1
|
Ma Z, Xu Y, Lian P, Wu Y, Liu K, Zhang Z, Tang Z, Yang X, Cao X. Alpha-synuclein Fibrils Inhibit Activation of the BDNF/ERK Signaling Loop in the mPFC to Induce Parkinson's Disease-like Alterations with Depression. Neurosci Bull 2024:10.1007/s12264-024-01323-x. [PMID: 39609371 DOI: 10.1007/s12264-024-01323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 11/30/2024] Open
Abstract
Depression (Dep) is one of the most common concomitant symptoms of Parkinson's disease (PD), but there is a lack of detailed pathologic evidence for the occurrence of PD-Dep. Currently, the management of symptoms from both conditions using conventional pharmacological interventions remains a formidable task. In this study, we found impaired activation of extracellular signal-related kinase (ERK), reduced levels of transcription and translation, and decreased expression of brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex (mPFC) of PD-Dep rats. We demonstrated that the abnormal phosphorylation of α-synuclein (pS129) induced tropomyosin-related kinase receptor type B (TrkB) retention at the neuronal cell membrane, leading to BDNF/TrkB signaling dysfunction. We chose SEW2871 as an ameliorator to upregulate ERK phosphorylation. The results showed that PD-Dep rats exhibited improvement in behavioral manifestations of PD and depression. In addition, a reduction in pS129 was accompanied by a restoration of the function of the BDNF/ERK signaling loop in the mPFC of PD-Dep rats.
Collapse
Affiliation(s)
- Zhuoran Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Piaopiao Lian
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Yi Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Ke Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Zhaoyuan Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Zhicheng Tang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xiaoman Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430000, China.
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
2
|
Niemi KJ, Sunikka J, Soltanian-Zadeh H, Davoodi-Bojd E, Rahmim A, Kaasinen V, Joutsa J. Rest Tremor in Parkinson's Disease Is Associated with Ipsilateral Striatal Dopamine Transporter Binding. Mov Disord 2024; 39:2014-2025. [PMID: 39225564 DOI: 10.1002/mds.29997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The cardinal motor symptoms of Parkinson's disease (PD) include rigidity, bradykinesia, and rest tremor. Rigidity and bradykinesia correlate with contralateral nigrostriatal degeneration and striatal dopamine deficit, but association between striatal dopamine function and rest tremor has remained unclear. OBJECTIVE The aim of this study was to investigate the possible link between dopamine function and rest tremor using Parkinson's Progression Markers Initiative dataset, the largest prospective neuroimaging cohort of patients with PD. METHODS Clinical, [123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane ([123I]FP-CIT) single photon emission computed tomography (SPECT), and structural magnetic resonance imaging data from 354 early PD patients and 166 healthy controls were included in this study. We employed a novel approach allowing nonlinear registration of individual scans accurately to a standard space and voxelwise analyses of the association between motor symptoms and striatal dopamine transporter (DAT) binding. RESULTS Severity of both rigidity and bradykinesia was negatively associated with contralateral striatal DAT binding (PFWE < 0.05 [FWE, family-wise error corrected]). However, rest tremor amplitude was positively associated with increased ipsilateral DAT binding (PFWE < 0.05). The association between rest tremor and binding remained the same controlling for Hoehn & Yahr stage, Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III score, bradykinesia-rigidity score, or motor phenotype. The association between rest tremor and binding was independent of bradykinesia-rigidity and replicated using 2-year follow-up data (PFWE < 0.05). CONCLUSION In agreement with the existing literature, we did not find a consistent association between rest tremor and contralateral dopamine defect. However, our results demonstrate a link between rest tremor and increased or less decreased ipsilateral DAT binding. Our findings provide novel information about the association between dopaminergic function and parkinsonian rest tremor. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kalle J Niemi
- Turku Brain and Mind Center, University of Turku, Turku, Finland
- Clinical Neurosciences, Faculty of Medicine, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Satasairaala Neurology Department, Satakunta Wellbeing Services County, Pori, Finland
| | - Juha Sunikka
- Turku Brain and Mind Center, University of Turku, Turku, Finland
| | - Hamid Soltanian-Zadeh
- Department of Radiology and Research Administration, Henry Ford Health System, Detroit, Michigan, USA
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Esmaeil Davoodi-Bojd
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| | - Arman Rahmim
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Radiology and Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Valtteri Kaasinen
- Turku Brain and Mind Center, University of Turku, Turku, Finland
- Clinical Neurosciences, Faculty of Medicine, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Juho Joutsa
- Turku Brain and Mind Center, University of Turku, Turku, Finland
- Clinical Neurosciences, Faculty of Medicine, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| |
Collapse
|
3
|
Booij J, Yağci E, Sheikh ZH, Chahid Y. CYP3A4 inhibitors may influence the quantification of [ 123I]I-FP-CIT SPECT scans. Eur J Nucl Med Mol Imaging 2024; 51:3305-3310. [PMID: 38730086 PMCID: PMC11369057 DOI: 10.1007/s00259-024-06748-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
PURPOSE [123I]I-FP-CIT SPECT is an imaging tool to support the diagnosis of parkinsonian syndromes characterized by nigrostriatal dopaminergic degeneration. After intravenous injection, [123I]I-FP-CIT is metabolized for a small part by the enzyme CYP3A4, leading to the formation of [123I]I-nor-β-CIT. [123I]I-nor-β-CIT passes the blood-brain barrier and has a very high affinity for the serotonin transporter (SERT). The SERT is expressed in the striatum and cortical areas. So, at least theoretical, the use of frequently used CYP3A4 inhibitors (like amiodarone) may influence the specific to non-specific striatal [123I]I-FP-CIT ratio. Here we tested this novel hypothesis. METHODS Using a retrospective design, we determined the specific to non-specific striatal [123I]I-FP-CIT ratio (using BRASS software) in 6 subjects that were using an CYP3A4 inhibitor and 18 matched controls. Only subjects were included with a normal rated [123I]I-FP-CIT SPECT scan, and all participants were scanned on the same brain-dedicated SPECT system. RESULTS The specific to non-specific (assessed in the occipital cortex) striatal [123I]I-FP-CIT binding ratio was significantly higher in CYP3A4 users than in the control group (3.52 ± 0.33 vs. 2.90 ± 0.78, p < 0.001). CONCLUSION Our preliminary data suggest that the use of CYP3A4 inhibitors may influence striatal [123I]I-FP-CIT binding ratios. This information, when reproduced in larger studies, may be relevant for studies in which quantification of [123I]I-FP-CIT SPECT imaging is used for diagnostic or research purposes.
