1
|
Wang L, Xu HX, Wang R, Zhang F, Deng D, Zhu X, Tan Q, Yang H. Advances in multi-omics studies of microvascular invasion in hepatocellular carcinoma. Eur J Med Res 2025; 30:165. [PMID: 40075448 PMCID: PMC11905518 DOI: 10.1186/s40001-025-02421-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 03/01/2025] [Indexed: 03/14/2025] Open
Abstract
Microvascular invasion (MVI) represents a pivotal independent prognostic factor for the recurrence of hepatocellular carcinoma (HCC) after surgery. It contributes to early intervention for potentially recurrent HCC to enhance patient outcomes and increase survival rates. Traditionally, the diagnosis of MVI has relied on postoperative pathological analysis, and accurate preoperative detection methodologies are lacking. Recent research suggests that multi-omics strategies play a role in definitively diagnosing MVI before surgery and offering personalized selection for clinical decision-making in HCC management. This review meticulously examines a multi-omics approach for the preoperative prediction of MVI in HCC patients, aiming to innovate diagnostic paradigms to anticipate postsurgical recurrence, thereby facilitating earlier and more personalized therapeutic strategies.
Collapse
Affiliation(s)
- Lili Wang
- Department of Radiology, First Hospital of Lanzhou University, Chengguan District, Donggangxi Road No. 1, Lanzhou, 730000, China.
- First Clinical Medical School of Lanzhou University, Chengguan District, Donggangxi Road No. 1, Lanzhou, 730000, China.
| | - Han Xin Xu
- First Clinical Medical School of Lanzhou University, Chengguan District, Donggangxi Road No. 1, Lanzhou, 730000, China
| | - Rui Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Fachang Zhang
- First Clinical Medical School of Lanzhou University, Chengguan District, Donggangxi Road No. 1, Lanzhou, 730000, China
| | - Diandian Deng
- First Clinical Medical School of Lanzhou University, Chengguan District, Donggangxi Road No. 1, Lanzhou, 730000, China
| | - Xiaoyang Zhu
- Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
| | - Qi Tan
- First Clinical Medical School of Lanzhou University, Chengguan District, Donggangxi Road No. 1, Lanzhou, 730000, China
| | - Heng Yang
- First Clinical Medical School of Lanzhou University, Chengguan District, Donggangxi Road No. 1, Lanzhou, 730000, China
| |
Collapse
|
2
|
Gou J, Li J, Li Y, Lu M, Wang C, Zhuo Y, Dong X. The Diagnostic Accuracy Between Radiomics Model and Non-radiomics Model for Preoperative of Microvascular Invasion of Solitary Hepatocellular Carcinoma: A Systematic Review and Meta-analysis. Acad Radiol 2024; 31:4419-4433. [PMID: 38664142 DOI: 10.1016/j.acra.2024.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 11/01/2024]
Abstract
RATIONALE AND OBJECTIVES Microvascular invasion (MVI) is a key prognostic factor for hepatocellular carcinoma (HCC). The predictive models for solitary HCC could potentially integrate more comprehensive tumor information. Owing to the diverse findings across studies, we aimed to compare radiomic and non-radiomic methods for preoperative MVI detection in solitary HCC. MATERIALS AND METHODS Articles were reviewed from databases including PubMed, Embase, Web of Science, and the Cochrane Library until April 7, 2023. The pooled sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR) were calculated using a random-effects model within a 95% confidence interval (CI). Diagnostic accuracy was assessed using summary receiver-operating characteristic curves and the area under the curve (AUC). Meta-regression and Z-tests identified heterogeneity and compared the predictive accuracy. Subgroup analyses were performed to compare the AUC of two methods according to study type, study design, tumor size, modeling methods, and imaging modality. RESULTS The analysis incorporated 26 studies involving 3539 patients with solitary HCC. The radiomics models showed a pooled sensitivity and specificity of 0.79 (95%CI: 0.72-0.85) and 0.78 (95%CI: 0.73-0.82), with an AUC at 0.85 (95%CI: 0.82-0.88). Conversely, the non-radiomics models had sensitivity and specificity of 0.74 (95%CI: 0.65-0.81) and 0.88 (95%CI: 0.82-0.92) and an AUC of 0.88 (95%CI: 0.85-0.91). Subgroups with preoperative MRI, larger tumors, and functional imaging had higher accuracy than those using preoperative CT, smaller tumors, and conventional imaging. CONCLUSION Non-radiomic methods outperformed radiomic methods, but high heterogeneity calls across studies for cautious interpretation.
