• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643723)   Today's Articles (462)   Subscriber (50636)
For: Shu Z, Fang S, Ye Q, Mao D, Cao H, Pang P, Gong X. Prediction of efficacy of neoadjuvant chemoradiotherapy for rectal cancer: the value of texture analysis of magnetic resonance images. Abdom Radiol (NY) 2019;44:3775-84. [PMID: 30852633 DOI: 10.1007/s00261-019-01971-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Number Cited by Other Article(s)
1
Li Y, Liu X, Gu M, Xu T, Ge C, Chang P. Significance of MRI-based radiomics in predicting pathological complete response to neoadjuvant chemoradiotherapy of locally advanced rectal cancer: A narrative review. Cancer Radiother 2024;28:390-401. [PMID: 39174361 DOI: 10.1016/j.canrad.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 08/24/2024]
2
Chen H, Li X, Pan X, Qiang Y, Qi XS. Feature selection based on unsupervised clustering evaluation for predicting neoadjuvant chemoradiation response for patients with locally advanced rectal cancer. Phys Med Biol 2023;68:235012. [PMID: 37972413 DOI: 10.1088/1361-6560/ad0d46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
3
Wang P, Chen K, Han Y, Zhao M, Abiyasi N, Peng H, Yan S, Shang J, Shang N, Meng W. Prediction model based on radiomics and clinical features for preoperative lymphovascular invasion in gastric cancer patients. Future Oncol 2023;19:1613-1626. [PMID: 37377070 DOI: 10.2217/fon-2022-1025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]  Open
4
Peng J, Wang W, Jin H, Qin X, Hou J, Yang Z, Shu Z. Develop and validate a radiomics space-time model to predict the pathological complete response in patients undergoing neoadjuvant treatment of rectal cancer: an artificial intelligence model study based on machine learning. BMC Cancer 2023;23:365. [PMID: 37085830 PMCID: PMC10120125 DOI: 10.1186/s12885-023-10855-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]  Open
5
Chou Y, Peng SH, Lin HY, Lan TL, Jiang JK, Liang WY, Hu YW, Wang LW. Radiomic features derived from pretherapeutic MRI predict chemoradiation response in locally advanced rectal cancer. J Chin Med Assoc 2023;86:399-408. [PMID: 36727777 DOI: 10.1097/jcma.0000000000000887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]  Open
6
Yin Z, Yao C, Zhang L, Qi S. Application of artificial intelligence in diagnosis and treatment of colorectal cancer: A novel Prospect. Front Med (Lausanne) 2023;10:1128084. [PMID: 36968824 PMCID: PMC10030915 DOI: 10.3389/fmed.2023.1128084] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023]  Open
7
Capelli G, Campi C, Bao QR, Morra F, Lacognata C, Zucchetta P, Cecchin D, Pucciarelli S, Spolverato G, Crimì F. 18F-FDG-PET/MRI texture analysis in rectal cancer after neoadjuvant chemoradiotherapy. Nucl Med Commun 2022;43:815-822. [PMID: 35471653 PMCID: PMC9177153 DOI: 10.1097/mnm.0000000000001570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/05/2022] [Indexed: 12/27/2022]
8
Mao Y, Pei Q, Fu Y, Liu H, Chen C, Li H, Gong G, Yin H, Pang P, Lin H, Xu B, Zai H, Yi X, Chen BT. Pre-Treatment Computed Tomography Radiomics for Predicting the Response to Neoadjuvant Chemoradiation in Locally Advanced Rectal Cancer: A Retrospective Study. Front Oncol 2022;12:850774. [PMID: 35619922 PMCID: PMC9127861 DOI: 10.3389/fonc.2022.850774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/01/2022] [Indexed: 11/26/2022]  Open
9
Wang J, Chen J, Zhou R, Gao Y, Li J. Machine learning-based multiparametric MRI radiomics for predicting poor responders after neoadjuvant chemoradiotherapy in rectal Cancer patients. BMC Cancer 2022;22:420. [PMID: 35439946 PMCID: PMC9017030 DOI: 10.1186/s12885-022-09518-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/08/2022] [Indexed: 01/30/2023]  Open
10
Azamat S, Karaman Ş, Azamat IF, Ertaş G, Kulle CB, Keskin M, Sakin RND, Bakır B, Oral EN, Kartal MG. Complete Response Evaluation of Locally Advanced Rectal Cancer to Neoadjuvant Chemoradiotherapy Using Textural Features Obtained from T2 Weighted Imaging and ADC Maps. Curr Med Imaging 2022;18:1061-1069. [PMID: 35240976 DOI: 10.2174/1573405618666220303111026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/07/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022]
11
