1
|
Tang M, Xu D, Jin H, Song C, Zhou X, Cai H, Li L, Chen M, Wu Y, Luo Y, Chen Y, Feng ST. Prediction of the early hepatocellular carcinoma development in patients with chronic hepatitis B virus infection using gadoxetic acid-enhanced magnetic resonance imaging. BMC Cancer 2024; 24:1425. [PMID: 39563280 PMCID: PMC11575160 DOI: 10.1186/s12885-024-13185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Non-hypervascular hypointense nodules (NHHNs) can transform into hypervascular hepatocellular carcinoma (HCC) during the long-term follow-up. However, the risk factors for NHHN hypervascular transformation in chronic hepatitis B virus (HBV)-infected populations are unknown. This study assessed the predictive value of gadoxetic acid-enhanced magnetic resonance imaging (MRI) for HCC development in patients with chronic HBV infection. METHODS A total of 86 patients with HBV infection who underwent gadoxetic acid-enhanced MRI at the First Affiliated Hospital of Sun Yat-sen University between January 2011 and July 2019 and were followed up for 2 years were retrospectively reviewed. Imaging features, including cirrhosis, steatosis, and NHHNs, were collected. Radiomics features were extracted from the entire liver. The HCC development predictive models were built based on each patient's clinical data, MRI features, and radiomic features. We then collected the qualitative and quantitative features of each NHHN and investigated the risk factors of hypervascular transformation. RESULTS Thirteen patients developed HCC within two years. The risk factors for HCC development in patients with chronic HBV infection included older age, cirrhosis, and NHHNs. The MRI, radiomics, and integrated models developed all had an area under the curve (AUC) above 0.8. The potential risk factors for hypervascular transformation of NHHNs were the diameter of the NHHN (OR = 1.69, 95% CI:1.23, 2.32, P = 0.001) and the signal intensity (SI) ratio of the NHHN to the liver in the hepatobiliary phase (HBP SI ratio*10, OR = 0.36, 95% CI:0.11, 0.85, P = 0.044). The AUC of the hypervascular transformation model was 0.846 (95% CI:0.719, 0.972). CONCLUSION In chronic HBV infection population, patients with older age, cirrhosis and NHHNs are more likely to develop HCC within two years. Models based on these factors or radiomic features can effectively predict HCC development. The diameter of the NHHNs and the signal intensity ratio of NHHN to the liver in the hepatobiliary phase are potential risk factors for the hypervascular transformation of NHHNs.
Collapse
Affiliation(s)
- Mimi Tang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Danyang Xu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Huilin Jin
- Department of General Surgery (Hepatobiliary, Pancreatic and Splenic Surgery), Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Chenyu Song
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Xiaoqi Zhou
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Huasong Cai
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Lujie Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Meicheng Chen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Yuxin Wu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Yanji Luo
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhongshan Road 2, Guangzhou, 510080, P.R. China.
| | - Yuying Chen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhongshan Road 2, Guangzhou, 510080, P.R. China.
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhongshan Road 2, Guangzhou, 510080, P.R. China.
| |
Collapse
|
2
|
Xing F, Ma Q, Lu J, Zhu W, Du S, Jiang J, Zhang T, Xing W. Nodule-in-nodule architecture of hepatocellular carcinomas: enhancement patterns in the hepatobiliary phase and pathological features. Abdom Radiol (NY) 2024; 49:3834-3846. [PMID: 38913136 DOI: 10.1007/s00261-024-04259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 06/25/2024]
Abstract
PURPOSE This study aimed to evaluate the enhancement patterns in the hepatobiliary phase (HBP) and pathological features of nodule-in-nodule-type hepatocellular carcinoma (NIN-HCC) patients. METHODS In this single-institution retrospective study, 27 consecutive cirrhosis patients with 29 histologically confirmed NIN-HCCs who underwent preoperative examination via Gd-EOB-DTPA-enhanced MRI were enrolled from January 2016 to September 2023. Two blinded radiologists assessed the imaging features of both the inner and outer nodules in NIN-HCCs to reach a consensus on the Liver Imaging Reporting & Data System (LI-RADS) categories of the lesions. Based on the different enhancement patterns of the inner and outer nodules in the HBP, NIN-HCCs were classified into different groups and further divided into different types. Imaging features and LI-RADS categories were subsequently compared among the groups. Pathological findings for NIN-HCCs were also evaluated. RESULTS Among 29 NIN-HCCs, all inner nodules showed hypervascularity, with a maximum diameter of 13.2 ± 5.5 mm; 51.7% (15/29) showed "wash-in with washout" enhancement; and 48.3% (14/29) showed "wash-in without washout" enhancement. All outer nodules showed hypovascularity, with a maximum diameter of 25.6 ± 7.3 mm, and 51.9% (14/29) showed a washout appearance on PVP. Among all the lesions, the maximum diameter was 27.5 ± 6.8 mm; 12 (41.4%) lesions were LR-4, and 17 (58.6%) lesions were LR-5. NIN-HCCs were classified into hypointense (62.1%, 18/29) and isointense (37.9%, 11/29) groups based on the signal intensity of the outer nodules in the HBP. In the hypointense group, 2 (6.9%) of the inner nodules were hypointense (type A), 11 (37.9%) were isointense (type B), and 5 (17.2%) were hyperintense (type C) compared to the background hypointense outer nodules. In the isointense group, 9 (31.0%) of the inner nodules were hypointense (type D), 2 (6.9%) were isointense (type E), and no (0%) was hyperintense (type F) compared to the background isointense outer nodules. There were no significant differences in the diameter, dynamic enhancement patterns of the inner or outer nodules, or LI-RADS scores of the lesions between the hypointense group and the isointense group (all P > 0.05). Histologically, the inner nodules of NIN-HCCs were mainly composed of moderately differentiated HCC (75.9% 22/29), whereas the outer nodules consisted of either well-differentiated HCC or high-grade dysplastic nodules (HGDNs). CONCLUSIONS NIN-HCCs exhibit specific MRI findings closely associated with their pathological features. The spectrum of HBP enhancement patterns provides valuable insights into the underlying cell biological mechanisms of these lesions. NIN-HCC subtypes may be used as a morphologic marker in the early stage of multistep hepatocarcinogenesis.
Collapse
Affiliation(s)
- Fei Xing
- Department of Radiology, Third Affiliated Hospital of Nantong University and Nantong Third People's Hospital, #99 Youth Middle Road, Chongchuan District, Nantong, 226000, Jiangsu, China
| | - Qinrong Ma
- Department of Pathology, Third Affiliated Hospital of Nantong University and Nantong Third People's Hospital, #99 Youth Middle Road, Chongchuan District, Nantong, 226000, Jiangsu, China
| | - Jiang Lu
- Department of Radiology, Third Affiliated Hospital of Nantong University and Nantong Third People's Hospital, #99 Youth Middle Road, Chongchuan District, Nantong, 226000, Jiangsu, China
| | - Wenjing Zhu
- Department of Radiology, Third Affiliated Hospital of Nantong University and Nantong Third People's Hospital, #99 Youth Middle Road, Chongchuan District, Nantong, 226000, Jiangsu, China
| | - Sheng Du
- Department of Radiology, Third Affiliated Hospital of Nantong University and Nantong Third People's Hospital, #99 Youth Middle Road, Chongchuan District, Nantong, 226000, Jiangsu, China
| | - Jifeng Jiang
- Department of Radiology, Third Affiliated Hospital of Nantong University and Nantong Third People's Hospital, #99 Youth Middle Road, Chongchuan District, Nantong, 226000, Jiangsu, China
| | - Tao Zhang
- Department of Radiology, Third Affiliated Hospital of Nantong University and Nantong Third People's Hospital, #99 Youth Middle Road, Chongchuan District, Nantong, 226000, Jiangsu, China.
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, No. 185 Juqian Street, Tianning District, Changzhou, 213000, Jiangsu, China.
| |
Collapse
|
3
|
Kristiansen MK, Larsen LP, Villadsen GE, Sørensen M. Clinical impact of MRI on indeterminate findings on contrast-enhanced CT suspicious of HCC. Scand J Gastroenterol 2024; 59:1075-1080. [PMID: 39061129 DOI: 10.1080/00365521.2024.2384952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVES In patients evaluated for hepatocellular carcinoma (HCC), magnetic resonance imaging (MRI) is often used secondarily when multiphase contrast-enhanced computed tomography (ceCT) is inconclusive. We investigated the clinical impact of adding MRI. MATERIALS AND METHODS This single-institution retrospective study included 48 MRI scans (44 patients) conducted from May 2016 to July 2023 due to suspicion of HCC on a multiphase ceCT scan. Data included medical history, preceding and subsequent imaging, histology when available, and decisions made at multidisciplinary team meetings. RESULTS In case of possible HCC recurrence, 63% of the MRI scans were diagnostic of HCC. For 80% of the negative MRI scans, the patients were diagnosed with HCC within a median of 165 days in the suspicious area of the liver. In case of possible de-novo HCC in patients with cirrhosis, 22% of the scans were diagnostic of HCC and 33% of the negative MRI scans were of patients diagnosed with HCC within a median of 109 days. None of the non-cirrhotic patients with possible de-novo HCC and negative MRI scans (64%) were later diagnosed with HCC, but 3/5 of the indeterminate scans were of patients diagnosed with HCC in a biopsy. CONCLUSIONS Secondary MRI to a multiphase ceCT scan suspicious of HCC is highly valuable in ruling out HCC in non-cirrhotic patients and in diagnosing HCC non-invasively in cirrhotic patients and patients with prior HCC. Patients with cirrhosis or prior HCC are still at high risk of having HCC if MRI results are inconclusive or negative.