Collapse
Affiliation(s)
- Junjiu Gou
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Jingqi Li
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Yingfeng Li
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Mingjie Lu
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Chen Wang
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Yi Zhuo
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Xue Dong
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
3
|
Lv J, Li X, Mu R, Zheng W, Yang P, Huang B, Liu F, Liu X, Song Z, Qin X, Zhu X. Comparison of the diagnostic efficacy between imaging features and iodine density values for predicting microvascular invasion in hepatocellular carcinoma. Front Oncol 2024; 14:1437347. [PMID: 39469645 PMCID: PMC11513251 DOI: 10.3389/fonc.2024.1437347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/09/2024] [Indexed: 10/30/2024] Open
Abstract
Background In recent years, studies have confirmed the predictive capability of spectral computer tomography (CT) in determining microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC). Discrepancies in the predicted MVI values between conventional CT imaging features and spectral CT parameters necessitate additional validation. Methods In this retrospective study, 105 cases of small HCC were reviewed, and participants were divided into MVI-negative (n=53, Male:48 (90.57%); mean age, 59.40 ± 11.79 years) and MVI-positive (n=52, Male:50(96.15%); mean age, 58.74 ± 9.21 years) groups using pathological results. Imaging features and iodine density (ID) obtained from three-phase enhancement spectral CT scans were gathered from all participants. The study evaluated differences in imaging features and ID values of HCC between two groups, assessing their diagnostic accuracy in predicting MVI occurrence in HCC patients. Furthermore, the diagnostic efficacy of imaging features and ID in predicting MVI was compared. Results Significant differences were noted in the presence of mosaic architecture, nodule-in-nodule architecture, and corona enhancement between the groups, all with p-values < 0.001. There were also notable disparities in IDs between the two groups across the arterial phase, portal phase, and delayed phases, all with p-values < 0.001. The imaging features of nodule-in-nodule architecture, corona enhancement, and nonsmooth tumor margin demonstrate significant diagnostic efficacy, with area under the curve (AUC) of 0.761, 0.742, and 0.752, respectively. In spectral CT analysis, the arterial, portal, and delayed phase IDs exhibit remarkable diagnostic accuracy in detecting MVI, with AUCs of 0.821, 0.832, and 0.802, respectively. Furthermore, the combined models of imaging features, ID, and imaging features with ID reveal substantial predictive capabilities, with AUCs of 0.846, 0.872, and 0.904, respectively. DeLong test results indicated no statistically significant differences between imaging features and IDs. Conclusions Substantial differences were noted in imaging features and ID between the MVI-negative and MVI-positive groups in this study. The ID and imaging features exhibited a robust diagnostic precision in predicting MVI. Additionally, our results suggest that both imaging features and ID showed similar predictive efficacy for MVI.