Zhang K, Zheng Y, Huang H, Lei J. Preliminary Study on Predicting Pathological Staging and Immunohistochemical Markers of Rectal Cancer Based on ADC Histogram Analysis. Acad Radiol 2021;28 Suppl 1:S184-S191. [PMID: 33676825 DOI: 10.1016/j.acra.2021.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
12
Cheng Y, Luo Y, Hu Y, Zhang Z, Wang X, Yu Q, Liu G, Cui E, Yu T, Jiang X. Multiparametric MRI-based Radiomics approaches on predicting response to neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer. Abdom Radiol (NY) 2021;46:5072-5085. [PMID: 34302510 DOI: 10.1007/s00261-021-03219-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
13
Response prediction of neoadjuvant chemoradiation therapy in locally advanced rectal cancer using CT-based fractal dimension analysis. Eur Radiol 2021;32:2426-2436. [PMID: 34643781 DOI: 10.1007/s00330-021-08303-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023]
14
Dilek O, Akkaya H, Parlatan C, Koseci T, Tas ZA, Soker G, Gulek B. Can the mesorectal fat tissue volume be used as a predictive factor in foreseeing the response to neoadjuvant chemoradiotherapy in rectum cancer? A CT-based preliminary study. Abdom Radiol (NY) 2021;46:2415-2422. [PMID: 33501511 DOI: 10.1007/s00261-021-02951-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 11/25/2022]
15
Sun J, Liu K, Tong H, Liu H, Li X, Luo Y, Li Y, Yao Y, Jin R, Fang J, Chen X. CT Texture Analysis for Differentiating Bronchiolar Adenoma, Adenocarcinoma In Situ, and Minimally Invasive Adenocarcinoma of the Lung. Front Oncol 2021;11:634564. [PMID: 33981603 PMCID: PMC8109050 DOI: 10.3389/fonc.2021.634564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/22/2021] [Indexed: 12/03/2022]  Open
16
Studying local tumour heterogeneity on MRI and FDG-PET/CT to predict response to neoadjuvant chemoradiotherapy in rectal cancer. Eur Radiol 2021;31:7031-7038. [PMID: 33569624 DOI: 10.1007/s00330-021-07724-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/24/2020] [Accepted: 01/27/2021] [Indexed: 12/23/2022]
17
Di Re AM, Sun Y, Sundaresan P, Hau E, Toh JWT, Gee H, Or M, Haworth A. MRI radiomics in the prediction of therapeutic response to neoadjuvant therapy for locoregionally advanced rectal cancer: a systematic review. Expert Rev Anticancer Ther 2021;21:425-449. [PMID: 33289435 DOI: 10.1080/14737140.2021.1860762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
18
Advanced analytics and artificial intelligence in gastrointestinal cancer: a systematic review of radiomics predicting response to treatment. Eur J Nucl Med Mol Imaging 2020;48:1785-1794. [PMID: 33326049 PMCID: PMC8113210 DOI: 10.1007/s00259-020-05142-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/29/2020] [Indexed: 02/08/2023]
19
Staal FCR, van der Reijd DJ, Taghavi M, Lambregts DMJ, Beets-Tan RGH, Maas M. Radiomics for the Prediction of Treatment Outcome and Survival in Patients With Colorectal Cancer: A Systematic Review. Clin Colorectal Cancer 2020;20:52-71. [PMID: 33349519 DOI: 10.1016/j.clcc.2020.11.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 09/03/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
20
Post-TACE changes in ADC histogram predict overall and transplant-free survival in patients with well-defined HCC: a retrospective cohort with up to 10 years follow-up. Eur Radiol 2020;31:1378-1390. [PMID: 32894356 DOI: 10.1007/s00330-020-07237-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/19/2020] [Accepted: 08/27/2020] [Indexed: 12/26/2022]
21
Meng Y, Wan L, Zhang C, Wang C, Ye F, Li S, Zou S, Cheng J, Xu K, Zhou C, Zhang H. The Predictive Value of Pre-/Postneoadjuvant Chemoradiotherapy MRI Characteristics for Patient Outcomes in Locally Advanced Rectal Cancer. Acad Radiol 2020;27:e233-e243. [PMID: 31780392 DOI: 10.1016/j.acra.2019.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/27/2019] [Accepted: 10/27/2019] [Indexed: 01/18/2023]
22
Gao J, Han F, Jin Y, Wang X, Zhang J. A Radiomics Nomogram for the Preoperative Prediction of Lymph Node Metastasis in Pancreatic Ductal Adenocarcinoma. Front Oncol 2020;10:1654. [PMID: 32974205 PMCID: PMC7482654 DOI: 10.3389/fonc.2020.01654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]  Open
23