Collapse
Affiliation(s)
- Jan Booij
- Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
- Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands.
| | - Eda Yağci
- Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Pharmacy, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Zulfiqar H Sheikh
- Pharmaceutical Diagnostics, GE Healthcare, Chalfont Saint Giles, Nightingales Ln, UK
| | - Youssef Chahid
- Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Pharmacy, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Saarinen EK, Kuusimäki T, Lindholm K, Niemi K, Honkanen EA, Noponen T, Seppänen M, Ihalainen T, Murtomäki K, Mertsalmi T, Jaakkola E, Myller E, Eklund M, Nuuttila S, Levo R, Chaudhuri KR, Antonini A, Vahlberg T, Lehtonen M, Joutsa J, Scheperjans F, Kaasinen V. Dietary Caffeine and Brain Dopaminergic Function in Parkinson Disease. Ann Neurol 2024; 96:262-275. [PMID: 38767012 DOI: 10.1002/ana.26957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVE This study was undertaken to investigate the effects of dietary caffeine intake on striatal dopamine function and clinical symptoms in Parkinson disease in a cross-sectional and longitudinal setting. METHODS One hundred sixty-three early Parkinson disease patients and 40 healthy controls were investigated with [123I]FP-CIT single photon emission computed tomography, and striatal dopamine transporter binding was evaluated in association with the level of daily coffee consumption and clinical measures. After a median interval of 6.1 years, 44 patients with various caffeine consumption levels underwent clinical and imaging reexamination including blood caffeine metabolite profiling. RESULTS Unmedicated early Parkinson disease patients with high coffee consumption had 8.3 to 15.4% lower dopamine transporter binding in all studied striatal regions than low consumers, after accounting for age, sex, and motor symptom severity. Higher caffeine consumption was further associated with a progressive decline in striatal binding over time. No significant effects of caffeine on motor function were observed. Blood analyses demonstrated a positive correlation between caffeine metabolites after recent caffeine intake and dopamine transporter binding in the ipsilateral putamen. INTERPRETATION Chronic caffeine intake prompts compensatory and cumulative dopamine transporter downregulation, consistent with caffeine's reported risk reduction in Parkinson disease. However, this decline does not manifest in symptom changes. Transiently increased dopamine transporter binding after recent caffeine intake has implications for dopaminergic imaging guidelines. ANN NEUROL 2024;96:262-275.
Collapse
Affiliation(s)
- Emmi K Saarinen
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Tomi Kuusimäki
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Kari Lindholm
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Kalle Niemi
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Emma A Honkanen
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Tommi Noponen
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Marko Seppänen
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Toni Ihalainen
- Department of Clinical Physiology and Nuclear Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Kirsi Murtomäki
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Helsinki, Finland
| | - Tuomas Mertsalmi
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Helsinki, Finland
| | - Elina Jaakkola
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Elina Myller
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Helsinki, Finland
| | - Mikael Eklund
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Simo Nuuttila
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Reeta Levo
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Helsinki, Finland
| | - Kallol Ray Chaudhuri
- Parkinson Foundation International Centre of Excellence, Kings College Hospital and Kings College London, Institute of Psychiatry, Psychology, and Neuroscience, Kings College, London, UK
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Center for Rare Neurological Diseases, Padua Neuroscience Center, Department of Neuroscience, University of Padua, Padua, Italy
| | - Tero Vahlberg
- Department of Biostatistics, University of Turku and Turku University Hospital, Turku, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juho Joutsa
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Turku Brain and Mind Center, University of Turku, Turku, Finland
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Helsinki, Finland
| | - Valtteri Kaasinen
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
5
|
Takenoshita S, Terada S, Kojima K, Nishikawa N, Miki T, Yokota O, Fujiwara M, Takaki M. Potential dopaminergic deficit in patients with geriatric psychiatric disorders as revealed by DAT-SPECT: a cross-sectional study. BMJ MENTAL HEALTH 2024; 27:e301042. [PMID: 39079888 PMCID: PMC11293386 DOI: 10.1136/bmjment-2024-301042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/05/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND It has been reported that patients with geriatric psychiatric disorders include many cases of the prodromal stages of neurodegenerative diseases. Abnormal 123I-2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl) nortropane dopamine transporter single-photon emission computed tomography (DAT-SPECT) reveals a nigrostriatal dopaminergic deficit and is considered useful to detect dementia with Lewy bodies and Parkinson's disease as well as progressive supranuclear palsy and corticobasal degeneration. We aimed to determine the proportion of cases that are abnormal on DAT-SPECT in patients with geriatric psychiatric disorders and to identify their clinical profile. METHODS The design is a cross-sectional study. Clinical findings of 61 inpatients aged 60 years or older who underwent DAT-SPECT and had been diagnosed with psychiatric disorders, but not neurodegenerative disease or dementia were analysed. RESULTS 36 of 61 (59%) had abnormal results on DAT-SPECT. 54 of 61 patients who had DAT-SPECT (89%) had undergone 123I-metaiodobenzylguanidine myocardial scintigraphy (123I-MIBG scintigraphy); 12 of the 54 patients (22.2%) had abnormal findings on 123I-MIBG scintigraphy. There were no cases that were normal on DAT-SPECT and abnormal on 123I-MIBG scintigraphy. DAT-SPECT abnormalities were more frequent in patients with late-onset (55 years and older) psychiatric disorders (69.0%) and depressive disorder (75.7%), especially late-onset depressive disorder (79.3%). CONCLUSION Patients with geriatric psychiatric disorders include many cases showing abnormalities on DAT-SPECT. It is suggested that these cases are at high risk of developing neurodegenerative diseases characterised by a dopaminergic deficit. It is possible that patients with geriatric psychiatric disorders with abnormal findings on DAT-SPECT tend to show abnormalities on DAT-SPECT first rather than on 123I-MIBG scintigraphy.