Collapse
Affiliation(s)
| | - Lars Peter Larsen
- Department of Radiology, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Michael Sørensen
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
- Department of Internal Medicine, Viborg Regional Hospital, Viborg, Denmark
| |
Collapse
|
4
|
Jiang J, Yang D, Yang Z, Han X, Xu L, Wang Y, Wang X, Yang Z, Xu H. The timing phase affected the inconsistency of APHE subtypes of liver observations in patients at risk for HCC on the multi-hepatic arterial phase imaging. Abdom Radiol (NY) 2024; 49:1092-1102. [PMID: 38195799 DOI: 10.1007/s00261-023-04096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 01/11/2024]
Abstract
OBJECTIVE To investigate whether liver observations in patients at risk for hepatocellular carcinoma (HCC) display inconsistent arterial phase hyperenhancement (APHE) subtypes on the multi-hepatic arterial phase imaging (mHAP) and to further investigate factors affecting inconsistent APHE subtype of observations on mHAP imaging. METHODS From April 2018 to June 2021, a total of 141 patients at high risk of HCC with 238 liver observations who underwent mHAP MRI acquisitions were consecutively included in this retrospective study. Two experienced radiologists reviewed individual arterial phase imaging independently and assessed the enhancement pattern of each liver observation according to LI-RADS. Another two experienced radiologists identified and recorded the genuine timing phase of each phase independently. When a disagreement appeared between the two radiologists, another expert participated in the discussion to get a final decision. A separate descriptive analysis was used for all observations scored APHE by the radiologists. The Kappa coefficient was used to determine the agreement between the two radiologists. Univariate analysis was performed to investigate the factors affecting inconsistent APHE subtype of liver observations on mHAP imaging. RESULTS The interobserver agreement was substantial to almost perfect agreement on the assessment of timing phase (κ = 0.712-0.887) and evaluation of APHE subtype (κ = 0.795-0.901). A total of 87.8% (209/238) of the observations showed consistent nonrim APHE and 10.2% (24/238) of the observations showed consistent rim APHE on mHAP imaging. A total of 2.1% (5/238) of the liver observations were considered inconsistent APHE subtypes, and all progressed nonrim to rim on mHAP imaging. 87.9% (124/141) of the mHAP acquisitions were all arterial phases and 12.1% (17/141) of the mHAP acquisitions obtained both the arterial phase and portal venous phase. Univariate analysis was performed and found that the timing phase of mHAP imaging affected the consistency of APHE subtype of liver observations. When considering the timing phase and excluding the portal venous phase acquired by mHAP imaging, none of the liver observations showed inconsistent APHE subtypes on mHAP imaging. CONCLUSION The timing phase which mHAP acquisition contained portal venous phase affected the inconsistency of APHE subtype of liver observations on mHAP imaging. When evaluating the APHE subtype of liver observations, it's necessary to assess the timing of each phase acquired by the mHAP technique at first.
Collapse
Affiliation(s)
- Jiahui Jiang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Dawei Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Zhenzhen Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Xinjun Han
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Lixue Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Yuxin Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Xiaopei Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China.
| | - Hui Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
5
|
Beaufrère A, Paisley S, Ba I, Laouirem S, Priori V, Cazier H, Favre L, Cauchy F, Lesurtel M, Calderaro J, Kannengiesser C, Paradis V. Differential diagnosis of small hepatocellular nodules in cirrhosis: surrogate histological criteria of TERT promoter mutations. Histopathology 2024; 84:473-481. [PMID: 37903649 DOI: 10.1111/his.15086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/25/2023] [Accepted: 10/14/2023] [Indexed: 11/01/2023]
Abstract
AIMS The differential diagnosis of small hepatocellular nodules in cirrhosis between dysplastic nodules and hepatocellular carcinoma (HCC) remains challenging on biopsy. As TERT promoter (pTERT) mutations may indicate the nodules already engaged in the malignant process, the aim of this study was to identify histological criteria associated with pTERT mutations by detecting these mutations by ddPCR in small formalin-fixed paraffin-embedded (FFPE) hepatocellular nodules arising in cirrhosis. METHODS AND RESULTS We built a bicentric cohort data set of 339 hepatocellular nodules < 2 cm from cirrhotic samples, divided into a test cohort of 299 resected samples and a validation cohort of 40 biopsies. Pathological review, based on the evaluation of 14 histological criteria, classified all nodules. pTERT mutations were identified by ddPCR in FFPE samples. Among the 339 nodules, ddPCR revealed pTERT mutations in 105 cases (31%), including 90 and 15 cases in the test and validation cohorts, respectively. On multivariate analysis, three histological criteria were associated with pTERT mutations in the test cohort: increased cell density (P = 0.003), stromal invasion (P = 0.036) and plate-thickening anomalies (P < 0.001). With the combination of at least two of these major criteria, the AUC for predicting pTERT mutations was 0.84 in the test cohort (sensitivity: 86%, specificity: 83%) and 0.81 in the validation cohort (sensitivity: 87%, specificity: 76%). CONCLUSIONS We identified three histological criteria as surrogate markers of pTERT mutations that may be used in routine biopsy to more clearly classify small hepatocellular nodules arising in cirrhosis.
Collapse
Affiliation(s)
- Aurélie Beaufrère
- Université Paris Cité, Paris, France
- AP-HP.Nord, Department of Pathology, FHU MOSAIC, Beaujon Hospital, Clichy, France
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France
| | - Sarah Paisley
- AP-HP.Nord, Department of Pathology, FHU MOSAIC, Beaujon Hospital, Clichy, France
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France
| | - Ibrahima Ba
- AP-HP.Nord, Department of Molecular Genetics, Bichat Hospital, Paris, France
| | - Samira Laouirem
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France
| | - Victoria Priori
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France
| | - Hélène Cazier
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France
| | - Loëtitia Favre
- AP-HP, Department of Pathology, Henri Mondor Hospital, Créteil, France
| | - François Cauchy
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France
| | - Mickael Lesurtel
- Université Paris Cité, Paris, France
- AP-HP.Nord, Department of HPB Surgery an d Liver Transplantation, Beaujon Hospital, Clichy, France
| | - Julien Calderaro
- AP-HP, Department of Pathology, Henri Mondor Hospital, Créteil, France
| | | | - Valérie Paradis
- Université Paris Cité, Paris, France
- AP-HP.Nord, Department of Pathology, FHU MOSAIC, Beaujon Hospital, Clichy, France
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France
| |
Collapse
|
6
|
Chen S, Qiu YJ, Zhang Q, Lu XY, Huang YL, Dong Y, Wang WP. Impact of Hepatocellular Carcinoma Tumor Size on Sonazoid Contrast-Enhanced Ultrasound Enhancement Features. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:39-46. [PMID: 37778901 DOI: 10.1016/j.ultrasmedbio.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/20/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE The aim of the work described here was to evaluate the impact of hepatocellular carcinoma (HCC) tumor size on Sonazoid contrast-enhanced ultrasound (CEUS) enhancement features, especially in tumors with diameters ≤30 mm and <10 mm. METHODS In this retrospective study, we included patients with histopathologically confirmed HCC lesions and divided them into three groups on the basis of tumor size. All patients underwent Sonazoid-enhanced CEUS examinations before surgery. B-mode ultrasound (BMUS) features and CEUS enhancement patterns were evaluated according to current World Federation for Ultrasound in Medicine and Biology Guidelines criteria. The χ2- and Student t-tests were used to compare differences between groups. RESULTS We included 132 patients with histopathologically confirmed HCC lesions from November 2020 to September 2022. On the basis of tumor size, patients were divided into group 1 (<10 mm, n = 5), group 2 (10-30 mm, n = 54) and group 3 (>30 mm, n = 73). On BMUS, most HCCs appeared heterogeneous but predominantly hypo-echoic (61.4%, 81/132) with ill-defined margins and irregular shapes. Meanwhile, iso-echoic features were more common in small HCCs ≤30 mm (15.3%, 9/59), but a mixed hyper- and hypo-echoic appearance was more common in HCCs >30 mm (17.8%, 13/73) (p = 0.003). On Sonazoid-enhanced CEUS, all HCCs presented arterial phase hyperenhancement (APHE) (100.0%, 132/132). Most HCCs >30 mm exhibited heterogeneous hyperenhancement (86.3%, 63/73), whereas nearly one-third of small HCCs ≤30 mm exhibited homogeneous hyperenhancement (35.6%, 21/59) (p = 0.003). In the portal venous phase, there was a significantly higher proportion of washout in HCCs >30 mm (84.9%, 62/73) than in small HCCs ≤30 mm (64.4%, 38/59) (p = 0.006). During the Kupffer phase, 11 additional hypo-enhanced lesions (mean size: 14.1 ± 4.1 mm, iso-echoic on BMUS), which were also suspected to be HCC lesions, were detected in 5 patients with small HCCs ≤30 mm and 4 patients with HCCs >30 mm. All 5 cases of HCCs <10 mm exhibited APHE and late washout (>60 s). The majority (3/5, 60%) exhibited washout in the portal venous phase (70, 74 and 75 s), one case did so in the late phase (125 s) and another in the Kupffer phase (420 s). CONCLUSION Tumor size had a significant impact on the washout features of HCC lesions on Sonazoid-enhanced CEUS. Small HCC lesions ≤30 mm had a higher proportion of relatively late washout in comparison to larger lesions. Sonazoid-enhanced CEUS might be helpful in the detection and characterization of HCC lesions <10 mm.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Jie Qiu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Zhang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiu-Yun Lu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Medical Imaging, Shanghai, China
| | - Yun-Lin Huang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Dong
