1
|
Jin W, Yan L, Li L, Luo Y, Qiao J, Peng Q, Zhu Z, Zhu L, Kung HF. PSMA and SSTR2 Dual-Targeting Theranostic Agents for Neuroendocrine-Differentiated Prostate Cancer (NEPC). J Med Chem 2025. [PMID: 39791476 DOI: 10.1021/acs.jmedchem.4c02768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Radioactive prostate-specific membrane antigen (PSMA)-targeting agents are clinically useful for the diagnosis and treatment of patients with PSMA-positive metastatic castration-resistant prostate cancer (mCRPC). Neuroendocrine-differentiated prostate cancer (NEPC), a highly aggressive subtype that is strongly associated with a poor clinical prognosis, may present with reduced PSMA expression and evade detection with PSMA-targeted agents. Several studies have shown elevated uptake of somatostatin receptor 2 (SSTR2) ligands in PSMA-negative NEPC. By combining a SSTR2-targeting peptide, JR11, with previously reported PSMA-targeting ligands, P16-093 and P17-087, [68Ga]Ga-1 and [68Ga]Ga/[177Lu]Lu-2 were designed and synthesized. The cell uptake of [68Ga]Ga-1 was comparable to [68Ga]Ga-P16-093 in PSMA-positive cell lines, while [68Ga]Ga-1 and [68Ga]Ga-2 showed a positive but slightly lower uptake than [68Ga]Ga-DOTA-TATE in SSTR2-positive cell lines. In vivo studies in SSTR2+ or PSMA+ tumor-bearing mice demonstrated that [68Ga]Ga-1 and [68Ga]Ga/[177Lu]Lu-2 showed positive uptake for both SSTR2+ and PSMA+ tumors. These dual-targeting radiotracers are potentially valuable for the diagnosis and radioligand therapy of NEPC.
Collapse
Affiliation(s)
- Wenbin Jin
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China
| | - Li Yan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Linlin Li
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Yang Luo
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jinping Qiao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qiyu Peng
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China
| | - Zhaohui Zhu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Lin Zhu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hank F Kung
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Luo Y, Jin W, Wang R, Zhao R, Zhu L, Kung HF. 68Ga/ 177Lu-Labeled Bivalent Agents for Targeting Hypoxia and PSMA-Binding in Prostate Cancer. J Med Chem 2024. [PMID: 39069676 DOI: 10.1021/acs.jmedchem.4c01420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Prostate-specific membrane antigen (PSMA) is an excellent target for cancer detection and therapy. Hypoxia is prevalent in solid tumors, and various nitroimidazole (NI) radioligands can be trapped inside hypoxic cells for diagnosis and therapy. To enhance tumor uptake and retention, we designed bivalent agents (compounds 1-8) incorporating a hypoxia-sensitive NI-moiety and a PSMA-targeting group. Ligands 1-8 were successfully prepared and labeled with 68Ga or 177Lu. Among them, [68Ga]Ga-8 ([68Ga]Ga-AAZTA-NI-PSMA-093) demonstrated significantly higher cellular accumulation under hypoxic conditions than under normoxic conditions, suggesting hypoxia-selective trapping by the introduction of NI group. PET/CT imaging at 60 min postinjection of [68Ga]Ga-8 revealed high tumor uptake (SUVmax: 10.68%ID/mL) in the tumor-bearing mice model. SPECT/CT imaging of [177Lu]Lu-8 at 24 and 48 h postinjection demonstrated excellent accumulation and retention. Preliminary studies indicate that [68Ga]Ga/[177Lu]Lu-8 may be promising bivalent agents targeting hypoxia and PSMA binding for diagnosis and radiotherapy.