Collapse
Affiliation(s)
| | - Seishi Terada
- Department of Neuropsychiatry, Okayama University Faculty of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuhide Kojima
- Department of Radiology, Okayama University Hospital, Okayama, Japan
| | - Naoto Nishikawa
- Department of Neuropsychiatry, Okayama University Hospital, Okayama, Japan
| | - Tomoko Miki
- Department of Neuropsychiatry, Okayama University Hospital, Okayama, Japan
| | - Osamu Yokota
- Department of Neuropsychiatry, Okayama University Faculty of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Psychiatry, Kinoko Espoir Hospital, Kasaoka, Okayama, Japan
| | - Masaki Fujiwara
- Department of Neuropsychiatry, Okayama University Hospital, Okayama, Japan
| | - Manabu Takaki
- Department of Neuropsychiatry, Okayama University Faculty of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
6
|
Kang IH, Bega D. The Impact of Drug Interactions on the Results of DAT-SPECT Imaging in a Specialty Movement Disorders Practice: A Retrospective Analysis of Outcomes. NEURODEGENER DIS 2024; 24:91-96. [PMID: 38952120 DOI: 10.1159/000540105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024] Open
Abstract
INTRODUCTION DAT-SPECT imaging is approved as a diagnostic tool for the evaluation of suspected Parkinsonian syndromes, but the FDA-approved package insert lists 16 potential drugs that may interfere with the image obtained. The clinical impact of these drugs on imaging results has not been established. This study aimed to determine the accuracy of DAT-SPECT imaging in assessing presynaptic dopaminergic denervation in the setting of these drugs. METHODS This is a retrospective chart review of patients at a single center who underwent DAT-SPECT imaging while taking "contraindicated" drugs between December 2012 and December 2022. RESULTS A total of 1,224 charts were screened, and 153 (12.5%) charts met the inclusion criteria. Bupropion (32%, n = 49) and sertraline (26%, n = 40) were the most common contraindicated drugs. The false-positive rate was 9.2%. CONCLUSION This retrospective analysis supports the concern that certain drugs may interfere with DAT-SPECT imaging results, leading to potential false positives. This has implications for how clinicians interpret DAT-SPECT imaging in patients taking these medications and whether they should advise patients to stop these medications before a scan is performed.
Collapse
Affiliation(s)
| | - Danny Bega
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
7
|
Quintas S, Sanles‐Falagan R, Berbís MÁ. I 123-FP-CIT (DaTSCAN) SPECT beyond the Most Common Causes of Parkinsonism: A Systematic Review. Mov Disord Clin Pract 2024; 11:613-625. [PMID: 38693679 PMCID: PMC11145110 DOI: 10.1002/mdc3.14055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/23/2024] [Accepted: 03/30/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND As the diagnosis of Parkinson's disease (PD) is fundamentally clinical, the usefulness of ioflupane (123I) single-photon emission computed tomography (SPECT) or DaTSCAN as a diagnostic tool has been a matter of debate for years. The performance of DaTSCAN is generally recommended in the follow-up of patients with a clinically uncertain diagnosis, especially in those with a suspected essential tremor, drug-induced parkinsonism, or vascular parkinsonism. However, there is a dearth of DaTSCAN findings regarding neurodegenerative parkinsonisms besides PD and atypical parkinsonisms. To date, a specific nigrostriatal dopamine uptake pattern that would help differentiate PD from the most frequent atypical parkinsonisms is yet to be described. This fact is further complicated by the possible visualization of abnormalities in the uptake pattern in patients with rarer neurodegenerative parkinsonisms. OBJECTIVES We aimed to summarize the current literature regarding DaTSCAN findings in patients with rare neurodegenerative parkinsonisms. METHODS The PubMed database was systematically screened for studies in English or Spanish up to October 15, 2023, using search terms "DaTSCAN", "ioflupane", "DaT-SPECT", "123I-FP-CIT SPECT", "dopamine transporter imaging", and "[123I] FP-CIT SPECT". Duplicated publications and studies regarding PD, atypical parkinsonisms, dystonia-parkinsonism, essential tremor, and parkinsonism due to non-degenerative causes were excluded. RESULTS The obtained results were reviewed and summarized, including DaTSCAN findings in fragile X-associated tremor/ataxia syndrome, prion diseases, Huntington's disease, spinocerebellar ataxia, hereditary spastic paraparesis, metabolic disorders, and other diseases (anti-IgLON5 disease, ring chromosome 20 syndrome, chorea-acanthocytosis, and neuronal ceroid lipofuscinosis). CONCLUSIONS This review highlights the need to determine in the future the utility and cost-effectiveness of DaTSCAN, both as a diagnostic and a prognostic tool, in patients with parkinsonian symptoms in rare neurodegenerative diseases.