Collapse
Affiliation(s)
- Jian Lv
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xin Li
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Ronghua Mu
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Wei Zheng
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Peng Yang
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Bingqin Huang
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
- Graduate School, Guilin Medical University, Guilin, China
| | - Fuzhen Liu
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xiaomin Liu
- Philips (China) Investment Co., Ltd., Guangzhou Branch, Guangzhou, China
| | - Zhixuan Song
- Philips (China) Investment Co., Ltd., Guangzhou Branch, Guangzhou, China
| | - Xiaoyan Qin
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xiqi Zhu
- Department of Radiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Life Science and clinical Medicine Research Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
4
|
Laurent-Bellue A, Sadraoui A, Claude L, Calderaro J, Posseme K, Vibert E, Cherqui D, Rosmorduc O, Lewin M, Pesquet JC, Guettier C. Deep Learning Classification and Quantification of Pejorative and Nonpejorative Architectures in Resected Hepatocellular Carcinoma from Digital Histopathologic Images. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1684-1700. [PMID: 38879083 DOI: 10.1016/j.ajpath.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024]
Abstract
Liver resection is one of the best treatments for small hepatocellular carcinoma (HCC), but post-resection recurrence is frequent. Biotherapies have emerged as an efficient adjuvant treatment, making the identification of patients at high risk of recurrence critical. Microvascular invasion (mVI), poor differentiation, pejorative macrotrabecular architectures, and vessels encapsulating tumor clusters architectures are the most accurate histologic predictors of recurrence, but their evaluation is time-consuming and imperfect. Herein, a supervised deep learning-based approach with ResNet34 on 680 whole slide images (WSIs) from 107 liver resection specimens was used to build an algorithm for the identification and quantification of these pejorative architectures. This model achieved an accuracy of 0.864 at patch level and 0.823 at WSI level. To assess its robustness, it was validated on an external cohort of 29 HCCs from another hospital, with an accuracy of 0.787 at WSI level, affirming its generalization capabilities. Moreover, the largest connected areas of the pejorative architectures extracted from the model were positively correlated to the presence of mVI and the number of tumor emboli. These results suggest that the identification of pejorative architectures could be an efficient surrogate of mVI and have a strong predictive value for the risk of recurrence. This study is the first step in the construction of a composite predictive algorithm for early post-resection recurrence of HCC, including artificial intelligence-based features.
Collapse
Affiliation(s)
- Astrid Laurent-Bellue
- Department of Pathology, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Aymen Sadraoui
- Centre de Vision Numérique, Paris-Saclay University, Inria, CentraleSupélec, Gif-sur-Yvette, France
| | - Laura Claude
- Department of Pathology, Charles Nicolle Hospital, Rouen, France
| | - Julien Calderaro
- Department of Pathology, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Katia Posseme
- Department of Pathology, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Eric Vibert
- Centre Hépato-Biliaire, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France; Faculté de Médecine, Paris-Saclay University, Le Kremlin-Bicêtre, France; Unité Mixte de Recherche 1193, Paris-Saclay University, INSERM, Villejuif, France
| | - Daniel Cherqui
- Centre Hépato-Biliaire, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France; Faculté de Médecine, Paris-Saclay University, Le Kremlin-Bicêtre, France; Unité Mixte de Recherche 1193, Paris-Saclay University, INSERM, Villejuif, France
| | - Olivier Rosmorduc
- Centre Hépato-Biliaire, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France; Faculté de Médecine, Paris-Saclay University, Le Kremlin-Bicêtre, France; Unité Mixte de Recherche 1193, Paris-Saclay University, INSERM, Villejuif, France
| | - Maïté Lewin
- Centre Hépato-Biliaire, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France; Faculté de Médecine, Paris-Saclay University, Le Kremlin-Bicêtre, France; Unité Mixte de Recherche 1193, Paris-Saclay University, INSERM, Villejuif, France
| | - Jean-Christophe Pesquet
- Centre de Vision Numérique, Paris-Saclay University, Inria, CentraleSupélec, Gif-sur-Yvette, France
| | - Catherine Guettier
- Department of Pathology, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.
