1
|
Becker J, Woźnicki P, Decker JA, Risch F, Wudy R, Kaufmann D, Canalini L, Wollny C, Scheurig-Muenkler C, Kroencke T, Bette S, Schwarz F. Radiomics signature for automatic hydronephrosis detection in unenhanced Low-Dose CT. Eur J Radiol 2024; 179:111677. [PMID: 39178684 DOI: 10.1016/j.ejrad.2024.111677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024]
Abstract
PURPOSE To investigate the diagnostic performance of an automatic pipeline for detection of hydronephrosis on kidney's parenchyma on unenhanced low-dose CT of the abdomen. METHODS This retrospective study included 95 patients with confirmed unilateral hydronephrosis in an unenhanced low-dose CT of the abdomen. Data were split into training (n = 67) and test (n = 28) cohorts. Both kidneys for each case were included in further analyses, whereas the kidney without hydronephrosis was used as control. Using the training cohort, we developed a pipeline consisting of a deep-learning model for automatic segmentation (a Convolutional Neural Network based on nnU-Net architecture) of the kidney's parenchyma and a radiomics classifier to detect hydronephrosis. The models were assessed using standard classification metrics, such as area under the ROC curve (AUC), sensitivity and specificity, as well as semantic segmentation metrics, including Dice coefficient and Jaccard index. RESULTS Using manual segmentation of the kidney's parenchyma, hydronephrosis can be detected with an AUC of 0.84, a sensitivity of 75% and a specificity of 82%, a PPV of 81% and a NPV of 77%. Automatic kidney segmentation achieved a mean Dice score of 0.87 and 0.91 for the right and left kidney, respectively. Additionally, automatic segmentation achieved an AUC of 0.83, a sensitivity of 86%, specificity of 64%, PPV of 71%, and NPV of 82%. CONCLUSION Our proposed radiomics signature using automatic kidney's parenchyma segmentation allows for accurate hydronephrosis detection on unenhanced low-dose CT scans of the abdomen independently of widened renal pelvis. This method could be used in clinical routine to highlight hydronephrosis to radiologists as well as clinicians, especially in patients with concurrent parapelvic cysts and might reduce time and costs associated with diagnosing hydronephrosis.
Collapse
Affiliation(s)
- Judith Becker
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Piotr Woźnicki
- Diagnostic and Interventional Radiology, University Hospital Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Josua A Decker
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Franka Risch
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Ramona Wudy
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - David Kaufmann
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Luca Canalini
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Claudia Wollny
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Christian Scheurig-Muenkler
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Thomas Kroencke
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, Universitätsstr. 2, 86159 Augsburg, Germany.
| | - Stefanie Bette
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Florian Schwarz
- Centre for Diagnostic Imaging and Interventional Therapy, Donau-Isar-Klinikum, Perlasberger Straße 41, 94469 Deggendorf, Germany; Medical Faculty, Ludwig Maximilian University Munich, Bavariaring 19, 80336 Munich, Germany
| |
Collapse
|
2
|
Kaviani P, Primak A, Bizzo B, Ebrahimian S, Saini S, Dreyer KJ, Kalra MK. Performance of threshold-based stone segmentation and radiomics for determining the composition of kidney stones from single-energy CT. Jpn J Radiol 2023; 41:194-200. [PMID: 36331701 DOI: 10.1007/s11604-022-01349-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Knowledge of kidney stone composition can help in patient management; urine composition analysis and dual-energy CT are frequently used to assess stone type. We assessed if threshold-based stone segmentation and radiomics can determine the composition of kidney stones from single-energy, non-contrast abdomen-pelvis CT. METHODS With IRB approval, we identified 218 consecutive patients (mean age 64 ± 13 years; male:female 138:80) with the presence of kidney stones on non-contrast, abdomen-pelvis CT and surgical or biochemical proof of their stone composition. CT examinations were performed on one of the seven multidetector-row scanners from four vendors (GE, Philips, Siemens, Toshiba). Deidentified CT images were processed with a radiomics prototype (Frontier, Siemens Healthineers) to segment the entire kidney volumes with an AI-based organ segmentation tool. We applied a threshold of 130 HU to isolate stones in the segmented kidneys and to estimate radiomics over the segmented stone volume. A coinvestigator verified kidney stone segmentation and adjusted the volume of interest to include the entire stone volume when necessary. We applied multiple logistic regression tests with precision recall plots to obtain area under the curve (AUC) using a built-in R statistical program. RESULTS The threshold-based stone segmentation successfully isolated kidney stones (uric acid: n = 102 patients, calcium oxalate/phosphate: n = 116 patients) in all patients. Radiomics differentiated between calcium and uric acid stones with an AUC of 0.78 (p < 0.01, 95% CI 0.73-0.83), 0.79 sensitivity, and 0.90 specificity regardless of CT vendors (GE CT: AUC = 0.82, p < 0.01, 95% CI 0.740-0896; Siemens CT: AUC = 0.77, 95% CI 0.700-0.846, p < 0.01). CONCLUSION Automated threshold-based stone segmentation and radiomics can differentiate between calcium oxalate/phosphate and urate stones from non-contrast, single-energy abdomen CT.
Collapse
Affiliation(s)
- Parisa Kaviani
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 75 Blossom Court, Suite 248, Boston, MA, 02114, USA
| | - Andrew Primak
- Siemens Medical Solutions USA Inc, Malvern, PA, 19355, USA
| | - Bernardo Bizzo
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 75 Blossom Court, Suite 248, Boston, MA, 02114, USA.,MGH and BWH Center for Clinical Data Science, Boston, USA
| | - Shadi Ebrahimian
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 75 Blossom Court, Suite 248, Boston, MA, 02114, USA
| | - Sanjay Saini
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
| | - Keith J Dreyer
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 75 Blossom Court, Suite 248, Boston, MA, 02114, USA.,MGH and BWH Center for Clinical Data Science, Boston, USA.,Department of Radiology, Massachusetts General Hospital, 25 New Chardon Street, Boston, MA, 02114, USA
| | - Mannudeep K Kalra
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 75 Blossom Court, Suite 248, Boston, MA, 02114, USA.
| |
Collapse
|
3
|
Lafata KJ, Wang Y, Konkel B, Yin FF, Bashir MR. Radiomics: a primer on high-throughput image phenotyping. Abdom Radiol (NY) 2022; 47:2986-3002. [PMID: 34435228 DOI: 10.1007/s00261-021-03254-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 01/18/2023]
Abstract
Radiomics is a high-throughput approach to image phenotyping. It uses computer algorithms to extract and analyze a large number of quantitative features from radiological images. These radiomic features collectively describe unique patterns that can serve as digital fingerprints of disease. They may also capture imaging characteristics that are difficult or impossible to characterize by the human eye. The rapid development of this field is motivated by systems biology, facilitated by data analytics, and powered by artificial intelligence. Here, as part of Abdominal Radiology's special issue on Quantitative Imaging, we provide an introduction to the field of radiomics. The technique is formally introduced as an advanced application of data analytics, with illustrating examples in abdominal radiology. Artificial intelligence is then presented as the main driving force of radiomics, and common techniques are defined and briefly compared. The complete step-by-step process of radiomic phenotyping is then broken down into five key phases. Potential pitfalls of each phase are highlighted, and recommendations are provided to reduce sources of variation, non-reproducibility, and error associated with radiomics.
Collapse
Affiliation(s)
- Kyle J Lafata
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA. .,Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA. .,Department of Electrical & Computer Engineering, Duke University Pratt School of Engineering, Durham, NC, USA.
