1
|
Fan S, Jia C, Liang M, Ren H, Zhang T, Li Q, Huang Z, Yen TC, OuYang C, Cui R, Guan H. Patterns of Tau pathology in patients with anti-IgLON5 disease visualized by Florzolotau (18F) PET. J Neurol 2025; 272:115. [PMID: 39812840 DOI: 10.1007/s00415-024-12874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Anti-IgLON5 disease is a rare autoimmune neurological disorder with prominent Tau protein deposits in the brainstem and hypothalamus. The aim of this study was to visualize the in vivo distribution patterns of Tau protein in patients with anti-IgLON5 disease using the second-generation Tau PET tracer, Florzolotau (18F) PET imaging. METHODS Patients diagnosed with anti-IgLON5 disease were enrolled consecutively. Age- and sex-matched healthy controls (HCs) were also enrolled. The uptake of Florzolotau (18F) and 18F-FDG was assessed using both visual and semi-quantitative analysis techniques. RESULTS A total of 10 patients with anti-IgLON5 disease and 40 HCs were included in the study. All ten patients with anti-IgLON5 disease underwent Florzolotau (18F) PET scans, and five of them underwent 18F-FDG PET scans. Twenty HCs underwent Florzolotau (18F) PET scans, and the remaining 20 HCs underwent 18F-FDG PET scans. In patients with anti-IgLON5 disease, significant uptake of Florzolotau (18F) was observed predominantly in the midbrain, pons, cerebellum, caudate, and putamen. This uptake pattern was notably absent in the control group. Moreover, semi-quantitative analysis techniques demonstrated widespread hypometabolism in the cerebral cortex in patients with anti-IgLON5 disease. CONCLUSIONS This study indicates distinct Tau protein deposition patterns in patients with anti-IgLON5 disease, potentially serving as imaging biomarkers.
Collapse
Affiliation(s)
- Siyuan Fan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chenhao Jia
- Department of Nuclear Medicine, Peking Union Medical College Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Menglin Liang
- Department of Nuclear Medicine, Peking Union Medical College Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Haitao Ren
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tianhao Zhang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Qijun Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Zhaoxia Huang
- Department of Nuclear Medicine, Peking Union Medical College Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | | | - Chujun OuYang
- School of Computer Science, Xiangtan University, Xiangtan, Hunan, China
| | - Ruixue Cui
- Department of Nuclear Medicine, Peking Union Medical College Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China.
| | - Hongzhi Guan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
2
|
Tang G, Lu JY, Li XY, Yao RX, Yang YJ, Jiao FY, Chen MJ, Liang XN, Ju ZZ, Ge JJ, Zhao YX, Shen B, Wu P, Sun YM, Wu JJ, Yen TC, Zuo C, Wang J, Zhao QH, Zhang HW, Liu FT. 18F-Florzolotau PET Imaging Unveils Tau Pathology in Dementia with Lewy Bodies. Mov Disord 2025; 40:108-120. [PMID: 39555939 DOI: 10.1002/mds.30055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) commonly exhibits a complex neuropathology, sharing characteristics with Alzheimer's disease (AD), including tau aggregates. However, studies using the 18F-AV-1451 tau tracer have shown inconsistent findings regarding both the extent and topographical distribution of tau pathology in DLB. OBJECTIVES Our aim was to elucidate the topographical patterns of tau deposition in DLB and to investigate the in vivo pathological distinction between DLB and AD in virtue of the 18F-Florzolotau positron emission tomography (PET) imaging. METHODS This cross-sectional study enrolled patients with DLB (n = 24), AD (n = 43), and cognitively healthy controls (n = 18). Clinical assessments and 18F-Florzolotau PET imaging were performed. 18F-Florzolotau binding was quantitatively assessed on PET images using standardized uptake value ratios and voxel-wise analysis. RESULTS 18F-Florzolotau PET imaging revealed widespread tau deposition across various cortical regions in DLB, uncovering heterogeneous topographical patterns. Among patients, 54.17% showed patterns similar to AD, whereas 16.67% exhibited distinct patterns. Compared to AD, DLB exhibited a unique in vivo neuropathological profile, characterized by a lower tau protein burden, heterogeneous topographical distributions, and a specific role of the medial temporal lobe in tau pathology. CONCLUSIONS 18F-Florzolotau PET imaging elucidated tau pathology patterns in DLB, providing valuable insights for future in vivo pathological differentiation and potential disease-modifying therapies. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Gan Tang
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Ying Lu
- Department of Nuclear Medicine and PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin-Yi Li
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Rui-Xin Yao
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Jie Yang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Fang-Yang Jiao
- Department of Nuclear Medicine and PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming-Jia Chen
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao-Niu Liang
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Neurology, Fudan University, Shanghai, China
| | - Zi-Zhao Ju
- Department of Nuclear Medicine and PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing-Jie Ge
- Department of Nuclear Medicine and PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Xin Zhao
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bo Shen
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Wu
- Department of Nuclear Medicine and PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Min Sun
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian-Jun Wu
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Chuantao Zuo
- Department of Nuclear Medicine and PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qian-Hua Zhao
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Neurology, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Hui-Wei Zhang
- Department of Nuclear Medicine and PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng-Tao Liu
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|