1
|
Zheng L, Li C, Yang X, Liu J, Wang G, Zhou Z, Zhu X, Gong J, Yang J. GD2-targeted theranostics of neuroblastoma with [ 64Cu]Cu/[ 177Lu]Lu-hu3F8. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-07033-w. [PMID: 39702399 DOI: 10.1007/s00259-024-07033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
PURPOSE Neuroblastoma (NB) is a malignant embryonic tumour with poor prognosis and high mortality rate. The antigen gisialoganglioside (GD2), which is highly expressed on the surface of NB cells, is an effective target for therapy. This study aims to evaluate the GD2 expression with [64Cu]Cu-NOTA-hu3F8 positron emission tomography (PET) imaging and explore the radioimmunotherapy (RIT) effect of [177Lu]Lu-DOTA-hu3F8 in NB tumour models. METHODS The in vitro validation of the binding ability of anti-GD2 humanised monoclonal antibody (hu3F8) to GD2 was achieved via flow cytometry, cell immunofluorescence, and cell uptake test. Hu3F8 were conjugated with p-SCN-Bn-NOTA (NOTA) and p-SCN-Bn-DOTA (DOTA) for 64Cu- and 177Lu- radiolabelling. PET imaging and RIT studies were conducted using [64Cu]Cu-NOTA-hu3F8 and [177Lu]Lu-DOTA-hu3F8 in subcutaneous NB tumour models. RESULTS The Institute for Medical Research-32 (IMR32) cell line exhibited a specific binding ability of hu3F8. PET imaging demonstrated a specific accumulation of [64Cu]Cu-NOTA-hu3F8 in IMR32 tumour models, with a maximum tumour uptake of 23.73 ± 2.29%ID/g (n = 3) at 72 h post-injection (p.i.), outperforming other groups significantly (P < 0.001). The high dose [177Lu]Lu-DOTA-hu3F8 group (11.1MBq) showed the most potent tumour suppression, with a standardised tumour volume of about 20.47 ± 6.32% at 30 days p.i., significantly smaller than other groups (n = 5, P < 0.05). CONCLUSION This study demonstrated that 64Cu-/177Lu- labelled hu3F8 could noninvasively evaluate the GD2 expression and effectively inhibit tumour growth in NB tumour models. The excellent therapeutic efficacy of [177Lu]Lu-DOTA-hu3F8 may be helpful for the clinical translation of this GD2-targeted theranostics approach in GD2-positive tumours.
Collapse
Affiliation(s)
- Lingling Zheng
- Department of Nuclear Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, 95 Yong'an Rd., Xicheng Dist, Beijing, 100050, China
| | - Cuicui Li
- Department of Nuclear Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, 95 Yong'an Rd., Xicheng Dist, Beijing, 100050, China
| | - Xu Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, 95 Yong'an Rd., Xicheng Dist, Beijing, 100050, China
| | - Jun Liu
- Department of Nuclear Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, 95 Yong'an Rd., Xicheng Dist, Beijing, 100050, China
| | - Guanyun Wang
- Department of Nuclear Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, 95 Yong'an Rd., Xicheng Dist, Beijing, 100050, China
| | - Ziang Zhou
- Department of Nuclear Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, 95 Yong'an Rd., Xicheng Dist, Beijing, 100050, China
| | - Xianyu Zhu
- Department of Nuclear Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, 95 Yong'an Rd., Xicheng Dist, Beijing, 100050, China.
| | - Jianhua Gong
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Courtyard No. 2, Nanwei Rd., Xicheng Dist, Beijing, 100050, China.
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, 95 Yong'an Rd., Xicheng Dist, Beijing, 100050, China.
| |
Collapse
|
2
|
Yang X, Liu J, Li C, Zheng L, Lu X, Zhou Z, Zhu X, Gong J, Miao Q, Yang J. Preclinical evaluation of 64Cu/177Lu-labelled anti-CD30 monoclonal antibody for theranostics in CD30-positive lymphoma. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-07022-z. [PMID: 39688699 DOI: 10.1007/s00259-024-07022-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
PURPOSE CD30 serves as an ideal therapeutic target for lymphoma, but its variable expression and high relapse rate pose challenges in targeted therapy. This study aims to label the anti-CD30 monoclonal antibody with 64Cu/177Lu for immuno-positron emission tomography (immuno-PET) and radioimmunotherapy (RIT). METHODS CD30 binding kinetics of anti-CD30-IgG (IMB16) were measured by Biolayer interferometry (BLI). Western blotting screened lymphoma cell lines for CD30 expression. Flow cytometry and immunofluorescence validated the specific binding of IMB16. IMB16 was conjugated to p-SCN-Bn-NOTA(NOTA) and p-SCN-Bn-DOTA(DOTA) for radiolabeling with 64Cu and 177Lu. [64Cu]Cu-NOTA-IMB16 and [177Lu]Lu-DOTA-IMB16 were used for immuno-PET and RIT in subcutaneous lymphoma NSG mouse models. RESULTS IMB16 had a strong binding affinity to CD30 according to the BLI. Western blotting revealed high CD30 expression in Karpas299 cells and negative expression in Raji cells. Flow cytometry and immunofluorescence confirmed specific binding of IMB16 to CD30 on cell surface. Radiochemical purity of [64Cu]Cu-NOTA-IMB16 and [177Lu]Lu-DOTA-IMB16 exceeded 95%. In Immuno-PET imaging, CD30-positive Karpas299 tumours had a mean uptake value of 19.2 ± 0.9%ID/g (n = 3) at 24 h post-injection, significantly higher than Karpas299-blocked and Raji-negative groups (P < 0.001). A high radiation dose (300µCi) of [177Lu]Lu-DOTA-IMB16 significantly inhibited tumour growth (80.2 ± 17.6% standardized tumour volume, n = 5) at 10 days post-injection, compared to controls. Ex vivo biodistribution and histological staining supported in vivo PET imaging and RIT results. CONCLUSIONS Labelling IMB16 with 64Cu enabled non-invasive assessment of CD30 expression, while 177Lu labelling effectively suppressed tumour growth in CD30-positive lymphoma. CD30-targeted theranostic show promise for patient stratification and treatment enhancement, warranting further clinical evaluation.