| | - Yuqi Wang
- Department of Electrical & Computer Engineering, Duke University Pratt School of Engineering, Durham, NC, USA
| | - Brandon Konkel
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Fang-Fang Yin
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA
| | - Mustafa R Bashir
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA.,Department of Medicine, Gastroenterology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
4
|
Lim EJ, Castellani D, So WZ, Fong KY, Li JQ, Tiong HY, Gadzhiev N, Heng CT, Teoh JYC, Naik N, Ghani K, Sarica K, De La Rosette J, Somani B, Gauhar V. Radiomics in Urolithiasis: Systematic Review of Current Applications, Limitations, and Future Directions. J Clin Med 2022; 11:jcm11175151. [PMID: 36079078 PMCID: PMC9457189 DOI: 10.3390/jcm11175151] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Radiomics is increasingly applied to the diagnosis, management, and outcome prediction of various urological conditions. Urolithiasis is a common benign condition with a high incidence and recurrence rate. The purpose of this scoping review is to evaluate the current evidence of the application of radiomics in urolithiasis, especially its utility in diagnostics and therapeutics. An electronic literature search on radiomics in the setting of urolithiasis was conducted on PubMed, EMBASE, and Scopus from inception to 21 March 2022. A total of 7 studies were included. Radiomics has been successfully applied in the field of urolithiasis to differentiate phleboliths from calculi and classify stone types and composition pre-operatively. More importantly, it has also been utilized to predict outcomes and complications after endourological procedures. Although radiomics in urolithiasis is still in its infancy, it has the potential for large-scale implementation. Its greatest potential lies in the correlation with conventional established diagnostic and therapeutic factors.
Collapse
Affiliation(s)
- Ee Jean Lim
- Department of Urology, Singapore General Hospital, Singapore 169608, Singapore
- Correspondence: ; Tel.: +65-6321-4693
| | - Daniele Castellani
- Urology Unit, Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona, Università Politecnica Delle Marche, 60126 Ancona, Italy
| | - Wei Zheng So
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Khi Yung Fong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Jing Qiu Li
- Department of Urology, Singapore General Hospital, Singapore 169608, Singapore
| | - Ho Yee Tiong
- Department of Urology, National University Hospital, Singapore 119074, Singapore
| | - Nariman Gadzhiev
- Department of Urology, Saint-Petersburg State University Hospital, 199034 St. Petersburg, Russia
| | - Chin Tiong Heng
- Department of Urology, Ng Teng Fong Hospital, Singapore 609606, Singapore
| | - Jeremy Yuen-Chun Teoh
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nithesh Naik
- Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Khurshid Ghani
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kemal Sarica
- Department of Urology, Biruni University, 34010 Istanbul, Turkey
| | - Jean De La Rosette
- Istanbul Medipol University, TEM Avrupa Otoyolu Goztepe Cikisi No: 1, 34010 Istanbul, Turkey
| | - Bhaskar Somani
- Department of Urology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Vineet Gauhar
- Department of Urology, Ng Teng Fong Hospital, Singapore 609606, Singapore
| |
Collapse
|
5
|
Ureteral calculi lithotripsy for single ureteral calculi: can DNN-assisted model help preoperatively predict risk factors for sepsis? Eur Radiol 2022; 32:8540-8549. [PMID: 35731290 DOI: 10.1007/s00330-022-08882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To explore the utility of radiomics and deep learning model in assessing the risk factors for sepsis after flexible ureteroscopy lithotripsy (FURL) or percutaneous nephrolithotomy (PCNL) in patients with ureteral calculi. METHODS This retrospective analysis included 847 patients with treatment-naive proximal ureteral calculi who received FURL or PCNL. All participants were preoperatively conducted non-contrast computed tomography scans, and relevant clinical information was meanwhile collected. After propensity score matching, the radiomics model was established to predict the onset of sepsis. A deep learning model was also adapted to further improve the prediction accuracy. Performance of these trained models was verified in another independent external validation set including 40 cases of ureteral calculi patients. RESULTS The overall incidence of sepsis after FURL or PCNL was 5.9%. The least absolute shrinkage and selection operator (LASSO) regression analysis revealed 26 predictive variables, with an overall AUC of 0.881 (95% CI, 0.813-0.931) and an AUC of 0.783 (95% CI, 0.766-0.801) in external validation cohort. Judicious adaption of a deep neural network (DNN) model to our dataset improved the AUC to 0.920 (95% CI, 0.906-0.933) in the internal validation. To eliminate the overfitting, external validation was carried out for DNN model (AUC = 0.874 (95% CI, 0.858-0.891)). CONCLUSIONS The DNN was more effective than the LASSO model in revealing risk factors for sepsis after FURL or PCNL in single ureteral calculi patients, and females are more susceptible to sepsis than males. Deep learning models have the potential to act as gatekeepers to facilitate patient stratification. KEY POINTS • Both the least absolute shrinkage and selection operator (LASSO) and deep neural network (DNN) models were shown to be effective in sepsis prediction. • The DNN model achieved superior prediction capability, with an AUC of 0.920 (95% CI, 0.906-0.933). • DNN-assisted model has potential to serve as a gatekeeper to facilitate patient stratification.