Chen S, Shu Z, Li Y, Chen B, Tang L, Mo W, Shao G, Shao F. Machine Learning-Based Radiomics Nomogram Using Magnetic Resonance Images for Prediction of Neoadjuvant Chemotherapy Efficacy in Breast Cancer Patients. Front Oncol 2020;10:1410. [PMID: 32923392 PMCID: PMC7456979 DOI: 10.3389/fonc.2020.01410] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 07/03/2020] [Indexed: 12/18/2022]  Open
24
Alvarez-Jimenez C, Antunes JT, Talasila N, Bera K, Brady JT, Gollamudi J, Marderstein E, Kalady MF, Purysko A, Willis JE, Stein S, Friedman K, Paspulati R, Delaney CP, Romero E, Madabhushi A, Viswanath SE. Radiomic Texture and Shape Descriptors of the Rectal Environment on Post-Chemoradiation T2-Weighted MRI are Associated with Pathologic Tumor Stage Regression in Rectal Cancers: A Retrospective, Multi-Institution Study. Cancers (Basel) 2020;12:cancers12082027. [PMID: 32722082 PMCID: PMC7463898 DOI: 10.3390/cancers12082027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023]  Open
25
Petresc B, Lebovici A, Caraiani C, Feier DS, Graur F, Buruian MM. Pre-Treatment T2-WI Based Radiomics Features for Prediction of Locally Advanced Rectal Cancer Non-Response to Neoadjuvant Chemoradiotherapy: A Preliminary Study. Cancers (Basel) 2020;12:cancers12071894. [PMID: 32674345 PMCID: PMC7409205 DOI: 10.3390/cancers12071894] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022]  Open
26
MRI T2-weighted sequences-based texture analysis (TA) as a predictor of response to neoadjuvant chemo-radiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC). Radiol Med 2020;125:1216-1224. [DOI: 10.1007/s11547-020-01215-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
27
MRI features and texture analysis for the early prediction of therapeutic response to neoadjuvant chemoradiotherapy and tumor recurrence of locally advanced rectal cancer. Eur Radiol 2020;30:4201-4211. [PMID: 32270317 DOI: 10.1007/s00330-020-06835-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/05/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
28
Chen X, Yang Z, Yang J, Liao Y, Pang P, Fan W, Chen X. Radiomics analysis of contrast-enhanced CT predicts lymphovascular invasion and disease outcome in gastric cancer: a preliminary study. Cancer Imaging 2020;20:24. [PMID: 32248822 PMCID: PMC7132895 DOI: 10.1186/s40644-020-00302-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/06/2020] [Indexed: 12/15/2022]  Open
29
Cuocolo R, Caruso M, Perillo T, Ugga L, Petretta M. Machine Learning in oncology: A clinical appraisal. Cancer Lett 2020;481:55-62. [PMID: 32251707 DOI: 10.1016/j.canlet.2020.03.032] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/11/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
30
Feng Q, Song Q, Wang M, Pang P, Liao Z, Jiang H, Shen D, Ding Z. Hippocampus Radiomic Biomarkers for the Diagnosis of Amnestic Mild Cognitive Impairment: A Machine Learning Method. Front Aging Neurosci 2019;11:323. [PMID: 31824302 PMCID: PMC6881244 DOI: 10.3389/fnagi.2019.00323] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]  Open
31
Optimized Parameters of Diffusion-Weighted MRI for Prediction of the Response to Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer. BIOMED RESEARCH INTERNATIONAL 2019;2019:9392747. [PMID: 31737679 PMCID: PMC6815634 DOI: 10.1155/2019/9392747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/14/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022]
32
Mainenti PP, Stanzione A, Guarino S, Romeo V, Ugga L, Romano F, Storto G, Maurea S, Brunetti A. Colorectal cancer: Parametric evaluation of morphological, functional and molecular tomographic imaging. World J Gastroenterol 2019;25:5233-5256. [PMID: 31558870 PMCID: PMC6761241 DOI: 10.3748/wjg.v25.i35.5233] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/06/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023]  Open
33
Euler A, Blüthgen C, Wurnig MC, Jungraithmayr W, Boss A. Can texture analysis in ultrashort echo-time MRI distinguish primary graft dysfunction from acute rejection in lung transplants? A multidimensional assessment in a mouse model. J Magn Reson Imaging 2019;51:108-116. [PMID: 31150142 DOI: 10.1002/jmri.26817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/22/2019] [Indexed: 01/06/2023]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA