1
|
Bongers MN, Walter S, Fritz J, Bier G, Horger M, Artzner C. Interindividual Comparison of Frequency-Selective Nonlinear Blending to Conventional CT for Detection of Focal Liver Lesions Using MRI as the Reference Standard. AJR Am J Roentgenol 2022; 218:1021-1029. [PMID: 35018796 DOI: 10.2214/ajr.21.26922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND. Diagnosing liver lesions is challenging. CT is used for primary diagnosis, but its contrast resolution is limited. Investigating methods to improve detection of liver lesions is important. OBJECTIVE. The purpose of this study was to evaluate the effect of frequency-selective nonlinear blending on the detectability of liver lesions on CT. METHODS. A retrospective search yielded 109 patients with 356 malignant and benign liver lesions (191 principally diagnosed, 165 incidental findings) who underwent contrast-enhanced CT (CECT) in the portal venous phase and liver MRI between January 2012 and December 2017. Nonlinear blending was applied to CECT examinations, and three blinded readers independently rated the quality (5-point Likert scale) of randomly presented images. Focal lesions (n = 356) were evaluated for lesion identification and categorization to assess sensitivity. For 191 lesions (primary diagnosis), two readers evaluated CECT and nonlinear blending CT to compare lesion size and the accuracy of subjective measurements. A fourth reader performed ROI measurements for calculation of contrast-to-noise ratio (CNR), and a fifth reader reviewed MRI as the standard of reference. Statistics included interobserver agreement, quantitative comparisons of CNR, lesion size, and subjective image analyses of image quality and sensitivity for detecting liver lesions. RESULTS. Three readers rated the image quality of nonlinear blending CT (rating, 4; 10th-90th percentiles, 4-5) higher than that of CECT (rating, 2; 10th-90th percentiles, 1-3) (p < .001). CECT had good interreader agreement (interclass correlation coefficient [ICC], 0.81; 95% CI, 0.76-0.85), as did nonlinear blending CT (ICC, 0.75; 95% CI, 0.69-0.79). The median CNR of liver lesions increased with nonlinear blending (CECT, 4.18 [10th-90th percentiles, 1.67-9.06]; nonlinear blending CT, 12.49 [10th-90th percentiles, 6.18-23.39]; p < .001). Bland-Altman analysis of lesion size showed a reduction in underestimation from 2.5 (SD, 9.2) mm (95% CI, 1.2-3.9 mm) with CECT to 0.1 (SD, 3.9) mm (95% CI, -0.68 to 0.46 mm) for nonlinear blending CT (concordance correlation coefficient, 0.99). Sensitivity for detecting liver lesions increased to 86% for nonlinear blending CT. The sensitivity of CECT was 76%. CONCLUSION. Frequency-selective nonlinear blending in CECT increases image quality and CNR, increases the precision of size measurement, and increases sensitivity for detecting liver lesions. CLINICAL IMPACT. Use of nonlinear blending CT improves liver lesion detection and increases the accuracy of lesion size measurement, which is important when local ablation or liver transplant is being considered.
Collapse
Affiliation(s)
- Malte N Bongers
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Hoppe-Seyler-Str 3, Tübingen 72076, Germany
| | - Sven Walter
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Hoppe-Seyler-Str 3, Tübingen 72076, Germany
- Department of Radiology, NYU Grossman School of Medicine, New York, NY
| | - Jan Fritz
- Department of Radiology, NYU Grossman School of Medicine, New York, NY
| | - Georg Bier
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Hoppe-Seyler-Str 3, Tübingen 72076, Germany
| | - Marius Horger
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Hoppe-Seyler-Str 3, Tübingen 72076, Germany
| | - Christoph Artzner
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Hoppe-Seyler-Str 3, Tübingen 72076, Germany
| |
Collapse
|
2
|
Hazhirkarzar B, Khoshpouri P, Shaghaghi M, Ghasabeh MA, Pawlik TM, Kamel IR. Current state of the art imaging approaches for colorectal liver metastasis. Hepatobiliary Surg Nutr 2020; 9:35-48. [PMID: 32140477 DOI: 10.21037/hbsn.2019.05.11] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One of the most common cancers worldwide, colorectal cancer (CRC) has been associated with significant morbidity and mortality and therefore represents an enormous burden to the health care system. Recent advances in CRC treatments have provided patients with primary and metastatic CRC a better long-term prognosis. The presence of synchronous or metachronous metastasis has been associated, however, with worse survival. The most common site of metastatic disease is the liver. A variety of treatment modalities aimed at targeting colorectal liver metastases (CRLM) has been demonstrated to improve the prognosis of these patients. Loco-regional approaches such as surgical resection and tumor ablation (operative and percutaneous) can provide patients with a chance at long-term disease control and even cure in select populations. Patient selection is important in defining the most suitable treatment option for CRLM in order to provide the best possible survival benefit while avoiding unnecessary interventions and adverse events. Medical imaging plays a crucial role in evaluating the characteristics of CRLMs and disease resectability. Size of tumors, proximity to adjacent anatomical structures, and volume of the unaffected liver are among the most important imaging parameters to determine the suitability of patients for surgical management or other appropriate treatment approaches. We herein provide a comprehensive overview of current-state-of-the-art imaging in the management of CRLM, including staging, treatment planning, response and survival assessment, and post-treatment surveillance. Computed tomography (CT) scan and magnetic resonance imaging (MRI) are two most commonly used techniques, which can be used solely or in combination with functional imaging modalities such as positron emission tomography (PET) and diffusion weighted imaging (DWI). Providing up-to-date evidence on advantages and disadvantages of imaging modalities and tumor assessment criteria, the current review offers a practice guide to assist providers in choosing the most suitable imaging approach for patients with CRLM.
Collapse
Affiliation(s)
- Bita Hazhirkarzar
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pegah Khoshpouri
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohammadreza Shaghaghi
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mounes Aliyari Ghasabeh
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Ihab R Kamel
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Pöhler GH, Ringe KI. [Computed tomography and/or magnetic resonance imaging of the liver : How, why, what for?]. Radiologe 2019; 59:804-811. [PMID: 31414150 DOI: 10.1007/s00117-019-00583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
CLINICAL PROBLEM Colorectal metastases are the most common malignant liver lesions. Imaging of the liver in patients with colorectal carcinoma is performed for early detection of liver metastases (CRLM) at the time of initial tumor diagnosis, for monitoring and follow-up in order to exclude or diagnose metachronous metastases. STANDARD RADIOLOGICAL METHODS Radiological imaging includes primarily multislice computed tomography (CT) and magnetic resonance imaging (MRI), which play an important role regarding therapeutic management and assessment of prognosis. PERFORMANCE, ACHIEVEMENTS Contrast-enhanced CT is broadly available and allows for rapid image acquisition including the possibility for complete tumor staging. MRI, on the other hand, is characterized by very good soft tissue contrast and has-especially with the use of diffusion-weighted imaging and administration of liver-specific contrast agents-the highest sensitivity for detection of metastases smaller than 1 cm. PRACTICAL RECOMMENDATIONS The choice of imaging in daily routine is often dependent on availability and clinical question. Frequently, e.g. for assessment of resectability (extent of metastases, anatomic relation of lesions to critical structures), both modalities may be implemented in combination.
Collapse
Affiliation(s)
- G H Pöhler
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover, Hannover, Deutschland
| | - K I Ringe
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover, Hannover, Deutschland.
| |
Collapse
|
4
|
Vera R, González-Flores E, Rubio C, Urbano J, Valero Camps M, Ciampi-Dopazo JJ, Orcajo Rincón J, Morillo Macías V, Gomez Braco MA, Suarez-Artacho G. Multidisciplinary management of liver metastases in patients with colorectal cancer: a consensus of SEOM, AEC, SEOR, SERVEI, and SEMNIM. Clin Transl Oncol 2019; 22:647-662. [PMID: 31359336 DOI: 10.1007/s12094-019-02182-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) has the second-highest tumor incidence and is a leading cause of death by cancer. Nearly 20% of patients with CRC will have metastases at the time of diagnosis, and more than 50% of patients with CRC develop metastatic disease during the course of their disease. A group of experts from the Spanish Society of Medical Oncology, the Spanish Association of Surgeons, the Spanish Society of Radiation Oncology, the Spanish Society of Vascular and Interventional Radiology, and the Spanish Society of Nuclear Medicine and Molecular Imaging met to discuss and provide a multidisciplinary consensus on the management of liver metastases in patients with CRC. The group defined the different scenarios in which the disease can present: fit or unfit patients with resectable liver metastases, patients with potential resectable liver metastases, and patients with unresectable liver metastases. Within each scenario, the different strategies and therapeutic approaches are discussed.