Collapse
Affiliation(s)
- Xu Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Jun Liu
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Cuicui Li
- Department of PET-CT Centre, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Lingling Zheng
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Xia Lu
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Ziang Zhou
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Xianyu Zhu
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Jianhua Gong
- NHC Key Laboratory of Biotechnology of Antibiotic, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College,, Courtyard No. 2, Nanwei Rd., Xicheng Dist, Beijing, 100050, China.
| | - Qingfang Miao
- NHC Key Laboratory of Biotechnology of Antibiotic, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College,, Courtyard No. 2, Nanwei Rd., Xicheng Dist, Beijing, 100050, China.
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, 100050, China.
| |
Collapse
|
3
|
Liu Y, Huang W, Saladin RJ, Hsu JC, Cai W, Kang L. Trop2-Targeted Molecular Imaging in Solid Tumors: Current Advances and Future Outlook. Mol Pharm 2024; 21:5909-5928. [PMID: 39537365 DOI: 10.1021/acs.molpharmaceut.4c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Trophoblast cell surface antigen 2 (Trop2), a transmembrane glycoprotein, plays a dual role in physiological and pathological processes. In healthy tissues, Trop2 facilitates development and orchestrates intracellular calcium signaling. However, its overexpression in numerous solid tumors shifts its function toward driving cell proliferation and metastasis, thus leading to a poor prognosis. The clinical relevance of Trop2 is underscored by its utility as both a biomarker for diagnostic imaging and a target for therapy. Notably, the U.S. Food and Drug Administration (FDA) has approved sacituzumab govitecan (SG), a novel Trop2-targeted agent, for treating triple-negative breast cancer (TNBC) and refractory urothelial cancer, highlighting the significance of Trop2 in clinical oncology. Molecular imaging, a powerful tool for visualizing and quantifying biological phenomena at the molecular and cellular levels, has emerged as a critical technique for studying Trop2. This approach encompasses various modalities, including optical imaging, positron emission tomography (PET), single photon emission computed tomography (SPECT), and targeted antibodies labeled with radioactive isotopes. Incorporating Trop2-targeted molecular imaging into clinical practice is vital for the early detection, prognostic assessment, and treatment planning of a broad spectrum of solid tumors. Our review captures the latest progress in Trop2-targeted molecular imaging, focusing on both diagnostic and therapeutic applications across diverse tumor types, including lung, breast, gastric, pancreatic, prostate, and cervical cancers, as well as salivary gland carcinomas. We critically evaluate the current state by examining the relevant applications, diagnostic accuracy, therapeutic efficacy, and inherent limitations. Finally, we analyze the challenges impeding widespread clinical application and offer insights into strategies for advancing the field, thereby guiding future research endeavors.