| |
Collapse
|
5
|
Lennartz S, Cao J, Pisuchpen N, Srinivas-Rao S, Locascio JJ, Parakh A, Hahn PF, Mileto A, Sahani D, Kambadakone A. Intra-patient variability of iodine quantification across different dual-energy CT platforms: assessment of normalization techniques. Eur Radiol 2024; 34:5131-5141. [PMID: 38189979 DOI: 10.1007/s00330-023-10560-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/18/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVES To investigate intra-patient variability of iodine concentration (IC) between three different dual-energy CT (DECT) platforms and to test different normalization approaches. METHODS Forty-four patients who underwent portal venous phase abdominal DECT on a dual-source (dsDECT), a rapid kVp switching (rsDECT), and a dual-layer detector platform (dlDECT) during cancer follow-up were retrospectively included. IC in the liver, pancreas, and kidneys and different normalized ICs (NICPV:portal vein; NICAA:abdominal aorta; NICALL:overall iodine load) were compared between the three DECT scanners for each patient. A longitudinal mixed effects analysis was conducted to elucidate the effect of the scanner type, scan order, inter-scan time, and contrast media amount on normalized iodine concentration. RESULTS Variability of IC was highest in the liver (dsDECT vs. dlDECT 28.96 (14.28-46.87) %, dsDECT vs. rsDECT 29.08 (16.59-62.55) %, rsDECT vs. dlDECT 22.85 (7.52-33.49) %), and lowest in the kidneys (dsDECT vs. dlDECT 15.76 (7.03-26.1) %, dsDECT vs. rsDECT 15.67 (8.86-25.56) %, rsDECT vs. dlDECT 10.92 (4.92-22.79) %). NICALL yielded the best reduction of IC variability throughout all tissues and inter-scanner comparisons, yet did not reduce the variability between dsDECT vs. dlDECT and rsDECT, respectively, in the liver. The scanner type remained a significant determinant for NICALL in the pancreas and the liver (F-values, 12.26 and 23.78; both, p < 0.0001). CONCLUSIONS We found tissue-specific intra-patient variability of IC across different DECT scanner types. Normalization mitigated variability by reducing physiological fluctuations in iodine distribution. After normalization, the scanner type still had a significant effect on iodine variability in the pancreas and liver. CLINICAL RELEVANCE STATEMENT Differences in iodine quantification between dual-energy CT scanners can partly be mitigated by normalization, yet remain relevant for specific tissues and inter-scanner comparisons, which should be taken into account at clinical routine imaging. KEY POINTS • Iodine concentration showed the least variability between scanner types in the kidneys (range 10.92-15.76%) and highest variability in the liver (range 22.85-29.08%). • Normalizing tissue-specific iodine concentrations against the overall iodine load yielded the greatest reduction of variability between scanner types for 2/3 inter-scanner comparisons in the liver and for all (3/3) inter-scanner comparisons in the kidneys and pancreas, respectively. • However, even after normalization, the dual-energy CT scanner type was found to be the factor significantly influencing variability of iodine concentration in the liver and pancreas.
Collapse
Affiliation(s)
- Simon Lennartz
- Department of Radiology, Abdominal Radiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114-2696, USA
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Jinjin Cao
- Department of Radiology, Abdominal Radiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114-2696, USA
| | - Nisanard Pisuchpen
- Department of Radiology, Abdominal Radiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114-2696, USA
- Department of Radiology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Shravya Srinivas-Rao
- Department of Radiology, Abdominal Radiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114-2696, USA
| | - Joseph J Locascio
- Harvard Catalyst Biostatistical Unit, Harvard Medical School/Massachusetts General Hospital, Boston, MA, USA
| | - Anushri Parakh
- Department of Radiology, Abdominal Radiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114-2696, USA
| | - Peter F Hahn
- Department of Radiology, Abdominal Radiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114-2696, USA
| | - Achille Mileto
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Dushyant Sahani
- Department of Radiology, University of Washington, UWMC Radiology RR218, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Avinash Kambadakone
- Department of Radiology, Abdominal Radiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114-2696, USA.
| |
Collapse
|
6
|
Haghshomar M, Rodrigues D, Kalyan A, Velichko Y, Borhani A. Leveraging radiomics and AI for precision diagnosis and prognostication of liver malignancies. Front Oncol 2024; 14:1362737. [PMID: 38779098 PMCID: PMC11109422 DOI: 10.3389/fonc.2024.1362737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
Liver tumors, whether primary or metastatic, have emerged as a growing concern with substantial global health implications. Timely identification and characterization of liver tumors are pivotal factors in order to provide optimum treatment. Imaging is a crucial part of the detection of liver tumors; however, conventional imaging has shortcomings in the proper characterization of these tumors which leads to the need for tissue biopsy. Artificial intelligence (AI) and radiomics have recently emerged as investigational opportunities with the potential to enhance the detection and characterization of liver lesions. These advancements offer opportunities for better diagnostic accuracy, prognostication, and thereby improving patient care. In particular, these techniques have the potential to predict the histopathology, genotype, and immunophenotype of tumors based on imaging data, hence providing guidance for personalized treatment of such tumors. In this review, we outline the progression and potential of AI in the field of liver oncology imaging, specifically emphasizing manual radiomic techniques and deep learning-based representations. We discuss how these tools can aid in clinical decision-making challenges. These challenges encompass a broad range of tasks, from prognosticating patient outcomes, differentiating benign treatment-related factors and actual disease progression, recognizing uncommon response patterns, and even predicting the genetic and molecular characteristics of the tumors. Lastly, we discuss the pitfalls, technical limitations and future direction of these AI-based techniques.