Collapse
Affiliation(s)
- Sonia Quintas
- Department of NeurologyLa Princesa University HospitalMadridSpain
| | | | - M. Álvaro Berbís
- Department of RadiologyHT Médica, San Juan de Dios HospitalCórdobaSpain
- Faculty of MedicineAutonomous University of MadridMadridSpain
| |
Collapse
|
8
|
Sung C, Oh SJ, Kim JS. Imaging Procedure and Clinical Studies of [ 18F]FP-CIT PET. Nucl Med Mol Imaging 2024; 58:185-202. [PMID: 38932763 PMCID: PMC11196481 DOI: 10.1007/s13139-024-00840-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/15/2023] [Accepted: 01/05/2024] [Indexed: 06/28/2024] Open
Abstract
N-3-[18F]fluoropropyl-2β-carbomethoxy-3β-4-iodophenyl nortropane ([18F]FP-CIT) is a radiopharmaceutical for dopamine transporter (DAT) imaging using positron emission tomography (PET) to detect dopaminergic neuronal degeneration in patients with parkinsonian syndrome. [18F]FP-CIT was granted approval by the Ministry of Food and Drug Safety in 2008 as the inaugural radiopharmaceutical for PET imaging, and it has found extensive utilization across numerous institutions in Korea. This review article presents an imaging procedure for [18F]FP-CIT PET to aid nuclear medicine physicians in clinical practice and systematically reviews the clinical studies associated with [18F]FP-CIT PET.
Collapse
Affiliation(s)
- Changhwan Sung
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505 Republic of Korea
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505 Republic of Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505 Republic of Korea
| |
Collapse
|
9
|
O’Shea DM, Arkhipenko A, Galasko D, Goldman JG, Sheikh ZH, Petrides G, Toledo JB, Galvin JE. Practical use of DAT SPECT imaging in diagnosing dementia with Lewy bodies: a US perspective of current guidelines and future directions. Front Neurol 2024; 15:1395413. [PMID: 38711561 PMCID: PMC11073567 DOI: 10.3389/fneur.2024.1395413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
Background Diagnosing Dementia with Lewy Bodies (DLB) remains a challenge in clinical practice. The use of 123I-ioflupane (DaTscan™) SPECT imaging, which detects reduced dopamine transporter (DAT) uptake-a key biomarker in DLB diagnosis-could improve diagnostic accuracy. However, DAT imaging is underutilized despite its potential, contributing to delays and suboptimal patient management. Methods This review evaluates DLB diagnostic practices and challenges faced within the U.S. by synthesizing information from current literature, consensus guidelines, expert opinions, and recent updates on DaTscan FDA filings. It contrasts DAT SPECT with alternative biomarkers, provides recommendations for when DAT SPECT imaging may be indicated and discusses the potential of emerging biomarkers in enhancing diagnostic approaches. Results The radiopharmaceutical 123I-ioflupane for SPECT imaging was initially approved in Europe (2000) and later in the US (2011) for Parkinsonism/Essential Tremor. Its application was extended in 2022 to include the diagnosis of DLB. DaTscan's diagnostic efficacy for DLB, with its sensitivity, specificity, and predictive values, confirms its clinical utility. However, US implementation faces challenges such as insurance barriers, costs, access issues, and regional availability disparities. Conclusion 123I-ioflupane SPECT Imaging is indicated for DLB diagnosis and differential diagnosis of Alzheimer's Disease, particularly in uncertain cases. Addressing diagnostic obstacles and enhancing physician-patient education could improve and expedite DLB diagnosis. Collaborative efforts among neurologists, geriatric psychiatrists, psychologists, and memory clinic staff are key to increasing diagnostic accuracy and care in DLB management.