Collapse
Affiliation(s)
- Yongshun Liu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Rachel J Saladin
- Departments of Radiology and Medical Physics, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Jessica C Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
4
|
Chen H, Zhao L, Pang Y, Shi J, Gao H, Sun Y, Chen J, Fu H, Cai J, Yu L, Zeng R, Sun L, Wu H, Wang Z, Wang F. 68Ga-MY6349 PET/CT imaging to assess Trop2 expression in multiple types of cancer. J Clin Invest 2024; 135:e185408. [PMID: 39509246 DOI: 10.1172/jci185408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUNDConsidering that trophoblast cell-surface antigen 2 (Trop2) is overexpressed in a wide range of human epithelial cancers, it presents an attractive target for diagnosis and treatment of multiple types of cancer. Herein, we have developed a Trop2-specific radiotracer, 68Ga-MY6349, and present a prospective, investigator-initiated trial to explore the clinical value of 68Ga-MY6349 PET/CT.METHODSIn this translational study, 90 patients with 15 types of cancer who underwent 68Ga-MY6349 PET/CT were enrolled prospectively. Among them, 78 patients underwent paired 68Ga-MY6349 and 18F-FDG PET/CT, and 12 patients with prostate cancer underwent paired 68Ga-MY6349 and 68Ga-PSMA-11 PET/CT.RESULTSAmong the 90 patients across 15 types of cancer, 68Ga-MY6349 uptake in tumors was generally high but heterogeneous, varying among lesions, patients, and cancer types. Trop2 expression level determined by immunohistochemistry was highly correlated with 68Ga-MY6349 uptake at primary and metastatic tumor sites. 68Ga-MY6349 PET/CT showed higher tumor uptake (quantified by maximum standardized uptake value) than 18F-FDG PET/CT in certain types of cancer, including breast (7.2 vs. 5.4, P < 0.001), prostate (9.2 vs. 3.0, P < 0.001), and thyroid cancers (8.5 vs. 3.7, P < 0.001). Compared with 68Ga-PSMA-11, 68Ga-MY6349 PET/CT exhibited comparable lesion uptake (12.2 vs. 12.5, P = 0.223) but a better tumor-to-background contrast (15.8 vs. 12.2, P < 0.001) for primary and metastatic prostate cancer, allowing visualization of more metastatic lesions.CONCLUSION68Ga-MY6349 PET/CT is a noninvasive method for comprehensively assessing Trop2 expression in tumors, which can improve diagnosis and staging for cancer patients and aid in decision making for Trop2-targeted therapies and advancing of personalized treatment.TRIAL REGISTRATIONClinicalTrials.gov NCT06188468.FUNDINGNational Natural Science Foundation of China, National Key R&D Program of China, Nuclear Energy R&D project, Fujian Research and Training Grants for Young and Middle-aged Leaders in Healthcare, Key Scientific Research Program for Young Scholars in Fujian, and Fujian Natural Science Foundation for Distinguished Young Scholars.
Collapse
Affiliation(s)
- Haojun Chen
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, China
| | - Liang Zhao
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yizhen Pang
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jiyun Shi
- Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hannan Gao
- Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yining Sun
- Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianhao Chen
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hao Fu
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jiayu Cai
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lingyu Yu
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ru Zeng
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Long Sun
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hua Wu
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fan Wang
- Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, China
- Guangzhou National Laboratory, Guangzhou, China
| |
Collapse
|
5
|
Chen W, Zhang Y, Zhang L, Luo X, Yang X, Zhu Y, Wang G, Huang W, Zhang D, Zeng Y, Li R, Guo C, Wang J, Wu Z, Liu N, Zhang G. Intraoperative evaluation of tumor margins using a TROP2 near-infrared imaging probe to enable human breast-conserving surgery. Sci Transl Med 2024; 16:eado2461. [PMID: 39413161 DOI: 10.1126/scitranslmed.ado2461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024]
Abstract
Intraoperative surgical margin assessment remains a challenge during breast-conserving surgery. Here, we report a combined strategy of immuno-positron emission tomography (PET) for preoperative detection of breast cancer and guided assessment of margins in breast-conserving surgery through second near-infrared (NIR-II) fluorescence imaging of trophoblastic cell surface antigen 2 (TROP2). We demonstrated that the intensity of PET signals in the tumors was nearly five times higher than in normal breast tissue with a zirconium-89 tracer conjugated to sacituzumab govitecan (SG) in a mouse spontaneous breast cancer model, enabling the identification of tumors. We further generated a NIR-II probe of indocyanine green conjugated to SG (ICG-SG) and developed a rapid incubation imaging method for intraoperative margin assessment in a relevant time window for the operation workflow. The ICG-SG NIR-II fluorescence image guidance was first verified to remove tumors completely and accurately in mouse breast cancer models. Moreover, the rapid incubation imaging method was applied to distinguish benign and malignant breast lesions in samples from 26 patients with breast cancer. Therefore, we have developed both nuclide and optical probes targeting TROP2 for rapid and precise identification of tumor margins during breast-conserving surgery in humans.
