). The proposed method was robust against noise and motion. For NEMA phantoms, it achieved higher CNR values than OSEM. For human images, the CNR in brain regions was significantly higher than that of FBP and OSEM (p < 0.05, paired t-test). The CNR of images reconstructed with OSEM-PSF was similar to those reconstructed using the proposed method. Conclusion The proposed image reconstruction method can produce PET images with artefact correction.
Collapse
Affiliation(s)
- Rajat Vashistha
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, University of Queensland, Brisbane, QLD, Australia
| | - Viktor Vegh
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, University of Queensland, Brisbane, QLD, Australia
| | - Hamed Moradi
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, University of Queensland, Brisbane, QLD, Australia
- Diagnostic Imaging, Siemens Healthcare Pty Ltd., Melbourne, QLD,Australia
| | - Amanda Hammond
- Diagnostic Imaging, Siemens Healthcare Pty Ltd., Melbourne, QLD,Australia
| | - Kieran O’Brien
- Diagnostic Imaging, Siemens Healthcare Pty Ltd., Melbourne, QLD,Australia
| | - David Reutens
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Hashimoto F, Ote K. ReconU-Net: a direct PET image reconstruction using U-Net architecture with back projection-induced skip connection. Phys Med Biol 2024; 69:105022. [PMID: 38640921 DOI: 10.1088/1361-6560/ad40f6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Objective.This study aims to introduce a novel back projection-induced U-Net-shaped architecture, called ReconU-Net, based on the original U-Net architecture for deep learning-based direct positron emission tomography (PET) image reconstruction. Additionally, our objective is to visualize the behavior of direct PET image reconstruction by comparing the proposed ReconU-Net architecture with the original U-Net architecture and existing DeepPET encoder-decoder architecture without skip connections.Approach. The proposed ReconU-Net architecture uniquely integrates the physical model of the back projection operation into the skip connection. This distinctive feature facilitates the effective transfer of intrinsic spatial information from the input sinogram to the reconstructed image via an embedded physical model. The proposed ReconU-Net was trained using Monte Carlo simulation data from the Brainweb phantom and tested on both simulated and real Hoffman brain phantom data.Main results. The proposed ReconU-Net method provided better reconstructed image in terms of the peak signal-to-noise ratio and contrast recovery coefficient than the original U-Net and DeepPET methods. Further analysis shows that the proposed ReconU-Net architecture has the ability to transfer features of multiple resolutions, especially non-abstract high-resolution information, through skip connections. Unlike the U-Net and DeepPET methods, the proposed ReconU-Net successfully reconstructed the real Hoffman brain phantom, despite limited training on simulated data.Significance. The proposed ReconU-Net can improve the fidelity of direct PET image reconstruction, even with small training datasets, by leveraging the synergistic relationship between data-driven modeling and the physics model of the imaging process.
Collapse
Affiliation(s)
- Fumio Hashimoto
- Central Research Laboratory, Hamamatsu Photonics K. K., 5000 Hirakuchi, Hamana-ku, Hamamatsu 434-8601, Japan
| | - Kibo Ote
- Central Research Laboratory, Hamamatsu Photonics K. K., 5000 Hirakuchi, Hamana-ku, Hamamatsu 434-8601, Japan
| |
Collapse
|
3
|
Wu Y, Sun T, Ng YL, Liu J, Zhu X, Cheng Z, Xu B, Meng N, Zhou Y, Wang M. Clinical Implementation of Total-Body PET in China. J Nucl Med 2024; 65:64S-71S. [PMID: 38719242 DOI: 10.2967/jnumed.123.266977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/13/2024] [Indexed: 07/16/2024] Open
Abstract
Total-body (TB) PET/CT is a groundbreaking tool that has brought about a revolution in both clinical application and scientific research. The transformative impact of TB PET/CT in the realms of clinical practice and scientific exploration has been steadily unfolding since its introduction in 2018, with implications for its implementation within the health care landscape of China. TB PET/CT's exceptional sensitivity enables the acquisition of high-quality images in significantly reduced time frames. Clinical applications have underscored its effectiveness across various scenarios, emphasizing the capacity to personalize dosage, scan duration, and image quality to optimize patient outcomes. TB PET/CT's ability to perform dynamic scans with high temporal and spatial resolution and to perform parametric imaging facilitates the exploration of radiotracer biodistribution and kinetic parameters throughout the body. The comprehensive TB coverage offers opportunities to study interconnections among organs, enhancing our understanding of human physiology and pathology. These insights have the potential to benefit applications requiring holistic TB assessments. The standard topics outlined in The Journal of Nuclear Medicine were used to categorized the reviewed articles into 3 sections: current clinical applications, scan protocol design, and advanced topics. This article delves into the bottleneck that impedes the full use of TB PET in China, accompanied by suggested solutions.
Collapse
Affiliation(s)
- Yaping Wu
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
- People's Hospital of Zhengzhou University, Zhengzhou, China
- Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, China
| | - Tao Sun
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yee Ling Ng
- Central Research Institute, United Imaging Healthcare Group Co., Ltd., Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoping Cheng
- Department of Nuclear Medicine, First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China; and
| | - Baixuan Xu
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing, China
| | - Nan Meng
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
- People's Hospital of Zhengzhou University, Zhengzhou, China
- Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co., Ltd., Shanghai, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China;
- People's Hospital of Zhengzhou University, Zhengzhou, China
- Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, China
| |
Collapse
|
4
|
Sun Y, Cheng Z, Qiu J, Lu W. Performance and application of the total-body PET/CT scanner: a literature review. EJNMMI Res 2024; 14:38. [PMID: 38607510 PMCID: PMC11014840 DOI: 10.1186/s13550-023-01059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/14/2023] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND The total-body positron emission tomography/computed tomography (PET/CT) system, with a long axial field of view, represents the state-of-the-art PET imaging technique. Recently, the total-body PET/CT system has been commercially available. The total-body PET/CT system enables high-resolution whole-body imaging, even under extreme conditions such as ultra-low dose, extremely fast imaging speed, delayed imaging more than 10 h after tracer injection, and total-body dynamic scan. The total-body PET/CT system provides a real-time picture of the tracers of all organs across the body, which not only helps to explain normal human physiological process, but also facilitates the comprehensive assessment of systemic diseases. In addition, the total-body PET/CT system may play critical roles in other medical fields, including cancer imaging, drug development and immunology. MAIN BODY Therefore, it is of significance to summarize the existing studies of the total-body PET/CT systems and point out its future direction. This review collected research literatures from the PubMed database since the advent of commercially available total-body PET/CT systems to the present, and was divided into the following sections: Firstly, a brief introduction to the total-body PET/CT system was presented, followed by a summary of the literature on the performance evaluation of the total-body PET/CT. Then, the research and clinical applications of the total-body PET/CT were discussed. Fourthly, deep learning studies based on total-body PET imaging was reviewed. At last, the shortcomings of existing research and future directions for the total-body PET/CT were discussed. CONCLUSION Due to its technical advantages, the total-body PET/CT system is bound to play a greater role in clinical practice in the future.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Zhaoping Cheng
- Department of PET-CT, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, 250014, China
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Weizhao Lu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, No. 366 Taishan Street, Taian, 271000, China.
| |
Collapse
|
5
|
Hashimoto F, Onishi Y, Ote K, Tashima H, Reader AJ, Yamaya T. Deep learning-based PET image denoising and reconstruction: a review. Radiol Phys Technol 2024; 17:24-46. [PMID: 38319563 PMCID: PMC10902118 DOI: 10.1007/s12194-024-00780-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
This review focuses on positron emission tomography (PET) imaging algorithms and traces the evolution of PET image reconstruction methods. First, we provide an overview of conventional PET image reconstruction methods from filtered backprojection through to recent iterative PET image reconstruction algorithms, and then review deep learning methods for PET data up to the latest innovations within three main categories. The first category involves post-processing methods for PET image denoising. The second category comprises direct image reconstruction methods that learn mappings from sinograms to the reconstructed images in an end-to-end manner. The third category comprises iterative reconstruction methods that combine conventional iterative image reconstruction with neural-network enhancement. We discuss future perspectives on PET imaging and deep learning technology.
Collapse
Affiliation(s)
- Fumio Hashimoto
- Central Research Laboratory, Hamamatsu Photonics K. K, 5000 Hirakuchi, Hamana-Ku, Hamamatsu, 434-8601, Japan.
- Graduate School of Science and Engineering, Chiba University, 1-33, Yayoicho, Inage-Ku, Chiba, 263-8522, Japan.
- National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba, 263-8555, Japan.
| | - Yuya Onishi
- Central Research Laboratory, Hamamatsu Photonics K. K, 5000 Hirakuchi, Hamana-Ku, Hamamatsu, 434-8601, Japan
| | - Kibo Ote
- Central Research Laboratory, Hamamatsu Photonics K. K, 5000 Hirakuchi, Hamana-Ku, Hamamatsu, 434-8601, Japan
| | - Hideaki Tashima
- National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Andrew J Reader
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Taiga Yamaya
- Graduate School of Science and Engineering, Chiba University, 1-33, Yayoicho, Inage-Ku, Chiba, 263-8522, Japan
- National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| |
Collapse
|
6
|
Hellwig D, Hellwig NC, Boehner S, Fuchs T, Fischer R, Schmidt D. Artificial Intelligence and Deep Learning for Advancing PET Image Reconstruction: State-of-the-Art and Future Directions. Nuklearmedizin 2023; 62:334-342. [PMID: 37995706 PMCID: PMC10689088 DOI: 10.1055/a-2198-0358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/12/2023] [Indexed: 11/25/2023]
Abstract
Positron emission tomography (PET) is vital for diagnosing diseases and monitoring treatments. Conventional image reconstruction (IR) techniques like filtered backprojection and iterative algorithms are powerful but face limitations. PET IR can be seen as an image-to-image translation. Artificial intelligence (AI) and deep learning (DL) using multilayer neural networks enable a new approach to this computer vision task. This review aims to provide mutual understanding for nuclear medicine professionals and AI researchers. We outline fundamentals of PET imaging as well as state-of-the-art in AI-based PET IR with its typical algorithms and DL architectures. Advances improve resolution and contrast recovery, reduce noise, and remove artifacts via inferred attenuation and scatter correction, sinogram inpainting, denoising, and super-resolution refinement. Kernel-priors support list-mode reconstruction, motion correction, and parametric imaging. Hybrid approaches combine AI with conventional IR. Challenges of AI-assisted PET IR include availability of training data, cross-scanner compatibility, and the risk of hallucinated lesions. The need for rigorous evaluations, including quantitative phantom validation and visual comparison of diagnostic accuracy against conventional IR, is highlighted along with regulatory issues. First approved AI-based applications are clinically available, and its impact is foreseeable. Emerging trends, such as the integration of multimodal imaging and the use of data from previous imaging visits, highlight future potentials. Continued collaborative research promises significant improvements in image quality, quantitative accuracy, and diagnostic performance, ultimately leading to the integration of AI-based IR into routine PET imaging protocols.