Collapse
|
6
|
Ebrahimian S, Singh R, Netaji A, Madhusudhan KS, Homayounieh F, Primak A, Lades F, Saini S, Kalra MK, Sharma S. Characterization of Benign and Malignant Pancreatic Lesions with DECT Quantitative Metrics and Radiomics. Acad Radiol 2022; 29:705-713. [PMID: 34412944 DOI: 10.1016/j.acra.2021.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022]
Abstract
RATIONALE AND OBJECTIVES To compare dual energy CT (DECT) quantitative metrics and radiomics for differentiating benign and malignant pancreatic lesions on contrast enhanced abdomen CT. MATERIALS AND METHODS Our study included 103 patients who underwent contrast-enhanced DECT for assessing focal pancreatic lesions at one of the two hospitals (Site A: age 68 ± 12 yrs; malignant = 41, benign = 18; Site B: age 46 ± 2 yrs; malignant = 23, benign = 21). All malignant lesions had histologic confirmation, and benign lesions were stable on follow up CT (>12 months) or had characteristic benign features on MRI. Arterial-phase, low- and high-kV DICOM images were processed with the DECT Tumor Analysis (DETA) to obtain DECT quantitative metrics such as HU, iodine and water content from a region of interest (ROI) over focal pancreatic lesions. Separately, we obtained DECT radiomics from the same ROI. Data were analyzed with multiple logistic regression and receiver operating characteristics to generate area under the curve (AUC) for best predictive variables. RESULTS DECT quantitative metrics and radiomics had AUCs of 0.98-0.99 at site A and 0.89-0.94 at site B data for classifying benign and malignant pancreatic lesions. There was no significant difference in the AUCs and accuracies of DECT quantitative metrics and radiomics from lesion rims and volumes among patients at both sites (p > 0.05). Supervised learning-based model with data from the two sites demonstrated best AUCs of 0.94 (DECT radiomics) and 0.90 (DECT quantitative metrics) for characterizing pancreatic lesions as benign or malignant. CONCLUSION Compared to complex DECT radiomics, quantitative DECT information provide a simpler but accurate method of differentiating benign and malignant pancreatic lesions.
Collapse
Affiliation(s)
- Shadi Ebrahimian
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 75 Blossom court, Boston, MA 02114
| | - Ramandeep Singh
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 75 Blossom court, Boston, MA 02114
| | - Arjunlokesh Netaji
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, New Delhi, India
| | - Kumble Seetharama Madhusudhan
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, New Delhi, India
| | - Fatemeh Homayounieh
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 75 Blossom court, Boston, MA 02114
| | - Andrew Primak
- Siemens Medical Solutions USA Inc., Malvern, Pennsylvania
| | | | - Sanjay Saini
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 75 Blossom court, Boston, MA 02114
| | - Mannudeep K Kalra
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 75 Blossom court, Boston, MA 02114.