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wen-Ping Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Xing F, Zhang T, Miao X, Lu J, Du S, Jiang J, Xing W. Long-term evolution of LR-2, LR-3 and LR-4 observations in HBV-related cirrhosis based on LI-RADS v2018 using gadoxetic acid-enhanced MRI. Abdom Radiol (NY) 2023; 48:3703-3713. [PMID: 37740759 DOI: 10.1007/s00261-023-04016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 09/25/2023]
Abstract
PURPOSE To investigate the long-term evolution of LR-2, LR-3 and LR-4 observations in patients with hepatitis B virus (HBV)-related cirrhosis based on LI-RADS v2018 and identify predictors of progression to a malignant category on serial gadoxetic acid-enhanced magnetic resonance imaging (Gd-EOB-MRI). METHODS This retrospective study included 179 cirrhosis patients with untreated indeterminate observations who underwent Gd-EOB-MRI exams at baseline and during the follow-up period between June 2016 and December 2021. Two radiologists independently assessed the major features, ancillary features, and LI-RADS category of each observation at baseline and follow-up. In cases of disagreement, a third radiologist was consulted for consensus. Cumulative incidences for progression to a malignant category (LR-5 or LR-M) and to LR-4 or higher were analyzed for each index category using Kaplan‒Meier methods and compared using log-rank tests. The risk factors for malignant progression were evaluated using a Cox proportional hazard model. RESULTS A total of 213 observations, including 74 (34.7%) LR-2, 95 (44.6%) LR-3, and 44 (20.7%) LR-4, were evaluated. The overall cumulative incidence of progression to a malignant category was significantly higher for LR-4 observations than for LR-3 or LR-2 observations (each P < 0.001), and significantly higher for LR-3 observations than for LR-2 observations (P < 0.001); at 3-, 6-, and 12-month follow-ups, the cumulative incidence of progression to a malignant category was 11.4%, 29.5%, and 39.3% for LR-4 observations, 0.0%, 8.5%, and 19.6% for LR-3 observations, and 0.0%, 0.0%, and 0.0% for LR-2 observations, respectively. The cumulative incidence of progression to LR-4 or higher was higher for LR-3 observations than for LR-2 observations (P < 0.001); at 3-, 6-, and 12-month follow-ups, the cumulative incidence of progression to LR-4 or higher was 0.0%, 8.5%, and 24.6% for LR-3 observations, and 0.0%, 0.0%, and 0.0% for LR-2 observations, respectively. In multivariable analysis, nonrim arterial phase hyperenhancement (APHE) [hazard ratio (HR) = 2.13, 95% CI 1.04-4.36; P = 0.038], threshold growth (HR = 6.50, 95% CI 2.88-14.65; P <0.001), and HBP hypointensity (HR = 16.83, 95% CI 3.97-71.34; P <0.001) were significant independent predictors of malignant progression. CONCLUSION The higher LI-RADS v2018 categories had an increasing risk of progression to a malignant category during long-term evolution. Nonrim APHE, threshold growth, and HBP hypointensity were the imaging features that were significantly predictive of malignant progression.
Collapse
Affiliation(s)
- Fei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, No.185 Juqian Street, Tianning District, Changzhou, 213000, Jiangsu, China
- Department of Radiology, Third Affiliated Hospital of Nantong University & Nantong Third People's Hospital, #99 youth middle road, Chongchuan District, Nantong, 226000, Jiangsu, China
| | - Tao Zhang
- Department of Radiology, Third Affiliated Hospital of Nantong University & Nantong Third People's Hospital, #99 youth middle road, Chongchuan District, Nantong, 226000, Jiangsu, China
| | - Xiaofen Miao
- Department of Radiology, Third Affiliated Hospital of Nantong University & Nantong Third People's Hospital, #99 youth middle road, Chongchuan District, Nantong, 226000, Jiangsu, China
| | - Jiang Lu
- Department of Radiology, Third Affiliated Hospital of Nantong University & Nantong Third People's Hospital, #99 youth middle road, Chongchuan District, Nantong, 226000, Jiangsu, China
| | - Shen Du
- Department of Radiology, Third Affiliated Hospital of Nantong University & Nantong Third People's Hospital, #99 youth middle road, Chongchuan District, Nantong, 226000, Jiangsu, China
| | - Jifeng Jiang
- Department of Radiology, Third Affiliated Hospital of Nantong University & Nantong Third People's Hospital, #99 youth middle road, Chongchuan District, Nantong, 226000, Jiangsu, China
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, No.185 Juqian Street, Tianning District, Changzhou, 213000, Jiangsu, China.
| |
Collapse
|
8
|
Dong Y, Chen S, Möller K, Qiu YJ, Lu XY, Zhang Q, Dietrich CF, Wang WP. Applications of Dynamic Contrast-Enhanced Ultrasound in Differential Diagnosis of Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma in Non-cirrhotic Liver. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1780-1788. [PMID: 37156676 DOI: 10.1016/j.ultrasmedbio.2023.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 05/10/2023]
Abstract
OBJECTIVE The aim of the work described here was to investigate the value of dynamic contrast enhanced ultrasound (DCE-US) and quantitative analysis in pre-operative differential diagnosis of intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC) in non-cirrhotic liver. METHODS In this retrospective study, patients with histopathologically proven ICC and HCC lesions in non-cirrhotic liver were included. All patients underwent contrast-enhanced ultrasound (CEUS) examinations with an Acuson Sequoia unit (Siemens Healthineers, Mountain View, CA, USA) unit or LOGIQ E20 (GE Healthcare, Milwaukee, WI, USA) within 1 wk before surgery. SonoVue (Bracco, Milan, Italy) was used as the contrast agent. B-mode ultrasound (BMUS) features and CEUS enhancement patterns were analyzed. DCE-US analysis was performed by VueBox software (Bracco). Two regions of interest (ROIs) were set in the center of the focal liver lesions and their surrounding liver parenchyma. Time-intensity curves (TICs) were generated, and quantitative perfusion parameters were obtained and compared between the ICC and HCC groups using the Student t-test or Mann-Whitney U-test. RESULTS From November 2020 to February 2022, patients with histopathologically confirmed ICC (n = 30) and HCC (n = 24) lesions in non-cirrhotic liver were included. During the arterial phase (AP) of CEUS, ICC lesions exhibited heterogeneous hyperenhancement (13/30, 43.3%), heterogeneous hypo-enhancement (2/30, 6.7 %) and rim-like hyperenhancement (15/30, 50.0%), whereas all HCC lesions exhibited heterogeneous hyperenhancement (24/24, 100.0%) (p < 0.05). Subsequently, most of the ICC lesions exhibited AP wash-out (83.3%, 25/30), whereas a few cases exhibited wash-out in the portal venous phase (PVP) (15.7%, 5/30). In contrast, HCC lesions exhibited AP wash-out (41.7%, 10/24), PVP wash-out (41.7%, 10/24) and a small part of late phase wash-out (16.7%, 4/24) (p < 0.05). Compared with those of HCC lesions, TICs of ICCs revealed earlier and lower enhancement during the AP, faster decline during the PVP and reduced area under the curve. The combined area under the receiver operating characteristic curve (AUROC) of all significant parameters was 0.946, with 86.7% sensitivity, 95.8% specificity and 90.7% accuracy in differential diagnosis between ICC and HCC lesions in non-cirrhotic liver, which improved the diagnostic efficacy of CEUS (58.3% sensitivity, 90.0% specificity and 75.9% accuracy). CONCLUSION ICC and HCC lesions in non-cirrhotic liver might exhibit some overlap of CEUS features in diagnosis. DCE-US with quantitative analysis would be helpful in pre-operative differential diagnosis.
Collapse
Affiliation(s)
- Yi Dong
- Department of Ultrasound, Xinhua Hospital Affiliated with Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sheng Chen
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kathleen Möller
- Medical Department I/Gastroenterology, SANA Hospital Lichtenberg, Berlin, Germany
| | - Yi-Jie Qiu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiu-Yun Lu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China; Institute of Medical Imaging, Shanghai, China
| | - Qi Zhang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Christoph F Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Salem und Permanence, Bern, Switzerland.
| | - Wen-Ping Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Qing Z, Yuan H, Hao X, Jie P. Diagnostic Value of CT Delayed Phase Images Added to Gd-EOB-DTPA MRI for HCC Diagnosis in LR-3/4 Lesions. Int J Gen Med 2023; 16:2383-2391. [PMID: 37333878 PMCID: PMC10275374 DOI: 10.2147/ijgm.s410123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
Objective To explore the potential value of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) magnetic resonance imaging (MRI) in the diagnosis of hepatocellular carcinoma (HCC) in LR-3/4 lesions by adding computed tomography (CT) delayed images based on the Liver Imaging Reporting And Data System (LI-RADS). Methods The differences in clinical and imaging characteristics between hepatocellular carcinoma and non-HCC were compared, and logistic regression was used to analyze the imaging risk factors for the diagnosis of HCC. Based on the main and HCC-specific auxiliary features of Gd-EOB-DTPA MRI, the HCC diagnostic model 1 was established, and the diagnostic efficacy was analyzed. Based on model 1, delayed phase CT images were added to establish model 2 to find reliable predictors of HCC diagnosis. Receiver operating characteristic (ROC) analysis and the DeLong test were used to compare the two models. Results There was a significant difference in serum AFP between HCC and non-HCC (P = 0.008). Based on main and HCC-specific auxiliary features of Gd-EOB-DTPA MRI, enhancing capsule (OR = 0.197, 95% CI = 0.06-0.595, P = 0.005) and washout (OR = 10.345, 95% CI = 3.460-30.930, P < 0.001) were independent risk factors in Model 1. After adding CT delayed-phase images to build model 2, enhancing capsule (OR = 0.132, 95% CI = 0.139-0.449, P = 0.001), MRI and (or) CT washout (OR = 0.052, 95% CI = 0.016-0.172, P < 0.001) were reliable predictors for HCC diagnosis. The AUC of model 1 was 0.808, sensitivity was 63.46%, and specificity was 85.00%. The AUC of model 2 was 0.854, the sensitivity was 71.20%, and the specificity was 85.00%. DeLong test (P = 0.040) demonstrated the diagnostic efficacy of model 2 significantly superior than model 1. Conclusion Tumor washout and enhanced capsule are reliable factors for the diagnosis of HCC. Gd-EOB-DTPA MRI with delayed phase CT images can improve the sensitivity and diagnostic efficiency of HCC in LR-3/4 lesions on the premise of maintaining high specificity. Future studies are required to reinforce our finding.