Collapse
Affiliation(s)
- Deirdre M. O’Shea
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami, Miller School of Medicine, Coral Gables, FL, United States
| | | | - Douglas Galasko
- Department of Neurosciences, UC San Diego, San Diego, CA, United States
| | - Jennifer G. Goldman
- JPG Enterprises LLC, Chicago, IL, United States
- Barrow Neurological Institute, Phoenix, AZ, United States
| | | | - George Petrides
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Jon B. Toledo
- Nantz National Alzheimer Center, Stanley Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| | - James E. Galvin
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami, Miller School of Medicine, Coral Gables, FL, United States
| |
Collapse
|
10
|
Piatkova Y, Doyen M, Heyer S, Tahmazov A, Frismand S, Hopes L, Imbert L, Verger A. Effects of medication on dopamine transporter imaging using [ 123I]I-FP-CIT SPECT in routine practice. Eur J Nucl Med Mol Imaging 2024; 51:1323-1332. [PMID: 38114618 DOI: 10.1007/s00259-023-06565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE Dopamine transporter (DAT) imaging is used to support the diagnosis of neurodegenerative parkinsonian disorders. Specific medications have been reported to confound the interpretation of [123I]I-FP-CIT SPECT scans, but there is limited data. The aim of the current study is to identify potential medication effects on the interpretation of [123I]I-FP-CIT SPECT scans in routine practice. MATERIALS AND METHODS Consecutive patients undergoing a [123I]I-FP-CIT SPECT/CT scan on a 360° CZT camera between September 2019 and December 2022 were included. An exhaustive review of patient medications (antidepressants, antipsychotics, anti-epileptics, anti-parkinsonians, benzodiazepines, lithium, opioids, and stimulants) was performed. Two experienced nuclear physicians, blinded to the medication reports, interpreted the [123I]I-FP-CIT SPECT scans visually and a semi-quantitative analysis was performed using a local normal database. RESULTS The study included 305 patients (71.0 ± 10.4, 135 women) and 145 (47.5%) visually interpreted normal scans. In normal scans, the striatum/occiput radioligand uptake ratio was decreased by noradrenergic and specific serotonergic antidepressants (NASSAs) (n = 15, z-score of - 0.93) and opioid medication (tramadol, n = 6, z-score of - 0.85) and was associated with a younger age in the multivariate analysis. In the overall population, the striatum/occiput ratio was influenced by NASSAs and associated with consensual visual analysis, age, sex, and anti-parkinsonian medications related to the status of the disease. CONCLUSION Our study confirms the potential impact of antidepressant (NASSA) and opioid (tramadol) medications on the semi-quantitative analysis of [123I]I-FP-CIT SPECT scans. However, when performing a visual analysis, only NASSAs significantly impacted the interpretation of [123I]I-FP-CIT SPECT scans.
Collapse
Affiliation(s)
- Yuliya Piatkova
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, F-54000, Nancy, France
| | - Matthieu Doyen
- IADI, INSERM U1254, Université de Lorraine, F-54000, Nancy, France
| | - Sébastien Heyer
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, F-54000, Nancy, France
| | - Ayaz Tahmazov
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, F-54000, Nancy, France
| | - Solene Frismand
- Department of Neurology, Université de Lorraine, CHRU de Nancy, F-54000, Nancy, France
| | - Lucie Hopes
- Department of Neurology, Université de Lorraine, CHRU de Nancy, F-54000, Nancy, France
| | - Laetitia Imbert
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, F-54000, Nancy, France
- IADI, INSERM U1254, Université de Lorraine, F-54000, Nancy, France
| | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, F-54000, Nancy, France.
- IADI, INSERM U1254, Université de Lorraine, F-54000, Nancy, France.
| |
Collapse
|
11
|
Itagaki S, Ohnishi T, Toda W, Sato A, Matsumoto J, Ito H, Ishii S, Yamakuni R, Miura I, Yabe H. Reduced dopamine transporter availability in drug-naive adult attention-deficit/hyperactivity disorder. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2024; 3:e177. [PMID: 38868484 PMCID: PMC11114433 DOI: 10.1002/pcn5.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/11/2024] [Accepted: 02/05/2024] [Indexed: 06/14/2024]
Abstract
Aim This study aimed to clarify the abnormalities in dopamine transporter (DAT) availability in drug-naive adult patients with attention-deficit/hyperactivity disorder (ADHD) and the relationship between ADHD symptoms and abnormalities in DAT availability. Methods Single-photon emission tomography (SPECT) was performed using iodine-123-β-carbomethoxy-3β-(4-iodophenyltropane) (I-123 β CIT) as a tracer to measure in vivo DAT availability in 20 drug-naive patients with ADHD [mean age ± standard deviation (SD)]: 25 ± 3.44 years; male:female = 11:9] and 20 age- and sex-matched healthy controls (HCs) (mean age ± SD: 23.9 ± 2.27 years). Comparisons of DAT availability between HCs and adult patients with ADHD and the association between symptom severity and DAT availability within the ADHD group were analyzed using Statistical Parametric Mapping 12. Results Drug-naive adults with ADHD showed significantly reduced DAT availability in the bilateral nucleus accumbens compared with HCs. Correlation analyses revealed a negative correlation between the severity of inattentive symptoms in adult patients with ADHD and DAT availability in the bilateral heads of the caudate nucleus, indicating the association between severe inattentive symptoms and lower DAT availability in the caudate nucleus. Conclusion In drug-naive adult patients with ADHD, DAT availability was reduced in the nucleus accumbens, an important part of the reward system. This finding indicates the importance of the DAT in the reward system in the pathogenesis of ADHD. Inattentiveness was associated with DAT availability in the caudate nucleus, suggesting involvement of the cortico-striato-thalamo-cortical circuit.