Collapse
Affiliation(s)
- Yang Luo
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wenbin Jin
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ran Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ruiyue Zhao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lin Zhu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hank F Kung
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Zhao R, Xia Z, Ke M, Lv J, Zhong H, He Y, Gu D, Liu Y, Zeng G, Zhu L, Alexoff D, Kung HF, Wang X, Sun T. Determining the optimal pharmacokinetic modelling and simplified quantification method of [ 18F]AlF-P16-093 for patients with primary prostate cancer (PPCa). Eur J Nucl Med Mol Imaging 2024; 51:2124-2133. [PMID: 38285206 DOI: 10.1007/s00259-024-06624-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/20/2024] [Indexed: 01/30/2024]
Abstract
PURPOSE This paper discusses the optimization of pharmacokinetic modelling and alternate simplified quantification method for [18F]AlF-P16-093, a novel tracer for in vivo imaging of prostate cancer. METHODS Dynamic PET/CT scans were conducted on eight primary prostate cancer patients, followed by a whole-body scan at 60 min post-injection. Time-activity curves (TACs) were obtained by drawing volumes of interest for primary prostatic and metastatic lesions. Optimal kinetic modelling involved evaluating three compartmental models (1T2K, 2T3K, and 2T4K) accounting for fractional blood volume (Vb). The simplified quantification method was then determined based on the correlation between the static uptake measure and total distribution volume (Vt) obtained from the optimal pharmacokinetic analysis. RESULTS In total, 17 intraprostatic lesions, 10 lymph nodes, and 36 osseous metastases were evaluated. Visually, the contrast of the tumor increased and showed the steepest incline within the first few minutes, whereas background activity decreased over time. Full pharmacokinetic analysis revealed that a reversible two-compartmental (2T4K) model is the preferred kinetic model for the given tracer. The kinetic parameters K1, k3, Vb, and Vt were all significantly higher in lesions when compared with normal tissue (P < 0.01). Several simplified protocols were tested for approximating comprehensive dynamic quantification in tumors, with image-based SURmean (the ratio of tumor SUVmean to blood SUVmean) within the 28-34 min window found to be sufficient for approximating the total distribution Vt values (R2 = 0.949, P < 0.01). Both Vt and SURmean correlated significantly with the total serum prostate-specific antigen (tPSA) levels (P < 0.01). CONCLUSIONS This study introduced an optimized pharmacokinetic modelling approach and a simplified acquisition method for [18F]AlF-P16-093, a novel PSMA-targeted radioligand, highlighting the feasibility of utilizing one static PET imaging (between 30 and 60 min) for the diagnosis of prostate cancer. Note that the image-derived input function in this study may not reflect the true corrected plasma input function, therefore the interpretation of the associated kinetic parameter estimates should be done with caution.
Collapse
Affiliation(s)
- Ruiyue Zhao
- Department of Nuclear Medicine, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Zeheng Xia
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Miao Ke
- Department of Nuclear Medicine, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jie Lv
- Department of Nuclear Medicine, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Huizhen Zhong
- Department of Nuclear Medicine, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yulu He
- Department of Nuclear Medicine, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Di Gu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - Yongda Liu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - Guohua Zeng
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - Lin Zhu
- Department of Nuclear Medicine, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - David Alexoff
- Five Eleven Pharma Inc., 3700 Market St., Philadelphia, PA, 19104, USA
| | - Hank F Kung
- Five Eleven Pharma Inc., 3700 Market St., Philadelphia, PA, 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xinlu Wang
- Department of Nuclear Medicine, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Tao Sun
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
4
|
Waldum H, Slupphaug G. Correctly identifying the cells of origin is essential for tailoring treatment and understanding the emergence of cancer stem cells and late metastases. Front Oncol 2024; 14:1369907. [PMID: 38660133 PMCID: PMC11040596 DOI: 10.3389/fonc.2024.1369907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Malignancy manifests itself by deregulated growth and the ability to invade surrounding tissues or metastasize to other organs. These properties are due to genetic and/or epigenetic changes, most often mutations. Many aspects of carcinogenesis are known, but the cell of origin has been insufficiently focused on, which is unfortunate since the regulation of its growth is essential to understand the carcinogenic process and guide treatment. Similarly, the concept of cancer stem cells as cells having the ability to stop proliferation and rest in a state of dormancy and being resistant to cytotoxic drugs before "waking up" and become a highly malignant tumor recurrence, is not fully understood. Some tumors may recur after decades, a phenomenon probably also connected to cancer stem cells. The present review shows that many of these questions are related to the cell of origin as differentiated cells being long-term stimulated to proliferation.
Collapse
Affiliation(s)
- Helge Waldum
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|