Collapse
Affiliation(s)
- Zhang Qing
- Department of Radiology, Jingzhou No 1 People’s Hospital and First Affiliated Hospital of Yangtze University, Jingzhou City, Hubei Province, 434000, People’s Republic of China
| | - Huang Yuan
- Department of Radiology, Jingzhou No 1 People’s Hospital and First Affiliated Hospital of Yangtze University, Jingzhou City, Hubei Province, 434000, People’s Republic of China
| | - Xiong Hao
- Department of Radiology, Jingzhou No 1 People’s Hospital and First Affiliated Hospital of Yangtze University, Jingzhou City, Hubei Province, 434000, People’s Republic of China
| | - Peng Jie
- Department of Radiology, Jingzhou No 1 People’s Hospital and First Affiliated Hospital of Yangtze University, Jingzhou City, Hubei Province, 434000, People’s Republic of China
| |
Collapse
|
10
|
Liao Z, Tang C, Luo R, Gu X, Zhou J, Gao J. Current Concepts of Precancerous Lesions of Hepatocellular Carcinoma: Recent Progress in Diagnosis. Diagnostics (Basel) 2023; 13:diagnostics13071211. [PMID: 37046429 PMCID: PMC10093043 DOI: 10.3390/diagnostics13071211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
The most common cause of hepatocellular carcinoma (HCC) is chronic hepatitis and cirrhosis. It is proposed that precancerous lesions of HCC include all stages of the disease, from dysplastic foci (DF), and dysplastic nodule (DN), to early HCC (eHCC) and progressed HCC (pHCC), which is a complex multi-step process. Accurately identifying precancerous hepatocellular lesions can significantly impact the early detection and treatment of HCC. The changes in high-grade dysplastic nodules (HGDN) were similar to those seen in HCC, and the risk of malignant transformation significantly increased. Nevertheless, it is challenging to diagnose precancerous lesions of HCC. We integrated the literature and combined imaging, pathology, laboratory, and other relevant examinations to improve the accuracy of the diagnosis of precancerous lesions.
Collapse
Affiliation(s)
- Ziyue Liao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Cuiping Tang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Rui Luo
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Xiling Gu
- Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Jun Zhou
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Jian Gao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| |
Collapse
|
11
|
Imaging Features of Hepatocellular Carcinoma in the Non-Cirrhotic Liver with Sonazoid-Enhanced Contrast-Enhanced Ultrasound. Diagnostics (Basel) 2022; 12:diagnostics12102272. [PMID: 36291962 PMCID: PMC9601233 DOI: 10.3390/diagnostics12102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/27/2022] Open
Abstract
Purpose: To investigate the Sonazoid-enhanced contrast-enhanced ultrasound (CEUS) features of hepatocellular carcinoma (HCC) in a non-cirrhosis liver background, in comparison to those in liver cirrhosis. Methods: In this retrospective study, 19 patients with surgery and histopathologically proven HCC lesions in non-cirrhosis liver background were included regarding Sonazoid-enhanced CEUS characteristics. Two radiologists evaluated the CEUS features of HCC lesions according to the WFUMB (World Federation of Societies for Ultrasound in Medicine and Biology) guidelines criteria. Thirty-six patients with HCC lesions in liver cirrhosis were included as a control group. Final diagnoses were confirmed by surgery and histopathological results. Results: Liver background of the non-cirrhosis group including normal liver (n = 7), liver fibrosis (n = 11), and alcoholic liver disease (n = 1). The mean size of non-cirrhosis HCC lesions was 60.8 ± 46.8 mm (ranging from 25 to 219 mm). During the arterial phase of Sonazoid-enhanced CEUS, most HCCs in non-cirrhotic liver (94.7%, 18/19) and in cirrhotic liver (83.3%, 30/36) presented non-rim hyperenhancement. During the portal venous phase, HCC lesions in the non-cirrhosis liver group showed relatively early washout (68.4%, 13/19) (p = 0.090). Meanwhile, HCC lesions in liver cirrhosis background showed isoenhancement (55.6%, 20/36). All lesions in the non-cirrhotic liver group showed hypoenhancement in the late phase and the Kupffer phase (100%, 19/19). Five cases of HCC lesions in liver cirrhosis showed isoenhancement during the late phase and hypoenhancement during the Kupffer phase (13.9%, 5/36). The rest of the cirrhotic HCC lesions showed hypoenhancement during the late phase and the Kupffer phase (86.1%, 31/36). Additional hypoenhanced lesions were detected in three patients in the non-cirrhosis liver group and eight patients in the liver cirrhosis group (mean size: 13.0 ± 5.6 mm), which were also suspected to be HCC lesions. Conclusions: Heterogeneous hyperenhancement during the arterial phase as well as relatively early washout are characteristic features of HCC in the non-cirrhotic liver on Sonazoid-enhanced CEUS.
Collapse
|
12
|
Chen Y, Qin Y, Wu Y, Wei H, Wei Y, Zhang Z, Duan T, Jiang H, Song B. Preoperative prediction of glypican-3 positive expression in solitary hepatocellular carcinoma on gadoxetate-disodium enhanced magnetic resonance imaging. Front Immunol 2022; 13:973153. [PMID: 36091074 PMCID: PMC9453305 DOI: 10.3389/fimmu.2022.973153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose As a coreceptor in Wnt and HGF signaling, glypican-3 (GPC-3) promotes the progression of tumor and is associated with a poor prognosis in hepatocellular carcinoma (HCC). GPC-3 has evolved as a target molecule in various immunotherapies, including chimeric antigen receptor T cell. However, its evaluation still relies on invasive histopathologic examination. Therefore, we aimed to develop an easy-to-use and noninvasive risk score integrating preoperative gadoxetic acid–enhanced magnetic resonance imaging (EOB-MRI) and clinical indicators to predict positive GPC-3 expression in HCC. Methods and materials Consecutive patients with surgically-confirmed solitary HCC who underwent preoperative EOB-MRI between January 2016 and November 2021 were retrospectively included. EOB-MRI features were independently evaluated by two masked abdominal radiologists and the expression of GPC-3 was determined by two liver pathologists. On the training dataset, a predictive scoring system for GPC-3 was developed against pathology via logistical regression analysis. Model performances were characterized by computing areas under the receiver operating characteristic curve (AUCs). Results A total of 278 patients (training set, n=156; internal validation set, n=39; external validation set, n=83) with solitary HCC (208 [75%] with positive GPC-3 expression) were included. Serum alpha-fetoprotein >10 ng/ml (AFP, odds ratio [OR]=2.3, four points) and five EOB-MR imaging features, including tumor size >3.0cm (OR=0.5, -3 points), nonperipheral “washout” (OR=3.0, five points), infiltrative appearance (OR=9.3, 10 points), marked diffusion restriction (OR=3.3, five points), and iron sparing in solid mass (OR=0.2, -7 points) were significantly associated with positive GPC-3 expression. The optimal threshold of scoring system for predicting GPC-3 positive expression was 5.5 points, with AUC 0.726 and 0.681 on the internal and external validation sets, respectively. Conclusion Based on serum AFP and five EOB-MRI features, we developed an easy-to-use and noninvasive risk score which could accurately predict positive GPC-3 HCC, which may help identify potential responders for GPC-3-targeted immunotherapy.