Collapse
Affiliation(s)
- Shuntaro Itagaki
- Department of NeuropsychiatryFukushima Medical UniversityFukushimaJapan
| | - Takashi Ohnishi
- Medical Affairs DivisionJanssen Pharmaceutical K.KTokyoJapan
| | - Wataru Toda
- Department of NeuropsychiatryFukushima Medical UniversityFukushimaJapan
| | - Aya Sato
- Department of NeuropsychiatryFukushima Medical UniversityFukushimaJapan
| | - Junya Matsumoto
- Department of NeuropsychiatryFukushima Medical UniversityFukushimaJapan
- Department of Pathology of Mental Diseases, National Institute of Mental HealthNational Center of Neurology and PsychiatryTokyoJapan
| | - Hiroshi Ito
- Department of Radiology and Nuclear MedicineFukushima Medical UniversityFukushimaJapan
| | - Shiro Ishii
- Department of Radiology and Nuclear MedicineFukushima Medical UniversityFukushimaJapan
| | - Ryo Yamakuni
- Department of Radiology and Nuclear MedicineFukushima Medical UniversityFukushimaJapan
| | - Itaru Miura
- Department of NeuropsychiatryFukushima Medical UniversityFukushimaJapan
| | - Hirooki Yabe
- Department of NeuropsychiatryFukushima Medical UniversityFukushimaJapan
- Department of Mind & Brain MedicineFukushima Medical UniversityFukushimaJapan
| |
Collapse
|
12
|
Mercer MK, Revels JW, Blacklock LC, Banks KP, Johnson LS, Lewis DH, Kuo PH, Wilson S, Elojeimy S. Practical Overview of 123I-Ioflupane Imaging in Parkinsonian Syndromes. Radiographics 2024; 44:e230133. [PMID: 38236751 DOI: 10.1148/rg.230133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Parkinsonian syndromes are a heterogeneous group of progressive neurodegenerative disorders involving the nigrostriatal dopaminergic pathway and are characterized by a wide spectrum of motor and nonmotor symptoms. These syndromes are quite common and can profoundly impact the lives of patients and their families. In addition to classic Parkinson disease, parkinsonian syndromes include multiple additional disorders known collectively as Parkinson-plus syndromes or atypical parkinsonism. These are characterized by the classic parkinsonian motor symptoms with additional distinguishing clinical features. Dopamine transporter SPECT has been developed as a diagnostic tool to assess the levels of dopamine transporters in the striatum. This imaging assessment, which uses iodine 123 (123I) ioflupane, can be useful to differentiate parkinsonian syndromes caused by nigrostriatal degeneration from other clinical mimics such as essential tremor or psychogenic tremor. Dopamine transporter imaging plays a crucial role in diagnosing parkinsonian syndromes, particularly in patients who do not clearly fulfill the clinical criteria for diagnosis. Diagnostic clarification can allow early treatment in appropriate patients and avoid misdiagnosis. At present, only the qualitative interpretation of dopamine transporter SPECT is approved by the U.S. Food and Drug Administration, but quantitative interpretation is often used to supplement qualitative interpretation. The authors provide an overview of patient preparation, common imaging findings, and potential pitfalls that radiologists and nuclear medicine physicians should know when performing and interpreting dopamine transporter examinations. Alternatives to 123I-ioflupane imaging for the evaluation of nigrostriatal degeneration are also briefly discussed. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material. See the invited commentary by Intenzo and Colarossi in this issue.
Collapse
Affiliation(s)
- Megan K Mercer
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, 96 Jonathan Lucas St, CSB 211N, MSC 323, Charleston, SC 29425 (M.K.M., S.E.); Department of Radiology, New York University Langone Health Long Island, New York, NY (J.W.R.); Department of Radiology, University of New Mexico, Albuquerque, NM (L.C.B.); Department of Radiology, Brooke Army Medical Center, San Antonio, Tex (K.P.B.); Department of Radiology, Eastern Virginia Medical School, Norfolk, Va (L.S.J., S.W.); Department of Radiology, University of Washington, Seattle, Wash (D.H.L.); and Departments of Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, Ariz (P.H.K.)
| | - Jonathan W Revels
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, 96 Jonathan Lucas St, CSB 211N, MSC 323, Charleston, SC 29425 (M.K.M., S.E.); Department of Radiology, New York University Langone Health Long Island, New York, NY (J.W.R.); Department of Radiology, University of New Mexico, Albuquerque, NM (L.C.B.); Department of Radiology, Brooke Army Medical Center, San Antonio, Tex (K.P.B.); Department of Radiology, Eastern Virginia Medical School, Norfolk, Va (L.S.J., S.W.); Department of Radiology, University of Washington, Seattle, Wash (D.H.L.); and Departments of Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, Ariz (P.H.K.)
| | - Lisa C Blacklock
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, 96 Jonathan Lucas St, CSB 211N, MSC 323, Charleston, SC 29425 (M.K.M., S.E.); Department of Radiology, New York University Langone Health Long Island, New York, NY (J.W.R.); Department of Radiology, University of New Mexico, Albuquerque, NM (L.C.B.); Department of Radiology, Brooke Army Medical Center, San Antonio, Tex (K.P.B.); Department of Radiology, Eastern Virginia Medical School, Norfolk, Va (L.S.J., S.W.); Department of Radiology, University of Washington, Seattle, Wash (D.H.L.); and Departments of Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, Ariz (P.H.K.)
| | - Kevin P Banks
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, 96 Jonathan Lucas St, CSB 211N, MSC 323, Charleston, SC 29425 (M.K.M., S.E.); Department of Radiology, New York University Langone Health Long Island, New York, NY (J.W.R.); Department of Radiology, University of New Mexico, Albuquerque, NM (L.C.B.); Department of Radiology, Brooke Army Medical Center, San Antonio, Tex (K.P.B.); Department of Radiology, Eastern Virginia Medical School, Norfolk, Va (L.S.J., S.W.); Department of Radiology, University of Washington, Seattle, Wash (D.H.L.); and Departments of Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, Ariz (P.H.K.)