Collapse
Affiliation(s)
- R Vera
- Medical Oncology, Complejo Hospitalario de Navarra, Calle Irunlarrea, 3, 31008, Pamplona, Navarra, Spain.
| | | | - C Rubio
- Radiation Oncology Department, University Hospital HM Sanchinarro, Madrid, Spain
| | - J Urbano
- Vascular and Interventional Radiology, Vithas Hospitals Group, Madrid, Spain
| | - M Valero Camps
- Nuclear Medicine, Clínica Rotger (Quiron Salud), Palma de Mallorca, Spain
| | - J J Ciampi-Dopazo
- Interventional Radiology Unit, Complejo Hospitalario de Toledo, Toledo, Spain
| | - J Orcajo Rincón
- Nuclear Medicine, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - V Morillo Macías
- Radiation Oncology, Hospital Provincial de Castellón, Castellón, Spain
| | - M A Gomez Braco
- Hepatobiliary and Liver Transplantation Unit, University Hospital Virgen del Rocío, Sevilla, Spain
| | - G Suarez-Artacho
- Hepatobiliary and Liver Transplantation Unit, University Hospital Virgen del Rocío, Sevilla, Spain
| |
Collapse
|
5
|
Planz VB, Lubner MG, Pickhardt PJ. Volumetric analysis at abdominal CT: oncologic and non-oncologic applications. Br J Radiol 2018; 92:20180631. [PMID: 30457881 DOI: 10.1259/bjr.20180631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Volumetric analysis is an objective three-dimensional assessment of a lesion or organ that may more accurately depict the burden of complex objects compared to traditional linear size measurement. Small changes in linear size are amplified by corresponding changes in volume, which could have significant clinical implications. Though early methods of calculating volumes were time-consuming and laborious, multiple software platforms are now available with varying degrees of user-software interaction ranging from manual to fully automated. For the assessment of primary malignancy and metastatic disease, volumetric measurements have shown utility in the evaluation of disease burden prior to and following therapy in a variety of cancers. Additionally, volume can be useful in treatment planning prior to resection or locoregional therapies, particularly for hepatic tumours. The utility of CT volumetry in a wide spectrum of non-oncologic pathology has also been described. While clear advantages exist in certain applications, some data have shown that volume is not always the superior method of size assessment and the associated labor intensity may not be worthwhile. Further, lack of uniformity among software platforms is a challenge to widespread implementation. This review will discuss CT volumetry and its potential oncologic and non-oncologic applications in abdominal imaging, as well as advantages and limitations to this quantitative technique.
Collapse
Affiliation(s)
| | | | - Perry J Pickhardt
- 1 Department of Radiology, The University of Wisconsin School of Medicine & Public Health , Madison, WI , USA
| |
Collapse
|
6
|
Venkatesh SK, Hennedige T, Johnson GB, Hough DM, Fletcher JG. Imaging patterns and focal lesions in fatty liver: a pictorial review. Abdom Radiol (NY) 2017; 42:1374-1392. [PMID: 27999887 DOI: 10.1007/s00261-016-1002-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Non-alcoholic fatty liver disease is the most common cause of chronic liver disease and affects nearly one-third of US population. With the increasing trend of obesity in the population, associated fatty change in the liver will be a common feature observed in imaging studies. Fatty liver causes changes in liver parenchyma appearance on imaging modalities including ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI) and may affect the imaging characteristics of focal liver lesions (FLLs). The imaging characteristics of FLLs were classically described in a non-fatty liver. In addition, focal fatty change and focal fat sparing may also simulate FLLs. Knowledge of characteristic patterns of fatty change in the liver (diffuse, geographical, focal, subcapsular, and perivascular) and their impact on the detection and characterization of FLL is therefore important. In general, fatty change may improve detection of FLLs on MRI using fat suppression sequences, but may reduce sensitivity on a single-phase (portal venous) CT and conventional ultrasound. In patients with fatty liver, MRI is generally superior to ultrasound and CT for detection and characterization of FLL. In this pictorial essay, we describe the imaging patterns of fatty change in the liver and its effect on detection and characterization of FLLs on ultrasound, CT, MRI, and PET.
Collapse
|