Collapse
Affiliation(s)
| | | | | | | | - Amir Borhani
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
7
|
Foti G, Ascenti G, Agostini A, Longo C, Lombardo F, Inno A, Modena A, Gori S. Dual-Energy CT in Oncologic Imaging. Tomography 2024; 10:299-319. [PMID: 38535766 PMCID: PMC10975567 DOI: 10.3390/tomography10030024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 08/25/2024] Open
Abstract
Dual-energy CT (DECT) is an innovative technology that is increasingly widespread in clinical practice. DECT allows for tissue characterization beyond that of conventional CT as imaging is performed using different energy spectra that can help differentiate tissues based on their specific attenuation properties at different X-ray energies. The most employed post-processing applications of DECT include virtual monoenergetic images (VMIs), iodine density maps, virtual non-contrast images (VNC), and virtual non-calcium (VNCa) for bone marrow edema (BME) detection. The diverse array of images obtained through DECT acquisitions offers numerous benefits, including enhanced lesion detection and characterization, precise determination of material composition, decreased iodine dose, and reduced artifacts. These versatile applications play an increasingly significant role in tumor assessment and oncologic imaging, encompassing the diagnosis of primary tumors, local and metastatic staging, post-therapy evaluation, and complication management. This article provides a comprehensive review of the principal applications and post-processing techniques of DECT, with a specific focus on its utility in managing oncologic patients.
Collapse
Affiliation(s)
- Giovanni Foti
- Department of Radiology, IRCCS Ospedale Sacro Cuore Don Calabria, Via Don A. Sempreboni 5, 37024 Negrar, Italy; (C.L.); (F.L.)
| | - Giorgio Ascenti
- Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, 98122 Messina, Italy;
| | - Andrea Agostini
- Department of Clinical Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy
| | - Chiara Longo
- Department of Radiology, IRCCS Ospedale Sacro Cuore Don Calabria, Via Don A. Sempreboni 5, 37024 Negrar, Italy; (C.L.); (F.L.)
| | - Fabio Lombardo
- Department of Radiology, IRCCS Ospedale Sacro Cuore Don Calabria, Via Don A. Sempreboni 5, 37024 Negrar, Italy; (C.L.); (F.L.)
| | - Alessandro Inno
- Department of Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, Via Don A. Sempreboni 5, 37024 Negrar, Italy; (A.I.); (A.M.); (S.G.)
| | - Alessandra Modena
- Department of Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, Via Don A. Sempreboni 5, 37024 Negrar, Italy; (A.I.); (A.M.); (S.G.)
| | - Stefania Gori
- Department of Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, Via Don A. Sempreboni 5, 37024 Negrar, Italy; (A.I.); (A.M.); (S.G.)