| | - Lester S Johnson
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, 96 Jonathan Lucas St, CSB 211N, MSC 323, Charleston, SC 29425 (M.K.M., S.E.); Department of Radiology, New York University Langone Health Long Island, New York, NY (J.W.R.); Department of Radiology, University of New Mexico, Albuquerque, NM (L.C.B.); Department of Radiology, Brooke Army Medical Center, San Antonio, Tex (K.P.B.); Department of Radiology, Eastern Virginia Medical School, Norfolk, Va (L.S.J., S.W.); Department of Radiology, University of Washington, Seattle, Wash (D.H.L.); and Departments of Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, Ariz (P.H.K.)
| | - David H Lewis
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, 96 Jonathan Lucas St, CSB 211N, MSC 323, Charleston, SC 29425 (M.K.M., S.E.); Department of Radiology, New York University Langone Health Long Island, New York, NY (J.W.R.); Department of Radiology, University of New Mexico, Albuquerque, NM (L.C.B.); Department of Radiology, Brooke Army Medical Center, San Antonio, Tex (K.P.B.); Department of Radiology, Eastern Virginia Medical School, Norfolk, Va (L.S.J., S.W.); Department of Radiology, University of Washington, Seattle, Wash (D.H.L.); and Departments of Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, Ariz (P.H.K.)
| | - Phillip H Kuo
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, 96 Jonathan Lucas St, CSB 211N, MSC 323, Charleston, SC 29425 (M.K.M., S.E.); Department of Radiology, New York University Langone Health Long Island, New York, NY (J.W.R.); Department of Radiology, University of New Mexico, Albuquerque, NM (L.C.B.); Department of Radiology, Brooke Army Medical Center, San Antonio, Tex (K.P.B.); Department of Radiology, Eastern Virginia Medical School, Norfolk, Va (L.S.J., S.W.); Department of Radiology, University of Washington, Seattle, Wash (D.H.L.); and Departments of Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, Ariz (P.H.K.)
| | - Shannon Wilson
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, 96 Jonathan Lucas St, CSB 211N, MSC 323, Charleston, SC 29425 (M.K.M., S.E.); Department of Radiology, New York University Langone Health Long Island, New York, NY (J.W.R.); Department of Radiology, University of New Mexico, Albuquerque, NM (L.C.B.); Department of Radiology, Brooke Army Medical Center, San Antonio, Tex (K.P.B.); Department of Radiology, Eastern Virginia Medical School, Norfolk, Va (L.S.J., S.W.); Department of Radiology, University of Washington, Seattle, Wash (D.H.L.); and Departments of Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, Ariz (P.H.K.)
| | - Saeed Elojeimy
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, 96 Jonathan Lucas St, CSB 211N, MSC 323, Charleston, SC 29425 (M.K.M., S.E.); Department of Radiology, New York University Langone Health Long Island, New York, NY (J.W.R.); Department of Radiology, University of New Mexico, Albuquerque, NM (L.C.B.); Department of Radiology, Brooke Army Medical Center, San Antonio, Tex (K.P.B.); Department of Radiology, Eastern Virginia Medical School, Norfolk, Va (L.S.J., S.W.); Department of Radiology, University of Washington, Seattle, Wash (D.H.L.); and Departments of Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, Ariz (P.H.K.)
| |
Collapse
|
13
|
Tian M, Zuo C, Cahid Civelek A, Carrio I, Watanabe Y, Kang KW, Murakami K, Prior JO, Zhong Y, Dou X, Yu C, Jin C, Zhou R, Liu F, Li X, Lu J, Zhang H, Wang J. International consensus on clinical use of presynaptic dopaminergic positron emission tomography imaging in parkinsonism. Eur J Nucl Med Mol Imaging 2024; 51:434-442. [PMID: 37789188 DOI: 10.1007/s00259-023-06403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/15/2023] [Indexed: 10/05/2023]
Abstract
PURPOSE Presynaptic dopaminergic positron emission tomography (PET) imaging serves as an essential tool in diagnosing and differentiating patients with suspected parkinsonism, including idiopathic Parkinson's disease (PD) and other neurodegenerative and non-neurodegenerative diseases. The PET tracers most commonly used at the present time mainly target dopamine transporters (DAT), aromatic amino acid decarboxylase (AADC), and vesicular monoamine type 2 (VMAT2). However, established standards for the imaging procedure and interpretation of presynaptic dopaminergic PET imaging are still lacking. The goal of this international consensus is to help nuclear medicine practitioners procedurally perform presynaptic dopaminergic PET imaging. METHOD A multidisciplinary task group formed by experts from various countries discussed and approved the consensus for presynaptic dopaminergic PET imaging in parkinsonism, focusing on standardized recommendations, procedures, interpretation, and reporting. CONCLUSION This international consensus and practice guideline will help to promote the standardized use of presynaptic dopaminergic PET imaging in parkinsonism. It will become an international standard for this purpose in clinical practice.
Collapse
Affiliation(s)
- Mei Tian
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, 200235, China.
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Chuantao Zuo
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, 200235, China.