Collapse
Affiliation(s)
- Weiling Chen
- Cancer Center and Department of Breast-Thyroid-Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen 361101, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiamen 361101, China
| | - Yongqu Zhang
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen 361101, China
- Department of Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Lixin Zhang
- Cancer Center and Department of Breast-Thyroid-Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen 361101, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiamen 361101, China
| | - Xiangjie Luo
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xia Yang
- Department of Nuclear Medicine, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
| | - Yuanyuan Zhu
- Cancer Center and Department of Breast-Thyroid-Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen 361101, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiamen 361101, China
| | - Guimei Wang
- Department of Pathology, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
| | - Wenhe Huang
- Cancer Center and Department of Breast-Thyroid-Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen 361101, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiamen 361101, China
| | - Deliang Zhang
- Department of Nuclear Medicine, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
| | - Yunzhu Zeng
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Ronghui Li
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen 361101, China
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
| | - Cuiping Guo
- Department of Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jiazheng Wang
- Cancer Center and Department of Breast-Thyroid-Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen 361101, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiamen 361101, China
| | - Zhao Wu
- Cancer Center and Department of Breast-Thyroid-Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen 361101, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiamen 361101, China
| | - Na Liu
- Cancer Center and Department of Breast-Thyroid-Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen 361101, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiamen 361101, China
| | - Guojun Zhang
- Cancer Center and Department of Breast-Thyroid-Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen 361101, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiamen 361101, China
- Department of Breast Surgery, Yunnan Cancer Hospital, Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunan, Kunming 650118, China
- Cancer Research Center of Xiamen University, Xiamen 361101, China
| |
Collapse
|
6
|
Zhang J, Kang F, Wang X, Chen X, Yang X, Yang Z, Wang J. Recent Advances in Radiotracers Targeting Novel Cancer-Specific Biomarkers in China: A Brief Overview. J Nucl Med 2024; 65:38S-45S. [PMID: 38719241 DOI: 10.2967/jnumed.123.266314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/23/2024] [Indexed: 07/16/2024] Open
Abstract
Radiopharmaceuticals play a critical role in nuclear medicine, providing novel tools for specifically delivering radioisotopes for the diagnosis and treatment of cancers. As the starting point for developing radiopharmaceuticals, cancer-specific biomarkers are important and receive worldwide attention. This field in China is currently experiencing a rapid expansion, with multiple radiotracers targeting novel targets being developed and translated into clinical studies. This review provides a brief overview of the exploration of novel imaging targets, preclinical evaluation of their targeting ligands, and translational research in China from 2020 to 2023, for detecting cancer, guiding targeted therapy, and visualizing the immune microenvironment. We believe that China will play an even more important role in the development of nuclear medicine in the world in the future.
Collapse
Affiliation(s)
- Jingming Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
- Department of Nuclear Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Fei Kang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiao Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Xuejiao Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
- Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China
- International Cancer Institute, Peking University Health Science Center, Beijing, China; and
| | - Zhi Yang
- Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China;
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jing Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China;
| |
Collapse
|
7
|
Zhou DD, Zhai XT, Zhang LW, Xie ZH, Wang Y, Zhen YS, Gao RJ, Miao QF. A new TROP2-targeting antibody-drug conjugate shows potent antitumor efficacy in breast and lung cancers. NPJ Precis Oncol 2024; 8:94. [PMID: 38654141 DOI: 10.1038/s41698-024-00584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Trophoblast cell surface antigen 2 (Trop2) is considered to be an attractive therapeutic target in cancer treatments. We previously generated a new humanized anti-Trop2 antibody named hIMB1636, and designated it as an ideal targeting carrier for cancer therapy. Lidamycin (LDM) is a new antitumor antibiotic, containing an active enediyne chromophore (AE) and a noncovalently bound apoprotein (LDP). AE and LDP can be separated and reassembled, and the reassembled LDM possesses cytotoxicity similar to that of native LDM; this has made LDM attractive in the preparation of gene-engineering drugs. We herein firstly prepared a new fusion protein hIMB1636-LDP composed of hIMB1636 and LDP by genetic engineering. This construct showed potent binding activities to recombinant antigen with a KD value of 4.57 nM, exhibited binding to Trop2-positive cancer cells and internalization and transport to lysosomes, and demonstrated powerful tumor-targeting ability in vivo. We then obtained the antibody-drug conjugate (ADC) hIMB1636-LDP-AE by molecular reconstitution. In vitro, hIMB1636-LDP-AE inhibited the proliferation, migration, and tumorsphere formation of tumor cells with half-maximal inhibitory concentration (IC50) values at the sub-nanomolar level. Mechanistically, hIMB1636-LDP-AE induced apoptosis and cell-cycle arrest. In vivo, hIMB1636-LDP-AE also inhibited the growth of breast and lung cancers in xenograft models. Moreover, compared to sacituzumab govitecan, hIMB1636-LDP-AE showed more potent antitumor activity and significantly lower myelotoxicity in tumors with moderate Trop2 expression. This study fully revealed the potent antitumor efficacy of hIMB1636-LDP-AE, and also provided a new preparation method for LDM-based ADC, as well as a promising candidate for breast cancer and lung cancer therapeutics.