| | - Sanjay Sharma
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
7
|
Elton DC, Turkbey EB, Pickhardt PJ, Summers RM. A deep learning system for automated kidney stone detection and volumetric segmentation on noncontrast CT scans. Med Phys 2022; 49:2545-2554. [PMID: 35156216 PMCID: PMC10407943 DOI: 10.1002/mp.15518] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Early detection and size quantification of renal calculi are important for optimizing treatment and preventing severe kidney stone disease. Prior work has shown that volumetric measurements of kidney stones are more informative and reproducible than linear measurements. Deep learning-based systems that use abdominal noncontrast computed tomography (CT) scans may assist in detection and reduce workload by removing the need for manual stone volume measurement. Prior to this work, no such system had been developed for use on noisy low-dose CT or tested on a large-scale external dataset. METHODS We used a dataset of 91 CT colonography (CTC) scans with manually marked kidney stones combined with 89 CTC scans without kidney stones. To compare with a prior work half the data was used for training and half for testing. A set of CTC scans from 6185 patients from a separate institution with patient-level labels were used as an external validation set. A 3D U-Net model was employed to segment the kidneys, followed by gradient-based anisotropic denoising, thresholding, and region growing. A 13 layer convolutional neural network classifier was then applied to distinguish kidney stones from false positive regions. RESULTS The system achieved a sensitivity of 0.86 at 0.5 false positives per scan on a challenging test set of low-dose CT with many small stones, an improvement over an earlier work that obtained a sensitivity of 0.52. The stone volume measurements correlated well with manual measurements (r 2 = 0.95 $r^2 = 0.95$ ). For patient-level classification, the system achieved an area under the receiver-operating characteristic of 0.95 on an external validation set (sensitivity = 0.88, specificity = 0.91 at the Youden point). A common cause of false positives were small atherosclerotic plaques in the renal sinus that simulated kidney stones. CONCLUSIONS Our deep-learning-based system showed improvements over a previously developed system that did not use deep learning, with even higher performance on an external validation set.
Collapse
Affiliation(s)
- Daniel C. Elton
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD 20892-1182, USA
| | - Evrim B. Turkbey
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD 20892-1182, USA
| | - Perry J. Pickhardt
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA
| | - Ronald M. Summers
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD 20892-1182, USA
| |
Collapse
|
8
|
Yu Q, Liu J, Lin H, Lei P, Fan B. Application of Radiomics Model of CT Images in the Identification of Ureteral Calculus and Phlebolith. Int J Clin Pract 2022; 2022:5478908. [PMID: 36474549 PMCID: PMC9678460 DOI: 10.1155/2022/5478908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/24/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To investigate the clinical application of the three-dimensional (3D) radiomics model of the CT image in the diagnosis and identification of ureteral calculus and phlebolith. METHOD Sixty-one cases of ureteral calculus and 61 cases of phlebolith were retrospectively investigated. The enrolled patients were randomly categorized into the training set (n = 86) and the testing set (n = 36) with a ratio of 7 : 3. The plain CT scan images of all samples were manually segmented by the ITK-SNAP software, followed by radiomics analysis through the Analysis Kit software. A total of 1316 texture features were extracted. Then, the maximum correlation minimum redundancy criterion and the least absolute shrinkage and selection operator algorithm were used for texture feature selection. The feature subset with the most predictability was selected to establish the 3D radiomics model. The performance of the model was evaluated by the receiver operating characteristic (ROC) curve, and the area under the ROC curve (AUC) was also calculated. Additionally, the decision curve was used to evaluate the clinical application of the model. RESULTS The 10 selected radiomics features were significantly related to the identification and diagnosis of ureteral calculus and phlebolith. The radiomics model showed good identification efficiency for ureteral calculus and phlebolith in the training set (AUC = 0.98; 95%CI: 0.96-1.00) and testing set (AUC = 0.98; 95%CI: 0.95-1.00). The decision curve thus demonstrated the clinical application of the radiomics model. CONCLUSIONS The 3D radiomics model based on plain CT scan images indicated good performance in the identification and prediction of ureteral calculus and phlebolith and was expected to provide an effective detection method for clinical diagnosis.
Collapse
Affiliation(s)
- Qiuyue Yu
- Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Jiaqi Liu
- Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Huashan Lin
- Department of Pharmaceutical Diagnosis, GE Healthcare, Changsha 410005, China
| | - Pinggui Lei
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Bing Fan
- Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| |
Collapse
|