Collapse
Affiliation(s)
- Dirk Hellwig
- Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
- Partner Site Regensburg, Bavarian Center for Cancer Research (BZKF), Regensburg, Germany
- Medical Data Integration Center (MEDIZUKR), University Hospital Regensburg, Regensburg, Germany
| | - Nils Constantin Hellwig
- Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
- Medical Data Integration Center (MEDIZUKR), University Hospital Regensburg, Regensburg, Germany
| | - Steven Boehner
- Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
- Partner Site Regensburg, Bavarian Center for Cancer Research (BZKF), Regensburg, Germany
- Medical Data Integration Center (MEDIZUKR), University Hospital Regensburg, Regensburg, Germany
| | - Timo Fuchs
- Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
- Partner Site Regensburg, Bavarian Center for Cancer Research (BZKF), Regensburg, Germany
- Medical Data Integration Center (MEDIZUKR), University Hospital Regensburg, Regensburg, Germany
| | - Regina Fischer
- Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
- Partner Site Regensburg, Bavarian Center for Cancer Research (BZKF), Regensburg, Germany
- Medical Data Integration Center (MEDIZUKR), University Hospital Regensburg, Regensburg, Germany
| | - Daniel Schmidt
- Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Léost F, Barbet J, Beyler M, Chérel M, Delpon G, Garcion E, Lacerda S, Lepareur N, Rbah-Vidal L, Vaugier L, Visvikis D. ["New Modalities in Cancer Imaging and Therapy" XVth edition of the workshop organized by the network "Tumor Targeting, Imaging, Radiotherapies" of the Cancéropôle Grand-Ouest, 5-8 October 2022, France]. Bull Cancer 2023; 110:1322-1331. [PMID: 37880044 DOI: 10.1016/j.bulcan.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/16/2023] [Accepted: 08/13/2023] [Indexed: 10/27/2023]
Abstract
The fifteenth edition of the international workshop organized by the "Tumour Targeting and Radiotherapies network" of the Cancéropôle Grand-Ouest focused on the latest advances in internal and external radiotherapy from different disciplinary angles: chemistry, biology, physics, and medicine. The workshop covered several deliberately diverse topics: the role of artificial intelligence, new tools for imaging and external radiotherapy, theranostic aspects, molecules and contrast agents, vectors for innovative combined therapies, and the use of alpha particles in therapy.
Collapse
Affiliation(s)
- Françoise Léost
- Cancéropôle Grand-Ouest, IRS-UN, 8, quai Moncousu, 44007 Nantes cedex 1, France.
| | | | - Maryline Beyler
- Université de Brest, UMR CNRS-UBO 6521 CEMCA, 6, avenue V.-Le-Gorgeu, 29200 Brest, France
| | - Michel Chérel
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI(2)NA, Nantes, France
| | - Grégory Delpon
- Institut de cancérologie de l'Ouest, département de physique médicale, boulevard Jacques-Monod, 44800 Saint-Herblain, France; Laboratoire SUBATECH, UMR 6457 CNRS-IN2P3, IMT Atlantique, 4, rue Alfred-Kastler, 44307 Nantes cedex 3, France
| | - Emmanuel Garcion
- Université d'Angers, Inserm, CNRS, Nantes Université, CRCI(2)NA, Angers, France
| | - Sara Lacerda
- Université d'Orléans, centre de biophysique moléculaire, CNRS UPR 4301, rue Charles-Sadron, 45071 Orléans cedex 2, France
| | - Nicolas Lepareur
- Université de Rennes, Inrae, Inserm, CLCC Eugène-Marquis, institut nutrition, métabolismes et cancer (NUMECAN), UMR 1317, Rennes, France
| | - Latifa Rbah-Vidal
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI(2)NA, Nantes, France
| | - Loïg Vaugier
- Institut de cancérologie de l'Ouest, département de physique médicale, boulevard Jacques-Monod, 44800 Saint-Herblain, France; Laboratoire SUBATECH, UMR 6457 CNRS-IN2P3, IMT Atlantique, 4, rue Alfred-Kastler, 44307 Nantes cedex 3, France
| | - Dimitris Visvikis
- Inserm, LaTIM, UMR 1101, IBSAM, UBO, UBL, 22, rue Camille-Desmoulins, 29238 Brest, France
| |
Collapse
|
8
|
Reader AJ, Pan B. AI for PET image reconstruction. Br J Radiol 2023; 96:20230292. [PMID: 37486607 PMCID: PMC10546435 DOI: 10.1259/bjr.20230292] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Image reconstruction for positron emission tomography (PET) has been developed over many decades, with advances coming from improved modelling of the data statistics and improved modelling of the imaging physics. However, high noise and limited spatial resolution have remained issues in PET imaging, and state-of-the-art PET reconstruction has started to exploit other medical imaging modalities (such as MRI) to assist in noise reduction and enhancement of PET's spatial resolution. Nonetheless, there is an ongoing drive towards not only improving image quality, but also reducing the injected radiation dose and reducing scanning times. While the arrival of new PET scanners (such as total body PET) is helping, there is always a need to improve reconstructed image quality due to the time and count limited imaging conditions. Artificial intelligence (AI) methods are now at the frontier of research for PET image reconstruction. While AI can learn the imaging physics as well as the noise in the data (when given sufficient examples), one of the most common uses of AI arises from exploiting databases of high-quality reference examples, to provide advanced noise compensation and resolution recovery. There are three main AI reconstruction approaches: (i) direct data-driven AI methods which rely on supervised learning from reference data, (ii) iterative (unrolled) methods which combine our physics and statistical models with AI learning from data, and (iii) methods which exploit AI with our known models, but crucially can offer benefits even in the absence of any example training data whatsoever. This article reviews these methods, considering opportunities and challenges of AI for PET reconstruction.