Collapse
Affiliation(s)
- Dan-Dan Zhou
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Tian Zhai
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lan-Wen Zhang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zi-Hui Xie
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ying Wang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yong-Su Zhen
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rui-Juan Gao
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Qing-Fang Miao
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
8
|
Yang Q, Chen Z, Qiu Y, Huang W, Wang T, Song L, Sun X, Li C, Xu X, Kang L. Theranostic role of 89Zr- and 177Lu-labeled aflibercept in breast cancer. Eur J Nucl Med Mol Imaging 2024; 51:1246-1260. [PMID: 38135849 DOI: 10.1007/s00259-023-06575-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) has a poor prognosis due to the absence of effective therapeutic targets. Vascular endothelial growth factor (VEGF) family are expressed in 30-60% of TNBC, therefore providing potential therapeutic targets for TNBC. Aflibercept (Abe), a humanized recombinant fusion protein specifically bound to VEGF-A, B and placental growth factor (PIGF), has proven to be effective in the treatment in some cancers. Therefore, 89Zr/177Lu-labeled Abe was investigated for its theranostic role in TNBC. METHODS Abe was radiolabeled with 89Zr and 177Lu via the conjugation of chelators. Flow cytometry and cell immunofluorescent staining were performed to evaluate the binding affinity of Abe. Sequential PET imaging and fluorescent imaging were conducted in TNBC tumor bearing mice following the injection of 89Zr-labeled Abe and Cy5.5-labeled Abe. Treatment study was performed after the administration of 177Lu-labeled Abe. Tumor volume and survival were monitored and SPECT imaging and biodistribution studies were conducted. Safety evaluation was performed including body weight, blood cell measurement, and hematoxylin-eosin (H&E) staining of major organs. Expression of VEGF and CD31 was tested by immunohistochemical staining. Dosimetry was estimated using the OLINDA software. RESULTS FITC-labeled Abe showed a strong binding affinity to VEGF in TNBC 4T1 cells and HUVECs by flow cytometry and cell immunofluorescence. Tumor uptake of 89Zr-labeled Abe peaked at 120 h (SUVmax = 3.2 ± 0.64) and persisted before 168 h (SUVmax = 2.54 ± 0.42). The fluorescence intensity of the Cy5.5-labeled Abe group surpassed that of the Cy5.5-labeled IgG group, implying that Cy5.5-labeled Abe is a viable candidate monitoring in vivo tumor targeting and localization. 177Lu-labeled Abe (11.1 MBq) served well as the therapeutic component to suppress tumor growth with standardized tumor volume at 16 days, significantly smaller than PBS group (about 815.66 ± 3.58% vs 3646.52 ± 11.10%, n = 5, P < 0.01). Moreover, SPECT images confirmed high contrast between tumors and normal organs, indicating selective tumor uptake of 177Lu-labeled Abe. No discernible abnormalities in blood cells, and no evident histopathological abnormality observed in liver, spleen, and kidney. Immunohistochemical staining showed that 177Lu-labeled Abe effectively inhibited the expression of VEGF and CD31 of tumor, suggesting that angiogenesis may be suppressed by 177Lu-labeled Abe. The whole-body effective dose for an adult human was estimated to be 0.16 mSv/MBq. CONCLUSION 89Zr/177Lu-labeled Abe could be a TNBC-specific marker with diagnostic value and provide insights into targeted therapy in the treatment of TNBC. Further clinical evaluation and translation may be of high significance for TNBC.
Collapse
Affiliation(s)
- Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist., Beijing, 100034, China
| | - Zhao Chen
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist., Beijing, 100034, China
| | - Yongkang Qiu
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist., Beijing, 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist., Beijing, 100034, China
| | - Tianyao Wang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist., Beijing, 100034, China
| | - Lele Song
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist., Beijing, 100034, China
| | - Xinyao Sun
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist., Beijing, 100034, China
| | - Cuicui Li
- Department of Nuclear Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, 95 Yong'an Rd., Xicheng Dist., Beijing, 100050, China.
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100034, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist., Beijing, 100034, China.
| |
Collapse
|
9
|
Yang J, Liang Q, Zhou Q, Sha L, Shi H, Li G. An electrochemical biosensor to assay Trop-2 of breast cancer cells fabricated by methylene blue-assisted assembly of DNA nanoparticles. Biosens Bioelectron 2024; 246:115907. [PMID: 38064995 DOI: 10.1016/j.bios.2023.115907] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
Human trophoblast surface cell antigen 2 (Trop-2) on the tumor cell membrane can not only serve as the target for chemotherapy drugs, but also as a biomarker for typing and prognosis of breast cancer; however, assay of Trop-2 is seriously hampered due to the limitations of available tool. Herein, we have designed and fabricated an electrochemical biosensor for the assay of Trop-2 based on methylene blue (MB)-assisted assembly of DNA nanocomposite particles (DNPs). Specially, the recognition between Trop-2 and its aptamer may activate the primer exchange reaction (PER) on an electrode surface to produce long single-strand DNA (ssDNA) which can be self-assembled into DNPs by electrostatic interaction between negative charged DNA and positive charged and electro-active MB molecules which can also be used to give electrochemical signal. By using this electrochemical biosensor, ultrasensitive detection of tumor cells with high Trop-2 expressions can be conducted, with the limit of detection (LOD) of 1 cell/mL. Moreover, this biosensor can be further used for accurately profiling Trop-2 expression of tumor cells in mouse tissues, suggesting its great potential in the precise definition of breast cancer.