Collapse
Affiliation(s)
- Yidi Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Qin
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanan Wu
- Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Wei
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Wei
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Zhang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Duan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Hanyu Jiang, ; Bin Song,
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, Sanya People’s Hospital, Sanya, China
- *Correspondence: Hanyu Jiang, ; Bin Song,
| |
Collapse
|
13
|
Chartampilas E, Rafailidis V, Georgopoulou V, Kalarakis G, Hatzidakis A, Prassopoulos P. Current Imaging Diagnosis of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14163997. [PMID: 36010991 PMCID: PMC9406360 DOI: 10.3390/cancers14163997] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The role of imaging in the management of hepatocellular carcinoma (HCC) has significantly evolved and expanded beyond the plain radiological confirmation of the tumor based on the typical appearance in a multiphase contrast-enhanced CT or MRI examination. The introduction of hepatobiliary contrast agents has enabled the diagnosis of hepatocarcinogenesis at earlier stages, while the application of ultrasound contrast agents has drastically upgraded the role of ultrasound in the diagnostic algorithms. Newer quantitative techniques assessing blood perfusion on CT and MRI not only allow earlier diagnosis and confident differentiation from other lesions, but they also provide biomarkers for the evaluation of treatment response. As distinct HCC subtypes are identified, their correlation with specific imaging features holds great promise for estimating tumor aggressiveness and prognosis. This review presents the current role of imaging and underlines its critical role in the successful management of patients with HCC. Abstract Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer related death worldwide. Radiology has traditionally played a central role in HCC management, ranging from screening of high-risk patients to non-invasive diagnosis, as well as the evaluation of treatment response and post-treatment follow-up. From liver ultrasonography with or without contrast to dynamic multiple phased CT and dynamic MRI with diffusion protocols, great progress has been achieved in the last decade. Throughout the last few years, pathological, biological, genetic, and immune-chemical analyses have revealed several tumoral subtypes with diverse biological behavior, highlighting the need for the re-evaluation of established radiological methods. Considering these changes, novel methods that provide functional and quantitative parameters in addition to morphological information are increasingly incorporated into modern diagnostic protocols for HCC. In this way, differential diagnosis became even more challenging throughout the last few years. Use of liver specific contrast agents, as well as CT/MRI perfusion techniques, seem to not only allow earlier detection and more accurate characterization of HCC lesions, but also make it possible to predict response to treatment and survival. Nevertheless, several limitations and technical considerations still exist. This review will describe and discuss all these imaging modalities and their advances in the imaging of HCC lesions in cirrhotic and non-cirrhotic livers. Sensitivity and specificity rates, method limitations, and technical considerations will be discussed.
Collapse
Affiliation(s)
- Evangelos Chartampilas
- Radiology Department, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Correspondence:
| | - Vasileios Rafailidis
- Radiology Department, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Vivian Georgopoulou
- Radiology Department, Ippokratio General Hospital of Thessaloniki, 54642 Thessaloniki, Greece
| | - Georgios Kalarakis
- Department of Diagnostic Radiology, Karolinska University Hospital, 14152 Stockholm, Sweden
- Department of Clinical Science, Division of Radiology, Intervention and Technology (CLINTEC), Karolinska Institutet, 14152 Stockholm, Sweden
- Department of Radiology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Adam Hatzidakis
- Radiology Department, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Panos Prassopoulos
- Radiology Department, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
14
|
Nguyen SA, Merrill CD, Burrowes DP, Medellin GA, Wilson SR. Hepatocellular Carcinoma in Evolution: Correlation with CEUS LI-RADS. Radiographics 2022; 42:1028-1042. [PMID: 35486579 DOI: 10.1148/rg.210149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver with a high incidence worldwide and a high associated mortality. Well-recognized risk factors that cause a predisposition to the development of HCC include chronic infection with the hepatitis B or C virus, alcohol-related and non-alcohol-related fatty liver disease, and cirrhosis. In these chronically diseased livers, benign regenerative nodules can increase in size and develop cellular atypia that progress into dysplastic nodules and ultimately HCC. This sequence of hepatocarcinogenesis is coupled with changes in nodule vascularity, including progressive decreased density of portal triads and induced neoangiogenesis, resulting in increased hepatic arterial recruitment. Changes in vascularity result in an array of patterns of nodule enhancement and washout, which can be sensitively depicted with dynamic real-time contrast-enhanced US. Regenerative nodules are isoenhancing relative to the liver with all phases, while HCC classically shows avid arterial phase hyperenhancement with late mild washout. In between, there is great variation as nodules evolve through progressive grades of dysplasia toward HCC. Observed patterns of enhancement and washout can be used to diagnose or stratify the risk of malignancy in liver nodules by using the diagnostic algorithm described by the American College of Radiology Liver Imaging Reporting and Data System (LI-RADS). This facilitates the detection and close monitoring of potential early-stage disease. LI-RADS categorizes nodules according to a probabilistic likelihood for HCC with criteria for LR-5 nodules that are highly specific for the diagnosis of HCC, allowing treatment without exposing the patient to invasive biopsy. An invited commentary by Fetzer is available online. Online supplemental material and the slide presentation from the RSNA Annual Meeting are available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Stephanie A Nguyen
- From the Department of Radiology, University of Calgary, 1403 29 St NW, Calgary, AB, Canada T2N 2T9
| | - Christina D Merrill
- From the Department of Radiology, University of Calgary, 1403 29 St NW, Calgary, AB, Canada T2N 2T9
| | - David P Burrowes
- From the Department of Radiology, University of Calgary, 1403 29 St NW, Calgary, AB, Canada T2N 2T9
| | - G Alexandra Medellin
- From the Department of Radiology, University of Calgary, 1403 29 St NW, Calgary, AB, Canada T2N 2T9
| | - Stephanie R Wilson
- From the Department of Radiology, University of Calgary, 1403 29 St NW, Calgary, AB, Canada T2N 2T9
| |
Collapse
|
15
|
Liang H, Chen Z, Yang R, Huang Q, Chen H, Chen W, Zou L, Wei P, Wei S, Yang Y, Zhang Y. Methyl Gallate Suppresses the Migration, Invasion, and Epithelial-Mesenchymal Transition of Hepatocellular Carcinoma Cells via the AMPK/NF-κB Signaling Pathway in vitro and in vivo. Front Pharmacol 2022; 13:894285. [PMID: 35770085 PMCID: PMC9234279 DOI: 10.3389/fphar.2022.894285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Methyl gallate (MG), a polyphenolic compound found in plants, is widely used in traditional Chinese medicine. MG is known to alleviate several cancer symptoms. However, most studies that have reported the antitumor effects of MG have done so at the cellular level, and the inhibitory effect and therapeutic mechanism of MG in hepatocellular carcinoma (HCC) have not been extensively explored in vivo. We aimed to understand the therapeutic mechanism of MG in HCC in vitro and in vivo. MTT and colony formation assays were used to determine the impact of MG on the proliferation of a human HCC cell line, BEL-7402; wound healing and transwell assays were used to quantify the migration and invasion of HCC cells. Western blotting was used to quantify the expression of the AMPK/NF-κB signaling pathway proteins. In vivo tumor growth was measured in a xenograft tumor nude mouse model treated with MG, and hematoxylin–eosin staining and immunohistochemistry (IHC) were used to visualize the histological changes in the tumor tissue. We found that MG showed anti-proliferative effects both in vitro and in vivo. MG downregulated the protein expression of AMPK, NF-κB, p-NF-κB, and vimentin and upregulated the expression of E-cadherin in a dose-dependent manner. Additionally, MG inhibited the migration and invasion of HCC cells by decreasing MMP9 and MMP2 expression and increasing TIMP-2 expression. These were consistent with the results of IHC in vivo. MG inhibited the proliferation, migration, and invasion of HCC cells. This effect potentially involves the regulation of the AMPK/NF-κB pathway, which in turn impacts epithelial-mesenchymal transition and MMP expression.
Collapse
Affiliation(s)
- Huaguo Liang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zexin Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ruihui Yang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qingsong Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongmei Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wanting Chen
- School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Zou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Peng Wei
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shijie Wei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongxia Yang
- School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Yongxia Yang, ; Yongli Zhang,
| | - Yongli Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Yongxia Yang, ; Yongli Zhang,
| |
Collapse
|
16
|
Dong Y, Teufel A, Wang WP, Dietrich CF. Current Opinion about Hepatocellular Carcinoma <10 mm. Digestion 2021; 102:335-341. [PMID: 32516767 DOI: 10.1159/000507923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/14/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Early detection of hepatocellular carcinoma (HCC) is important. Advances in liver imaging techniques have facilitated the detection of HCC at an early stage. However, there is a controversial discussion on how to diagnose very small HCC by imaging. The aim of the current review is to present current published data on HCC ≤10 mm and discuss on how to best diagnose and treat such lesions. SUMMARY It is still challenging, however, to accurately characterize HCC <10 mm. The accuracy of contrast-enhanced ultrasound may be critical for early treatment decisions for cancer patients, particularly when CECT and/or CEMRI are inconclusive. Key Messages: The characterization of focal liver lesions <10 mm is frequently delayed until a follow-up imaging procedure demonstrates growth or stability. A repetition of ultrasound examination after 3 months for new nodules <1 cm should be recommended.
Collapse
Affiliation(s)
- Yi Dong
- Ultrasound Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Andreas Teufel
- Division of Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wen-Ping Wang
- Ultrasound Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Christoph F Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Salem und Permanence, Bern, Switzerland,
| |
Collapse
|
17
|
Fung A, Shanbhogue KP, Taffel MT, Brinkerhoff BT, Theise ND. Hepatocarcinogenesis: Radiology-Pathology Correlation. Magn Reson Imaging Clin N Am 2021; 29:359-374. [PMID: 34243923 DOI: 10.1016/j.mric.2021.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the background of chronic liver disease, hepatocellular carcinoma develops via a complex, multistep process called hepatocarcinogenesis. This article reviews the causes contributing to the process. Emphasis is made on the imaging manifestations of the pathologic changes seen at many stages of hepatocarcinogenesis, from regenerative nodules to dysplastic nodules and then to hepatocellular carcinoma.