- National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - A Cahid Civelek
- Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins Medicine, Baltimore, MD, 21287, USA.
| | - Ignasi Carrio
- Research Institute and Department of Nuclear Medicine, Hospital Sant Pau, Autonomous University of Barcelona, 08025, Barcelona, Spain
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Koji Murakami
- Department of Radiology, Juntendo University Hospital, Tokyo, 113-8431, Japan
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Xiaofeng Dou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Congcong Yu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Fengtao Liu
- National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200235, China
| | - Xinyi Li
- National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200235, China
| | - Jiaying Lu
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, 200235, China
- National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
- The College of Biomedical Engineering and Instrument Science of Zhejiang University, Hangzhou, 310007, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310007, China.
| | - Jian Wang
- National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200235, China.
| |
Collapse
|
14
|
Arai K, Sakimoto H, Urata Y, Kariya M, Nakamura T, Ikehata T, Shimojima R, Furue N, Ishizuka T, Sano A, Nakamura M. Aging-Related Catatonia with Reversible Dopamine Transporter Dysfunction in Females with Depressive Symptoms: A Case Series. Am J Geriatr Psychiatry 2023; 31:1200-1205. [PMID: 37328402 DOI: 10.1016/j.jagp.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES The authors describe five depressive patients with initially decreased striatal accumulation of dopamine transporter (DAT) single-photon emission computed tomography (SPECT), which improved in parallel with clinical symptoms. METHODS Patients who exhibited decreased striatal accumulation and recovery of DATSPECT were identified among patients with the symptoms of depression. Their clinical and neuroimaging data were reviewed. RESULTS Five patients were identified. All patients were presenile or senile women who presented with catatonia subsequent to symptoms of depression that remitted with treatment. DAT-SPECT showed a decreased striatal accumulation in all patients, which increased after treatment. Two patients had met the diagnostic criteria of probable dementia with Lewy bodies (DLB), but no longer did so after their symptoms improved. CONCLUSIONS Reversible DAT dysfunction observed in this study suggests that reversible impairment of dopaminergic transmission in the striatum partly underlies catatonia. Careful consideration should be given to diagnosing DLB in patients with decreased DAT-SPECT accumulation, especially when catatonia is present.
Collapse
Affiliation(s)
- Kaoru Arai
- Department of Psychiatry (KA, HS, YU, MK, TN, TI, RS, NF, TI, AS, MN), Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hitoshi Sakimoto
- Department of Psychiatry (KA, HS, YU, MK, TN, TI, RS, NF, TI, AS, MN), Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuka Urata
- Department of Psychiatry (KA, HS, YU, MK, TN, TI, RS, NF, TI, AS, MN), Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mai Kariya
- Department of Psychiatry (KA, HS, YU, MK, TN, TI, RS, NF, TI, AS, MN), Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takeshi Nakamura
- Department of Psychiatry (KA, HS, YU, MK, TN, TI, RS, NF, TI, AS, MN), Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan; Department of Psychiatry (TN, RS, NF), Kagoshima Prefectural Aira Hospital, Kagoshima, Japan
| | - Tatsuki Ikehata
- Department of Psychiatry (KA, HS, YU, MK, TN, TI, RS, NF, TI, AS, MN), Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan; Department of Psychiatry (TI), Imamura general hospital, Kagoshima, Japan
| | - Rion Shimojima
- Department of Psychiatry (KA, HS, YU, MK, TN, TI, RS, NF, TI, AS, MN), Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan; Department of Psychiatry (TN, RS, NF), Kagoshima Prefectural Aira Hospital, Kagoshima, Japan
| | - Naomi Furue
- Department of Psychiatry (KA, HS, YU, MK, TN, TI, RS, NF, TI, AS, MN), Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan; Department of Psychiatry (TN, RS, NF), Kagoshima Prefectural Aira Hospital, Kagoshima, Japan
| | - Takanori Ishizuka
- Department of Psychiatry (KA, HS, YU, MK, TN, TI, RS, NF, TI, AS, MN), Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akira Sano
- Department of Psychiatry (KA, HS, YU, MK, TN, TI, RS, NF, TI, AS, MN), Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan; Kagoshima University (AS), Kagoshima, Japan
| | - Masayuki Nakamura
- Department of Psychiatry (KA, HS, YU, MK, TN, TI, RS, NF, TI, AS, MN), Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| |
Collapse
|
15
|
Liotta M, Bell H, Vu AT, Stillman M. Drug-Induced Parkinsonism: Too Many Cooks in the Kitchen. Cureus 2023; 15:e44896. [PMID: 37814773 PMCID: PMC10560449 DOI: 10.7759/cureus.44896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/11/2023] Open
Abstract
Drug-induced parkinsonism (DIP) is a condition characterized by the development of parkinsonian symptoms as a result of medication use. It is often misdiagnosed and can be challenging to differentiate from Parkinson's disease (PD). In this case presentation, we describe the clinical course of a 64-year-old male who presented with parkinsonian symptoms while using atypical antipsychotics, which was originally misdiagnosed as PD. The case highlights the importance of recognizing the potential iatrogenic effects of medications with antidopaminergic properties, such as antipsychotics and antiepileptic drugs, which are common culprits in causing DIP. We discuss DIP management, long-term impacts, and differentiating DIP from PD through clinical findings and imaging, emphasizing the utility of the (123)I-ioflupane single-photon emission computerized tomography (SPECT) scan in aiding diagnosis. This case serves as a reminder to healthcare providers to remain vigilant in monitoring patients for adverse effects, polypharmacy, and harmful medication interactions.
Collapse
Affiliation(s)
- Mark Liotta
- Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, USA
| | - Harrison Bell
- Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, USA
| | - Anh-Thu Vu
- Neurology, Thomas Jefferson University Hospital, Philadelphia, USA
| | - Michael Stillman
- Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, USA
| |
Collapse
|