Collapse
Affiliation(s)
- Jiahua Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Qizhi Liang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Qianxi Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Lingjun Sha
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Hai Shi
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, PR China.
| | - Genxi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
10
|
Wu Y, Li T, Zhang X, Jing H, Li F, Huo L. Preclinical evaluation of the theranostic potential of 89Zr/ 177Lu-labeled anti-TROP-2 antibody in triple-negative breast cancer model. EJNMMI Radiopharm Chem 2024; 9:5. [PMID: 38194043 PMCID: PMC10776551 DOI: 10.1186/s41181-023-00235-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is one of the most lethal malignant tumors among women, characterized by high invasiveness, high heterogeneity, and lack of specific therapeutic targets such as estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Trophoblast cell-surface antigen-2 (TROP-2) is a transmembrane glycoprotein over-expressed in 80% of TNBC patients and is associated with the occurrence, progress, and poor prognosis of TNBC. The TROP-2 targeted immunoPET imaging allows non-invasive quantification of the TROP-2 expression levels of tumors, which could help to screen beneficiaries most likely to respond to SG and predict the response. This study aimed to develop a 89Zr/177Lu-radiolabeled anti-TROP-2 antibody (NY003) for immunoPET and SPECT imaging, as well as radioimmunotherapy (RIT) in TROP-2 (+)TNBC tumor-bearing model. Based on the camelid antibody, we developed a TROP-2 targeted recombinant antibody NY003. NY003 was conjugated with DFO and DTPA for 89Zr and 177Lu radiolabelling, respectively. The theranostic potential of [89Zr]Zr-DFO-NY003/[177Lu]Lu-DTPA-NY003 was evaluated through immunoPET, SPECT imaging, and RIT studies in the subcutaneous TROP-2 positive TNBC xenograft mice model. RESULTS The high binding affinity of NY003 to TROP-2 was verified through ELISA. The radiochemical purity of [89Zr]Zr-DFO-NY003/[177Lu]Lu-DTPA-NY003 exceeded 95% and remained stable within 144h p.i. in vitro. ImmunoPET and SPECT imaging showed the specific accumulation of [89Zr]Zr-DFO-NY003/[177Lu]Lu-DTPA-NY003 in MDA-MB-231 tumors and gradually increased with the time tested, significantly higher than that in control groups (P < 0.05). The strongest anti-tumor efficacy was observed in the high-dose of [177Lu]Lu-DTPA-NY003 group, followed by the low-dose group, the tumor growth was significantly suppressed by [177Lu]Lu-DTPA-NY003, the tumor volumes of both high- and low-dose groups were smaller than the control groups (P < 0.05). Ex vivo biodistribution and histological staining verified the results of in vivo imaging and RIT studies. CONCLUSION As a drug platform for radiotheranostics, 89Zr/177Lu-radiolabeled anti-TROP-2 antibody NY003 could not only non-invasively screen the potential beneficiaries for optimizing SG ADC treatment but also suppressed the growth of TROP-2 positive TNBC tumors, strongly supporting the theranostic potential of [89Zr]Zr-DFO-NY003/[177Lu]Lu-DTPA-NY003.
Collapse
Affiliation(s)
- Yitian Wu
- Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Tuo Li
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Xianzhong Zhang
- Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hongli Jing
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Fang Li
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| | - Li Huo
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
11
|
Huang W, Liang C, Zhang Y, Zhang D, An S, Wu Q, Li J, Zhao H, Wang C, Cui J, Bao Z, Huang G, Wei W, Liu J. ImmunoPET imaging of Trop2 expression in solid tumors with nanobody tracers. Eur J Nucl Med Mol Imaging 2024; 51:380-394. [PMID: 37792026 DOI: 10.1007/s00259-023-06454-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
PURPOSE The high expression of the transmembrane glycoprotein trophoblast cell-surface antigen 2 (Trop2) was strongly associated with the progression of solid tumors, including pancreatic and gastric cancers. Our study aimed to construct Trop2-specific immuno-positron emission tomography (immunoPET) probes and assess the diagnostic abilities in preclinical pancreatic and gastric cancer models. METHODS The expression of Trop2 in pancreatic cancer was determined by single-cell sequencing and immunohistochemistry on tissue microarray (TMA). Flow cytometry was used to screen the expression of Trop2 in pancreatic cancer cell lines. Two nanobodies (i.e., RTD98 and RTD01) targeting Trop2 were developed and labeled with gallium-68 (68Ga, T1/2 = 1.1 h) to construct immunoPET imaging probes. The agents were researched in cell-derived pancreatic and patient-derived gastric cancer models expressing varying Trop2. RESULTS Single-cell sequencing results showed high expression of Trop2 in pancreatic ductal cells as well as acinar cells and immunohistochemical staining of TMA from pancreatic cancers showed significantly higher expression of Trop2 in cancerous than in paracancerous tissues. ImmunoPET utilizing [68Ga]Ga-NOTA-RTD98 could clearly delineate subcutaneous tumors, both in cell-derived pancreatic cancer models and patient-derived gastric cancer models, superior to imaging using [18F]-FDG or a non-specific probe [68Ga]Ga-NOTA-RTD161. Another probe with improved pharmacokinetics targeting Trop2, [68Ga]Ga-NOTA-RTD01, was further prepared and showed advantageous diagnostic capabilities in preclinical pancreatic cancer models. CONCLUSION In the work, we reported two nanobody tracers targeting human Trop2 which may facilitate better use of Trop2-targeted therapeutics by noninvasively displaying expression dynamics of the target.
Collapse
Affiliation(s)
- Wei Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Chenyi Liang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Di Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Shuxian An
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Qianyun Wu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Jiajin Li
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Haitao Zhao
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Cheng Wang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Jiujie Cui
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Zhouzhou Bao
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China.
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China.
| |
Collapse
|
12
|
Zhou DD, Sun LP, Yu Q, Zhai XT, Zhang LW, Gao RJ, Zhen YS, Wang R, Miao QF. Elucidating the development, characterization, and antitumor potential of a novel humanized antibody against Trop2. Int J Biol Macromol 2023; 253:127105. [PMID: 37769779 DOI: 10.1016/j.ijbiomac.2023.127105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/09/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Trophoblast cell surface antigen 2 (Trop2) has emerged as a potential target for effective cancer therapy. In this study, we report a novel anti-Trop2 antibody IMB1636, developed using hybridoma technology. It exhibited high affinity and specificity (KD = 0.483 nM) in binding both antigens and cancer cells, as well as human tumor tissues. hIMB1636 could induce endocytosis, and enabled targeted delivery to the tumor site with an in vivo retention time of 264 h. The humanized antibody hIMB1636, acquired using CDR grafting, exhibited the potential to directly inhibit cancer cell proliferation and migration, and to induce ADCC effects. Moreover, hIMB1636 significantly inhibited the growth of MDA-MB-468 xenograft tumors in vivo. Mechanistically, hIMB1636 induced cell cycle arrest and apoptosis by regulating cyclin-related proteins and the caspase cascade. In comparison to commercialized sacituzumab, hIMB1636 recognized a conformational epitope instead of a linear one, bound to antigen and cancer cells with similar binding affinity, induced significantly more potent ADCC effects against cancer cells, and displayed superior antitumor activities both in vitro and in vivo. The data presented in this study highlights the potential of hIMB1636 as a carrier for the formulation of antibody-based conjugates, or as a promising candidate for anticancer therapy.
Collapse
Affiliation(s)
- Dan-Dan Zhou
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li-Ping Sun
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qun Yu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Tian Zhai
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lan-Wen Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rui-Juan Gao
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yong-Su Zhen
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rong Wang
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qing-Fang Miao
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
13
|
Sun LP, Bai WQ, Zhou DD, Wu XF, Zhang LW, Cui AL, Xie ZH, Gao RJ, Zhen YS, Li ZR, Miao QF. hIMB1636-MMAE, a Novel TROP2-Targeting Antibody-Drug Conjugate Exerting Potent Antitumor Efficacy in Pancreatic Cancer. J Med Chem 2023; 66:14700-14715. [PMID: 37883180 DOI: 10.1021/acs.jmedchem.3c01210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Herein, we first prepared a novel anti-TROP2 antibody-drug conjugate (ADC) hIMB1636-MMAE using hIMB1636 antibody chemically coupled to monomethyl auristatin E (MMAE) via a Valine-Citrulline linker and then reported its characteristics and antitumor activity. With a DAR of 3.92, it binds specifically to both recombinant antigen (KD ∼ 0.687 nM) and cancer cells and could be internalized by target cells and selectively kill them with IC50 values at nanomolar/subnanomolar levels by inducing apoptosis and G2/M phase arrest. hIMB1636-MMAE also inhibited cell migration, induced ADCC effects, and had bystander effects. It displayed significant tumor-targeting ability and excellent tumor-suppressive effects in vivo, resulting in 5/8 tumor elimination at 12 mg/kg in the T3M4 xenograft model or complete tumor disappearance at 10 mg/kg in BxPc-3 xenografts in nude mice. Its half-life in mice was about 87 h. These data suggested that hIMB1636-MMAE was a promising candidate for the treatment of pancreatic cancer with TROP2 overexpression.
Collapse
Affiliation(s)
- Li-Ping Sun
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Wei-Qi Bai
- Department of Organic Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Dan-Dan Zhou
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Xiao-Fan Wu
- Department of Organic Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Lan-Wen Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - A-Long Cui
- Department of Organic Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Zi-Hui Xie
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Rui-Juan Gao
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Yong-Su Zhen
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Zhuo-Rong Li
- Department of Organic Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Qing-Fang Miao
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| |
Collapse
|
14
|
Yang Q, Huang W, Hsu JC, Song L, Sun X, Li C, Cai W, Kang L. CD146-targeted nuclear medicine imaging in cancer: state of the art. VIEW 2023; 4:20220085. [PMID: 38076327 PMCID: PMC10703309 DOI: 10.1002/viw.20220085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/02/2023] [Indexed: 01/02/2024] Open
Abstract
The transmembrane glycoprotein adhesion molecule CD146 is overexpressed in a wide variety of cancers. Through molecular imaging, a specific biomarker's expression and distribution can be viewed in vivo non-invasively. Radionuclide-labeled monoclonal antibodies or relevant fragments that target CD146 may find potential applications in cancer imaging, thereby offering tremendous value in cancer diagnosis, staging, prognosis evaluation, and prediction of drug resistance. This review discusses the recent developments of CD146-targeted molecular imaging via nuclear medicine, especially in malignant melanoma, brain tumor, lung cancer, liver cancer, breast cancer, and pancreatic cancer. Many studies have proved that CD146 targeting may present a promising strategy for cancer theranostics.