Collapse
Affiliation(s)
- Alice Fung
- Department of Diagnostic Radiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, L-340, Portland, OR 97239, USA.
| | - Krishna P Shanbhogue
- Department of Radiology, New York University Grossman School of Medicine, 660 First Avenue, 3rd Floor, New York, NY 10016, USA
| | - Myles T Taffel
- Department of Radiology, New York University Grossman School of Medicine, 660 First Avenue, 3rd Floor, New York, NY 10016, USA
| | - Brian T Brinkerhoff
- Department of Pathology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, L-113, Portland, OR 97239, USA
| | - Neil D Theise
- Department of Pathology, MSB 504A, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016, USA
| |
Collapse
|
18
|
Kim H, Choi J, Yu DY, Choi HJ. Expression of Organic Anion Transporting Polypeptides in an H-Ras 12V Transgenic Mouse Model of Spontaneous Hepatocellular Carcinoma. Yonsei Med J 2021; 62:622-630. [PMID: 34164960 PMCID: PMC8236347 DOI: 10.3349/ymj.2021.62.7.622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Expression of organic anion transporting polypeptides (OATPs) 1B1/1B3 in hepatocellular carcinoma (HCC) induces a paradoxical enhancement of gadoxetic acid on liver magnetic resonance imaging (MRI). We examined the expression profile of OATPs with regard to tumor differentiation in a genetically modified H-Ras 12V mouse model of spontaneous HCC that undergoes multistep hepatocarcinogenesis with minimal inter-individual variation. MATERIALS AND METHODS Tumor nodules were harvested from transgenic H-Ras 12V mice. Hematoxylin and eosin-stained slides were examined for tumor differentiation and high-grade pathological components (tumor necrosis, thickened trabeculae, or vascular invasion). Immunohistochemistry of OATP 1B1/1B3 was performed, and OATP expression was assessed. RESULTS We examined well-differentiated HCCs (n=59) in which high-grade pathological components were absent (n=49) or present (n=10). Among the well-differentiated HCCs without high-grade pathological components (n=49), OATP expression was negative, weak positive, and moderate positive in 23, 17, and nine cases, respectively. Among the well-differentiated HCCs with high-grade pathological components (n=10), OATP expression was negative, weak positive, and moderate positive in one, two, and seven cases, respectively. The ratio of positive OATP 1B1/1B3 expressing tumors was higher in HCCs with high-grade pathological components than in those without high-grade pathological components (p=0.004). CONCLUSION Our findings support those of previous clinical studies that have reported the frequent appearance of gadoxetic acid-enhanced MRI in moderately differentiated HCC.
Collapse
Affiliation(s)
- Honsoul Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Science and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Junjeong Choi
- Department of Pharmacy, College of Pharmacy, Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon, Korea
| | - Dae Yeul Yu
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Hye Jin Choi
- Division of Oncology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
19
|
Laroia ST, Yadav K, Kumar S, Rastogi A, Kumar G, Sarin SK. Material decomposition using iodine quantification on spectral CT for characterising nodules in the cirrhotic liver: a retrospective study. Eur Radiol Exp 2021; 5:22. [PMID: 34046753 PMCID: PMC8160046 DOI: 10.1186/s41747-021-00220-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Background There is limited scientific evidence on the potential of spectral computed tomography (SCT) for differentiation of nodules in the cirrhotic liver. We aimed to assess SCT-generated material density (MD) parameters for nodule characterisation in cirrhosis. Methods Dynamic dual-energy SCT scans of cirrhotic patients performed over 3 years were retrospectively reviewed. They were classified as hepatocellular carcinoma (HCC), regenerative or indeterminate, according to the European Association for the Study of the Liver criteria. MD maps were generated to calculate the area under the curve (AUC) and cutoff values to discriminate these nodules in the hepatic arterial phase (HAP) and portal venous phase (PVP). MD maps included iodine concentration density (ICD) of the liver and nodule, lesion-to-normal liver ICD ratio (LNR) and difference in nodule ICD between HAP and PVP. Results Three hundred thirty nodules belonging to 300 patients (age 53.0 ± 12.7 years, mean ± standard deviation) were analysed at SCT (size 2.3 ± 0.8 cm, mean ± SD). One hundred thirty-three (40.3%) nodules were classified as HCC, 147 (44.5%) as regenerative and 50 (15.2%) as indeterminate. On histopathology, 136 (41.2%) nodules were classified as HCC, 183 (55.5%) as regenerative and 11 (3.3%) as dysplastic. All MD parameters on HAP and the nodule difference in ICD could discriminate pathologically proven HCC or potentially malignant nodules from regenerative nodules (p < 0.001). The AUC was 82.4% with a cutoff > 15.5 mg/mL for nodule ICD, 81.3% > 1.8 for LNR-HAP and 81.3% for difference in ICD > 3.5 mg/mL. Conclusion SCT-generated MD parameters are viable diagnostic tools for differentiating malignant or potentially malignant from benign nodules in the cirrhotic liver. Supplementary Information The online version contains supplementary material available at 10.1186/s41747-021-00220-6.
Collapse
Affiliation(s)
- Shalini Thapar Laroia
- Department of Radiology, Institute of Liver and Biliary Sciences, Sector D-1, Vasant Kunj, New Delhi, 110070, India.
| | - Komal Yadav
- Department of Radiology, Institute of Liver and Biliary Sciences, Sector D-1, Vasant Kunj, New Delhi, 110070, India
| | - Senthil Kumar
- Department of HPB Surgery and Liver Transplantation, Institute of Liver & Biliary Sciences, Sector D-1, Vasant Kunj, New Delhi, 110070, India
| | - Archana Rastogi
- Department of Clinical and Hepato-pathology, Institute of Liver and Biliary Sciences, Sector D-1, Vasant Kunj, New Delhi, 110070, India
| | - Guresh Kumar
- Department of Biostatistics and Research, Institute of Liver & Biliary Sciences, Sector D-1, Vasant Kunj, New Delhi, 110070, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver & Biliary Sciences, Sector D-1, Vasant Kunj, New Delhi, 110 070, India
| |
Collapse
|
20
|
Zhou X, Long L, Mo Z, Li Y. OATP1B3 Expression in Hepatocellular Carcinoma Correlates with Intralesional Gd-EOB-DTPA Uptake and Signal Intensity on Gd-EOB-DTPA-Enhanced MRI. Cancer Manag Res 2021; 13:1169-1177. [PMID: 33603462 PMCID: PMC7882717 DOI: 10.2147/cmar.s292197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND To evaluate the predictive value of the OATP1B3 expression in hepatocellular carcinoma (HCC) for the gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA) uptake and the signal intensity (SI) in the hepatobiliary (HB) phase. METHODS In this retrospective study, we analyzed 69 liver nodules of 64 patients who underwent Gd-EOB-DTPA enhancement magnetic resonance imaging (MRI) before operation. Based on the SI in the HB phase, the patients were categorized into the hypointense HCC and iso- or hyperintense HCC groups. The OATP1B3 expression was detected by polymerase chain reaction (PCR) and immunohistochemistry. The differences between the expression of OATP1B3 and Gd-EOB-DTPA enhanced magnetic resonance imaging between the two groups of hepatocellular carcinoma were compared. The relationship between the OATP1B3 expression and the SI and relative enhancement (RE) was analyzed. RESULTS The examined HCC nodules were 59 hypointense HCC and 10 iso- or hyperintense. The relative expressions of OATP1B3, HB-phase signal, and the RE of the HB phase in iso- or hyperintense were significantly higher than those of the hypointense HCC, while the RE of the HB phase increased with an increase in the OATP1B3 expression (P < 0.05). CONCLUSION The OATP1B3 expression in HCC can predict the uptake of Gd-EOB-DTPA and the SI of the HB phase. We believe that the evaluation of OATP1B3 expression will facilitate the comprehension of imaging performance of HCC in Gd-EOB-DTPA-enhanced MRI.
Collapse
Affiliation(s)
- Xiaojiao Zhou
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Liling Long
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Zhiqing Mo
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Yajuan Li
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| |
Collapse
|
21
|
Kovac JD, Ivanovic A, Milovanovic T, Micev M, Alessandrino F, Gore RM. An overview of hepatocellular carcinoma with atypical enhancement pattern: spectrum of magnetic resonance imaging findings with pathologic correlation. Radiol Oncol 2021; 55:130-143. [PMID: 33544992 PMCID: PMC8042819 DOI: 10.2478/raon-2021-0004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In the setting of cirrhotic liver, the diagnosis of hepatocellular carcinoma (HCC) is straightforward when typical imaging findings consisting of arterial hypervascularity followed by portal-venous washout are present in nodules larger than 1 cm. However, due to the complexity of hepatocarcinogenesis, not all HCCs present with typical vascular behaviour. Atypical forms such as hypervascular HCC without washout, isovascular or even hypovascular HCC can pose diagnostic dilemmas. In such cases, it is important to consider also the appearance of the nodules on diffusion-weighted imaging and hepatobiliary phase. In this regard, diffusion restriction and hypointensity on hepatobiliary phase are suggestive of malignancy. If both findings are present in hypervascular lesion without washout, or even in iso- or hypovascular lesion in cirrhotic liver, HCC should be considered. Moreover, other ancillary imaging findings such as the presence of the capsule, fat content, signal intensity on T2-weighted image favour the diagnosis of HCC. Another form of atypical HCCs are lesions which show hyperintensity on hepatobiliary phase. Therefore, the aim of the present study was to provide an overview of HCCs with atypical enhancement pattern, and focus on their magnetic resonance imaging (MRI) features. CONCLUSIONS In order to correctly characterize atypical HCC lesions in cirrhotic liver it is important to consider not only vascular behaviour of the nodule, but also ancillary MRI features, such as diffusion restriction, hepatobiliary phase hypointensity, and T2-weighted hyperintensity. Fat content, corona enhancement, mosaic architecture are other MRI feautures which favour the diagnosis of HCC even in the absence of typical vascular profile.
Collapse
Affiliation(s)
- Jelena Djokic Kovac
- Center for Radiology and MRI, Clinical Center Serbia, School of Medicine, University of Belgrade; Belgrade, Serbia
| | - Aleksandar Ivanovic
- Center for Radiology and MRI, Clinical Center Serbia, School of Medicine, University of Belgrade; Belgrade, Serbia
| | - Tamara Milovanovic
- Clinic for Gastroenterology and Hepatology, Clinical Center of Serbia School of Medicine, University of Belgrade; Belgrade, Serbia
| | - Marjan Micev
- Departament of Digestive Pathology, Clinical Center of Serbia, Belgrade, Serbia
| | - Francesco Alessandrino
- Division of Abdominal Imaging, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Richard M. Gore
- Department of Gastrointestinal Radiology, NorthShore University, Evanston, Pritzker School of Medicine at the University of Chicago, ChicagoUSA
| |
Collapse
|
22
|
Ding J, Long L, Zhang X, Chen C, Zhou H, Zhou Y, Wang Y, Jing X, Ye Z, Wang F. Contrast-enhanced ultrasound LI-RADS 2017: comparison with CT/MRI LI-RADS. Eur Radiol 2020; 31:847-854. [PMID: 32803416 DOI: 10.1007/s00330-020-07159-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/14/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To compare the classification based on contrast-enhanced ultrasound (CEUS) Liver Imaging Reporting and Data System (LI-RADS) with that of contrast-enhanced CT and MRI (CECT/MRI) LI-RADS for liver nodules in patients at high risk of hepatocellular carcinoma. METHODS Two hundred thirty-nine patients with 273 nodules were enrolled in this retrospective study. Each nodule was categorized according to the CEUS LI-RADS version 2017 and CECT/MRI LI-RADS version 2017. The diagnostic performance of CEUS and CECT/MRI was compared. The reference standard was histopathology diagnosis. Inter-modality agreement was assessed with Cohen's kappa. RESULTS The inter-modality agreement for CEUS LI-RADS and CECT/MRI LI-RADS was fair with a kappa value of 0.319 (p < 0.001). The positive predictive values (PPVs) of hepatocellular carcinoma (HCC) in LR-5, LR-4, and LR-3 were 98.3%, 60.0%, and 25.0% in CEUS, and 95.9%, 65.7%, and 48.1% in CECT/MRI, respectively. The sensitivities and specificities of LR-5 for diagnosing HCC were 75.6% and 93.8% in CEUS, and 83.6% and 83.3% in CECT/MRI, respectively. The positive predictive values of non-HCC malignancy in CEUS LR-M and CECT/MRI LR-M were 33.9% and 93.3%, respectively. The sensitivity, specificity, and accuracy for diagnosing non-HCC malignancy were 90.9%, 84.5%, and 85.0% in CEUS LR-M and 63.6%, 99.6%, and 96.7% in CECT/MRI LR-M, respectively. CONCLUSIONS The inter-modality agreement of the LI-RADS category between CEUS and CECT/MRI is fair. The positive predictive values of HCCs in LR-5 of the CEUS and CECT/MRI LI-RADS are comparable. CECT/MRI LR-M has better diagnostic performance for non-HCC malignancy than CEUS LR-M. KEY POINTS • The inter-modality agreement for the final LI-RADS category between CEUS and CECT/MRI is fair. • The LR-5 of CEUS and CECT/MRI LI-RADS corresponds to comparable positive predictive values (PPVs) of HCC. For LR-3 and LR-4 nodules categorized by CECT/MRI, CEUS examination should be performed, at least if they can be detected on plain ultrasound. • CECT/MRI LR-M has better diagnostic performance for non-HCC malignancy than CEUS LR-M. For LR-M nodules categorized by CEUS, re-evaluation by CECT/MRI is necessary.
Collapse
Affiliation(s)
- Jianmin Ding
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Ultrasound, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Lei Long
- Department of Ultrasound, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Xiang Zhang
- Department of Radiology, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Chen Chen
- Department of Radiology, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Hongyu Zhou
- Department of Ultrasound, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Yan Zhou
- Department of Ultrasound, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Yandong Wang
- Department of Ultrasound, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Xiang Jing
- Department of Ultrasound, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin Third Central Hospital, Tianjin, 300170, China.
| | - Zhaoxiang Ye
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | - Fengmei Wang
- Department of Gastroenterology and Hepatology, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin Third Central Hospital, Tianjin, 300170, China
| |
Collapse
|
23
|
Reszegi A, Horváth Z, Fehér H, Wichmann B, Tátrai P, Kovalszky I, Baghy K. Protective Role of Decorin in Primary Hepatocellular Carcinoma. Front Oncol 2020; 10:645. [PMID: 32477937 PMCID: PMC7235294 DOI: 10.3389/fonc.2020.00645] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/07/2020] [Indexed: 01/22/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents one of the most frequent type of primary liver cancers. Decorin, a small leucine-rich proteoglycan of the extracellular matrix, represents a powerful tumor cell growth and migration inhibitor by hindering receptor tyrosine kinases and inducing p21WAF1/CIP1. In this study, first we tested decorin expression in HCCs utilizing in silico data, as well as formalin fixed paraffin embedded tissue samples of HCC in a tissue microarray (TMA). In silico data revealed that DCN/SMA mRNA ratio is decreased in HCC compared to normal tissues and follows the staging of the disease. Among TMA samples, 52% of HCCs were decorin negative, 33% exhibited low, and 15% high decorin levels corroborating in silico results. In addition, applying conditioned media of hepatoma cells inhibited decorin expression in LX2 stellate cells in vitro. These results raise the possibility that decorin acts as a tumor suppressor in liver cancer and that is why its expression decreased in HCCs. To further test the protective role of decorin, the proteoglycan was overexpressed in a mouse model of hepatocarcinogenesis evoked by thioacetamide (TA). After transfection, the excessive proteoglycan amount was mainly detected in hepatocytes around the central veins. Upon TA-induced hepatocarcinogenesis, the highest tumor count was observed in mice with no decorin production. Decorin gene delivery reduced tumor formation, in parallel with decreased pEGFR, increased pIGF1R levels, and with concomitant induction of pAkt (T308) and phopho-p53, suggesting a novel mechanism of action. Our results suggest the idea that decorin can be utilized as an anti-cancer agent.
Collapse
Affiliation(s)
- Andrea Reszegi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsolt Horváth
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Hajnalka Fehér
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Barnabás Wichmann
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | | | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
24
|
Dietrich CF, Dong Y, Kono Y, Caraiani C, Sirlin CB, Cui XW, Tang A. LI-RADS ancillary features on contrast-enhanced ultrasonography. Ultrasonography 2020; 39:221-228. [PMID: 32475089 PMCID: PMC7315297 DOI: 10.14366/usg.19052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 05/09/2020] [Indexed: 12/11/2022] Open
Abstract
The Liver Imaging Reporting and Data System (LI-RADS) was created to standardize liver imaging in patients at high risk for hepatocellular carcinoma (HCC), and it uses a diagnostic algorithm to assign categories that reflect the relative probability of HCC, non-HCC malignancies, or benign focal liver lesions. In addition to major imaging features, ancillary features (AFs) are used by radiologists to refine the categorization of liver nodules. In the present document, we discuss and explain the application of AFs currently defined within the LI-RADS guidelines. We also explore possible additional AFs visible on contrast-enhanced ultrasonography (CEUS). Finally, we summarize the management of CEUS LI-RADS features, including the role of current and potential future AFs.
Collapse
Affiliation(s)
- Christoph F Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Beau Site, Salem und Permanence, Hirslanden, Bern, Switzerland.,Ultrasound Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuko Kono
- Department of Medicine and Radiology, University of California, San Diego, CA, USA
| | - Cosmin Caraiani
- Department of Medical Imaging, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Claude B Sirlin
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - An Tang
- Department of Radiology, Université de Montréal, Montreal, Canada
| |
Collapse
|
25
|
Hepatobiliary phase hypointensity predicts progression to hepatocellular carcinoma for intermediate-high risk observations, but not time to progression. Eur J Radiol 2020; 128:109018. [PMID: 32388318 DOI: 10.1016/j.ejrad.2020.109018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/04/2020] [Accepted: 04/12/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To determine whether hepatobiliary phase hypointensity, enhancing "capsule" and size provide prognostic information regarding the risk of progression to hepatocellular carcinoma (HCC), as well as the time to progression, of intermediate to high risk observations ≥ 10 mm with arterial phase hyperenhancement (APHE). METHOD This retrospective dual-institution study included 160 LR-3 and 26 LR-4 observations measuring more than 10 mm and having APHE in 136 patients (mean age [SD], 57 [11] years old). A composite reference standard of pathologic analysis and imaging follow-up was used. The prognostic performance of hepatobiliary phase hypointensity, enhancing "capsule" and size (cut-off: 20 mm) for the prediction of probability of progression to HCC and median time to progression to HCC was assessed and compared by means of Log-rank test, Cox-regression and Kaplan-Meier curves. RESULTS 110 (59%) of 186 of observations progressed to HCC, 29.1% (32) progressed within 6 months, 60% (66) within 1 year and 84.5% (93) within 2 years. Hepatobiliary phase hypointensity was a significant predictor of progression to HCC (p < 0.0001, odds ratio: 20.62) but not of time to progression (p = 0.17). Median time to progression to HCC was 284 days [IQR: 266-363] and was shorter - though not significantly - for observations with enhancing "capsule" (118 days vs 301 days; p = 0.19). CONCLUSIONS Hepatobiliary phase hypointensity is an independent predictor of progression to HCC in intermediate to high risk APHE observations ≥ 10 mm.