Collapse
Affiliation(s)
- Andrew J Reader
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Bolin Pan
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| |
Collapse
|
9
|
Dai J, Wang H, Xu Y, Chen X, Tian R. Clinical application of AI-based PET images in oncological patients. Semin Cancer Biol 2023; 91:124-142. [PMID: 36906112 DOI: 10.1016/j.semcancer.2023.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Based on the advantages of revealing the functional status and molecular expression of tumor cells, positron emission tomography (PET) imaging has been performed in numerous types of malignant diseases for diagnosis and monitoring. However, insufficient image quality, the lack of a convincing evaluation tool and intra- and interobserver variation in human work are well-known limitations of nuclear medicine imaging and restrict its clinical application. Artificial intelligence (AI) has gained increasing interest in the field of medical imaging due to its powerful information collection and interpretation ability. The combination of AI and PET imaging potentially provides great assistance to physicians managing patients. Radiomics, an important branch of AI applied in medical imaging, can extract hundreds of abstract mathematical features of images for further analysis. In this review, an overview of the applications of AI in PET imaging is provided, focusing on image enhancement, tumor detection, response and prognosis prediction and correlation analyses with pathology or specific gene mutations in several types of tumors. Our aim is to describe recent clinical applications of AI-based PET imaging in malignant diseases and to focus on the description of possible future developments.
Collapse
Affiliation(s)
- Jiaona Dai
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hui Wang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuchao Xu
- School of Nuclear Science and Technology, University of South China, Hengyang City 421001, China
| | - Xiyang Chen
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
van Sluis J, Borra R, Tsoumpas C, van Snick JH, Roya M, ten Hove D, Brouwers AH, Lammertsma AA, Noordzij W, Dierckx RA, Slart RH, Glaudemans AW. Extending the clinical capabilities of short- and long-lived positron-emitting radionuclides through high sensitivity PET/CT. Cancer Imaging 2022; 22:69. [PMID: 36527149 PMCID: PMC9755796 DOI: 10.1186/s40644-022-00507-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
This review describes the main benefits of using long axial field of view (LAFOV) PET in clinical applications. As LAFOV PET is the latest development in PET instrumentation, many studies are ongoing that explore the potentials of these systems, which are characterized by ultra-high sensitivity. This review not only provides an overview of the published clinical applications using LAFOV PET so far, but also provides insight in clinical applications that are currently under investigation. Apart from the straightforward reduction in acquisition times or administered amount of radiotracer, LAFOV PET also allows for other clinical applications that to date were mostly limited to research, e.g., dual tracer imaging, whole body dynamic PET imaging, omission of CT in serial PET acquisition for repeat imaging, and studying molecular interactions between organ systems. It is expected that this generation of PET systems will significantly advance the field of nuclear medicine and molecular imaging.
Collapse
Affiliation(s)
- Joyce van Sluis
- grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Ronald Borra
- grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Charalampos Tsoumpas
- grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Johannes H. van Snick
- grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Mostafa Roya
- grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Dik ten Hove
- grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Adrienne H. Brouwers
- grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Adriaan A. Lammertsma
- grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Walter Noordzij
- grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Rudi A.J.O. Dierckx
- grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Riemer H.J.A. Slart
- grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Andor W.J.M. Glaudemans
- grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| |
Collapse
|