Collapse
Affiliation(s)
- Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Jessica C. Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States of America
| | - Lele Song
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Xinyao Sun
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Cuicui Li
- Department of Nuclear Medicine, Beijing Friendship Hospital of Capital Medical University, Beijing 100050, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States of America
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
15
|
Duan H, Li L, He S. Advances and Prospects in the Treatment of Pancreatic Cancer. Int J Nanomedicine 2023; 18:3973-3988. [PMID: 37489138 PMCID: PMC10363367 DOI: 10.2147/ijn.s413496] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
Pancreatic cancer is a highly malignant and incurable disease, characterized by its aggressive nature and high fatality rate. The most common type is pancreatic ductal adenocarcinoma (PDAC), which has poor prognosis and high mortality rate. Current treatments for pancreatic cancer mainly encompass surgery, chemotherapy, radiotherapy, targeted therapy, and combination regimens. However, despite efforts to improve prognosis, and the 5-year survival rate for pancreatic cancer remains very low. Therefore, it's urgent to explore novel therapeutic approaches. With the rapid development of therapeutic strategies in recent years, new ideas have been provided for treating pancreatic cancer. This review expositions the advancements in nano drug delivery system, molecular targeted drugs, and photo-thermal treatment combined with nanotechnology for pancreatic cancer. It comprehensively analyzes the prospects of combined drug delivery strategies for treating pancreatic cancer, aiming at a deeper understanding of the existing drugs and therapeutic approaches, promoting the development of new therapeutic drugs, and attempting to enhance the therapeutic effect for patients with this disease.
Collapse
Affiliation(s)
- Huaiyu Duan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Li Li
- Department of Hepatobiliary Pancreatic Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, People’s Republic of China
| | - Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| |
Collapse
|
16
|
Wang Q, Wang J, Yan H, Li Z, Wang K, Kang F, Tian J, Zhao X, Yun SH. An ultra-small bispecific protein augments tumor penetration and treatment for pancreatic cancer. Eur J Nucl Med Mol Imaging 2023; 50:1765-1779. [PMID: 36692541 DOI: 10.1007/s00259-023-06115-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023]
Abstract
PURPOSE The once highly anticipated antibody-based pathway-targeted therapies have not achieved promising outcomes for deadly pancreatic ductal adenocarcinoma (PDAC), mainly due to drugs' low intrinsic anticancer activity and poor penetration across the dense physiological barrier. This study aims to develop an ultra-small-sized, EGFR/VEGF bispecific therapeutic protein to largely penetrate deep tumor tissue and effectively inhibit PDAC tumor growth in vivo. METHODS The bispecific protein, Bi-fp50, was constructed by a typical synthetic biology method and labeled with fluorescent dyes for in vitro and in vivo imaging. Physicochemical properties, protein dual-binding affinity, and specificity of the Bi-fp50 were evaluated in several PDAC cell lines. In vitro quantitatively and qualitatively anticancer activity of Bi-fp50 was assessed by live/dead staining, MTT assay, and flow cytometry. In vivo pharmacokinetic and biodistribution were evaluated using blood biopsy samples and near-infrared fluorescence imaging. In vivo real-time tracking of Bi-fp50 in the local tumor was conducted by fibered confocal fluorescence microscopy. The subcutaneous PDAC tumor model was used to assess the in vivo antitumor effect of Bi-fp50. RESULTS Bi-fp50 with an ultra-small size of 50 kDa (5 ~ 6 nm) showed an excellent binding ability to VEGF and EGFR simultaneously and had enhanced, accumulated binding capability for Bxpc3 PDAC cells compared with anti-VEGF scFv and anti-EGFR scFv alone. Additionally, bi-fp50 significantly inhibited the proliferation and growth of Bxpc3 and Aspc1 PDAC cells even under a relatively low concentration (0.3 µM). It showed synergistically enhanced therapeutic effects relative to two individual scFv and Bi-fp50x control in vitro. The half-life of blood clearance of Bi-fp50 was 4.33 ± 0.23 h. After intravenous injection, Bi-fp50 gradually penetrated the deep tumor, widely distributed throughout the whole tissue, and primarily enriched in the tumor with nearly twice the accumulation than scFv2 in the orthotopic PDAC tumor model. Furthermore, the Bi-fp50 protein could induce broad apoptosis in the whole tumor and significantly inhibited tumor growth 3 weeks after injection in vivo without other noticeable side effects. CONCLUSION The proof-of-concept study demonstrated that the ultra-small-sized, bispecific protein Bi-fp50 could be a potential tumor suppressor and an efficient, safe theranostic tool for treating PDAC tumors.
Collapse
Affiliation(s)
- Qian Wang
- Department of Diagnostic Imaging, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Acadamy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Jingyun Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Hao Yan
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, MA, 02139, USA. .,Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
| | - Zheng Li
- Yi-Chuang Institute of Biotechnology Industry, Beijing, 101111, People's Republic of China
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation and Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Feiyu Kang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation and Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
| | - Xinming Zhao
- Department of Diagnostic Imaging, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Acadamy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China.
| | - Seok-Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, MA, 02139, USA
| |
Collapse
|