Collapse
|
26
|
Liver Imaging Reporting and Data System Version 2018: What Radiologists Need to Know. J Comput Assist Tomogr 2020; 44:168-177. [PMID: 32195795 DOI: 10.1097/rct.0000000000000995] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this article, we aim to review Liver Imaging Reporting and Data System version 18 (LI-RADS v2018). Hepatocellular carcinoma (HCC) is the most common primary hepatic malignancy. Liver Imaging Reporting and Data System developed for standardizing interpreting, reporting, and data collection of HCC describes 5 major features for accurate HCC diagnosis and several ancillary features, some favoring HCC in particular or malignancy in general and others favoring benignity. Untreated hepatic lesions LI-RADS affords 8 unique categories based on imaging appearance on computed tomography and magnetic resonance imaging, which indicate the possibility of HCC or malignancy with or without tumor in vein. Furthermore, LI-RADS defines 4 treatment response categories for treated HCCs after different locoregional therapy. These continuous recent updates on LI-RADS improve the communication between the radiologists and the clinicians for better management and patient outcome.
Collapse
|
27
|
Li Y, Chen J, Weng S, Sun H, Yan C, Xu X, Ye R, Hong J. Small hepatocellular carcinoma: using MRI to predict histological grade and Ki-67 expression. Clin Radiol 2019; 74:653.e1-653.e9. [PMID: 31200932 DOI: 10.1016/j.crad.2019.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
Abstract
AIMS To investigate the predictive indicators of small aggressive hepatocellular carcinomas by examining the association between preoperative magnetic resonance imaging (MRI) parameters and Ki-67 expression and histological grade. MATERIALS AND METHODS Sixty patients with small hepatocellular carcinomas (tumour diameter: ≤3 cm, tumour numbers: ≤2) who underwent curative resection or biopsy after contrast-enhanced and diffusion-weighted MRI were evaluated retrospectively. Signal intensity (SI) of the whole lesion and erector spinae muscle was measured quantitatively. Tumour-to-muscle SI ratio was calculated. The association between these MRI parameters and histological grade and Ki-67 level was then investigated. RESULTS There was a significant correlation between tumour-to-muscle SI ratio and histological grade in tissues captured during the non-enhanced T1-weighted (p=0.001), arterial phase (p=0.001), and portal venous phase (p=0.036) of dynamic contrast-enhanced MRI and apparent diffusion coefficient (p=0.027). Arterial inhomogeneous enhancement was also correlated with high-Ki-67 expression (p=0.032). CONCLUSIONS Preoperative MRI may serve as a non-invasive tool for prediction of small, aggressive hepatocellular carcinomas, which may otherwise be treated conservatively.
Collapse
Affiliation(s)
- Y Li
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China.
| | - J Chen
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - S Weng
- Department of Radiology, Fujian Provincial Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China
| | - H Sun
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - C Yan
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - X Xu
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - R Ye
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - J Hong
- Key Laboratory of Radiation Biology (Fujian Medical University), Fujian Province University; Department of Radiation Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| |
Collapse
|
28
|
Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features. Eur Radiol 2019; 29:3348-3357. [PMID: 31093705 DOI: 10.1007/s00330-019-06214-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To develop a proof-of-concept "interpretable" deep learning prototype that justifies aspects of its predictions from a pre-trained hepatic lesion classifier. METHODS A convolutional neural network (CNN) was engineered and trained to classify six hepatic tumor entities using 494 lesions on multi-phasic MRI, described in Part 1. A subset of each lesion class was labeled with up to four key imaging features per lesion. A post hoc algorithm inferred the presence of these features in a test set of 60 lesions by analyzing activation patterns of the pre-trained CNN model. Feature maps were generated that highlight regions in the original image that correspond to particular features. Additionally, relevance scores were assigned to each identified feature, denoting the relative contribution of a feature to the predicted lesion classification. RESULTS The interpretable deep learning system achieved 76.5% positive predictive value and 82.9% sensitivity in identifying the correct radiological features present in each test lesion. The model misclassified 12% of lesions. Incorrect features were found more often in misclassified lesions than correctly identified lesions (60.4% vs. 85.6%). Feature maps were consistent with original image voxels contributing to each imaging feature. Feature relevance scores tended to reflect the most prominent imaging criteria for each class. CONCLUSIONS This interpretable deep learning system demonstrates proof of principle for illuminating portions of a pre-trained deep neural network's decision-making, by analyzing inner layers and automatically describing features contributing to predictions. KEY POINTS • An interpretable deep learning system prototype can explain aspects of its decision-making by identifying relevant imaging features and showing where these features are found on an image, facilitating clinical translation. • By providing feedback on the importance of various radiological features in performing differential diagnosis, interpretable deep learning systems have the potential to interface with standardized reporting systems such as LI-RADS, validating ancillary features and improving clinical practicality. • An interpretable deep learning system could potentially add quantitative data to radiologic reports and serve radiologists with evidence-based decision support.
Collapse
|
29
|
Zhang T, Huang ZX, Wei Y, Jiang HY, Chen J, Liu XJ, Cao LK, Duan T, He XP, Xia CC, Song B. Hepatocellular carcinoma: Can LI-RADS v2017 with gadoxetic-acid enhancement magnetic resonance and diffusion-weighted imaging improve diagnostic accuracy? World J Gastroenterol 2019; 25:622-631. [PMID: 30774276 PMCID: PMC6371008 DOI: 10.3748/wjg.v25.i5.622] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/25/2018] [Accepted: 01/15/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The Liver Imaging Reporting and Data System (LI-RADS), supported by the American College of Radiology (ACR), has been developed for standardizing the acquisition, interpretation, reporting, and data collection of liver imaging examinations in patients at risk for hepatocellular carcinoma (HCC). Diffusion-weighted imaging (DWI), which is described as an ancillary imaging feature of LI-RADS, can improve the diagnostic efficiency of LI-RADS v2017 with gadoxetic acid-enhanced magnetic resonance imaging (MRI) for HCC.
AIM To determine whether the use of DWI can improve the diagnostic efficiency of LI-RADS v2017 with gadoxetic acid-enhanced magnetic resonance MRI for HCC.
METHODS In this institutional review board-approved study, 245 observations of high risk of HCC were retrospectively acquired from 203 patients who underwent gadoxetic acid-enhanced MRI from October 2013 to April 2018. Two readers independently measured the maximum diameter and recorded the presence of each lesion and assigned scores according to LI-RADS v2017. The test was used to determine the agreement between the two readers with or without DWI. In addition, the sensitivity (SE), specificity (SP), accuracy (AC), positive predictive value (PPV), and negative predictive value (NPV) of LI-RADS were calculated. Youden index values were used to compare the diagnostic performance of LI-RADS with or without DWI.
RESULTS Almost perfect interobserver agreement was obtained for the categorization of observations with LI-RADS (kappa value: 0.813 without DWI and 0.882 with DWI). For LR-5, the diagnostic SE, SP, and AC values were 61.2%, 92.5%, and 71.4%, respectively, with or without DWI; for LR-4/5, they were 73.9%, 80%, and 75.9% without DWI and 87.9%, 80%, and 85.3% with DWI; for LR-4/5/M, they were 75.8%, 58.8%, and 70.2% without DWI and 87.9%, 58.8%, and 78.4% with DWI; for LR- 4/5/TIV, they were 75.8%, 75%, and 75.5% without DWI and 89.7%, 75%, and 84.9% with DWI. The Youden index values of the LI-RADS classification without or with DWI were as follows: LR-4/5: 0.539 vs 0.679; LR-4/5/M: 0.346 vs 0.467; and LR-4/5/TIV: 0.508 vs 0.647.
CONCLUSION LI-RADS v2017 has been successfully applied with gadoxetate-enhanced MRI for patients at high risk for HCC. The addition of DWI significantly increases the diagnostic efficiency for HCC.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| | - Zi-Xing Huang
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| | - Yi Wei
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| | - Han-Yu Jiang
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| | - Jie Chen
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| | - Xi-Jiao Liu
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| | - Li-Kun Cao
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| | - Ting Duan
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| | - Xiao-Peng He
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| | - Chun-Chao Xia
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| | - Bin Song
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
30
|
Common pitfalls when using the Liver Imaging Reporting and Data System (LI-RADS): lessons learned from a multi-year experience. Abdom Radiol (NY) 2019; 44:43-53. [PMID: 30073400 DOI: 10.1007/s00261-018-1720-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The goal of the Liver Imaging Reporting and Data System (LI-RADS) is to standardize the interpretation and reporting of liver observations on contrast-enhanced CT and MR imaging of patients at risk for hepatocellular carcinoma. Although LI-RADS represents a significant achievement in standardization of the diagnosis and management of cirrhotic patients, complexity and caveats to the algorithm may challenge correct application in clinical practice. The purpose of this paper is to discuss common pitfalls and potential solutions when applying LI-RADS in practice. Knowledge of the most common pitfalls may improve the diagnostic confidence and performance when using the LI-RADS system for the interpretation of CT and MR imaging of the liver.
Collapse
|
31
|
Abstract
Liver-directed therapy is a critical component of treatment strategies for hepatocellular carcinoma. These therapies included percutaneous image-guided ablation, transarterial chemoembolization, and transarterial radioembolization, and are administered by interventional radiologists. Depending on the stage of disease, a particular treatment modality, or a combination thereof, is expected to be most efficacious in achieving the goals of treatment for a particular patient. This article seeks to review the various liver-directed treatment modalities for treatment of hepatocellular carcinoma, with attention to their efficacy and patient selection criteria.
Collapse
|