| |
Collapse
|
8
|
Yu Z, Liu Y, Dai X, Cui E, Cui J, Ma C. Enhancing preoperative diagnosis of microvascular invasion in hepatocellular carcinoma: domain-adaptation fusion of multi-phase CT images. Front Oncol 2024; 14:1332188. [PMID: 38333689 PMCID: PMC10851167 DOI: 10.3389/fonc.2024.1332188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
Objectives In patients with hepatocellular carcinoma (HCC), accurately predicting the preoperative microvascular invasion (MVI) status is crucial for improving survival rates. This study proposes a multi-modal domain-adaptive fusion model based on deep learning methods to predict the preoperative MVI status in HCC. Materials and methods From January 2008 to May 2022, we collected 163 cases of HCC from our institution and 42 cases from another medical facility, with each case including Computed Tomography (CT) images from the pre-contrast phase (PCP), arterial phase (AP), and portal venous phase (PVP). We divided our institution's dataset (n=163) into training (n=119) and test sets (n=44) in an approximate 7:3 ratio. Additionally, we included cases from another institution (n=42) as an external validation set (test1 set). We constructed three single-modality models, a simple concatenated multi-modal model, two current state-of-the-art image fusion model and a multi-modal domain-adaptive fusion model (M-DAFM) based on deep learning methods. We evaluated and analyzed the performance of these constructed models in predicting preoperative MVI using the area under the receiver operating characteristic curve (AUC), decision curve analysis (DCA), and net reclassification improvement (NRI) methods. Results In comparison with all models, M-DAFM achieved the highest AUC values across the three datasets (0.8013 for the training set, 0.7839 for the test set, and 0.7454 for the test1 set). Notably, in the test set, M-DAFM's Decision Curve Analysis (DCA) curves consistently demonstrated favorable or optimal net benefits within the 0-0.65 threshold probability range. Additionally, the Net Reclassification Improvement (NRI) values between M-DAFM and the three single-modal models, as well as the simple concatenation model, were all greater than 0 (all p < 0.05). Similarly, the NRI values between M-DAFM and the two current state-of-the-art image fusion models were also greater than 0. These findings collectively indicate that M-DAFM effectively integrates valuable information from multi-phase CT images, thereby enhancing the model's preoperative predictive performance for MVI. Conclusion The M-DAFM proposed in this study presents an innovative approach to improve the preoperative predictive performance of MVI.
Collapse
Affiliation(s)
- Zhaole Yu
- School of Automation, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Yu Liu
- Laboratory of Artificial Intelligence of Biomedicine, Guilin University of Aerospace Technology, Guilin, Guangxi, China
| | - Xisheng Dai
- School of Automation, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Enming Cui
- Department of Radiology, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Jin Cui
- Department of Radiology, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Changyi Ma
- Department of Radiology, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| |
Collapse
|
9
|
Li YX, Li WJ, Xu YS, Jia LL, Wang MM, Qu MM, Wang LL, Lu XD, Lei JQ. Clinical application of dual-layer spectral CT multi-parameter feature to predict microvascular invasion in hepatocellular carcinoma. Clin Hemorheol Microcirc 2024; 88:97-113. [PMID: 38848171 DOI: 10.3233/ch-242175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
OBJECTIVE This study aimed to investigate the feasibility of using dual-layer spectral CT multi-parameter feature to predict microvascular invasion of hepatocellular carcinoma. METHODS This retrospective study enrolled 50 HCC patients who underwent multiphase contrast-enhanced spectral CT studies preoperatively. Combined clinical data, radiological features with spectral CT quantitative parameter were constructed to predict MVI. ROC was applied to identify potential predictors of MVI. The CT values obtained by simulating the conventional CT scans with 70 keV images were compared with those obtained with 40 keV images. RESULTS 50 hepatocellular carcinomas were detected with 30 lesions (Group A) with microvascular invasion and 20 (Group B) without. There were significant differences in AFP,tumer size, IC, NIC,slope and effective atomic number in AP and ICrr in VP between Group A ((1000(10.875,1000),4.360±0.3105, 1.7750 (1.5350,1.8825) mg/ml, 0.1785 (0.1621,0.2124), 2.0362±0.2108,8.0960±0.1043,0.2830±0.0777) and Group B (4.750(3.325,20.425),3.190±0.2979,1.4700 (1.4500,1.5775) mg/ml, 0.1441 (0.1373,0.1490),1.8601±0.1595, 7.8105±0.7830 and 0.2228±0.0612) (all p < 0.05). Using 0.1586 as the threshold for NIC, one could obtain an area-under-curve (AUC) of 0.875 in ROC to differentiate between tumours with and without microvascular invasion. AUC was 0.625 with CT value at 70 keV and improved to 0.843 at 40 keV. CONCLUSION Dual-layer spectral CT provides additional quantitative parameters than conventional CT to enhance the differentiation between hepatocellular carcinoma with and without microvascular invasion. Especially, the normalized iodine concentration (NIC) in arterial phase has the greatest potential application value in determining whether microvascular invasion exists, and can offer an important reference for clinical treatment plan and prognosis assessment.
Collapse
Affiliation(s)
- Yi-Xiang Li
- The First Clinical Medical of Lanzhou University, Lanzhou, China
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Intelligent Imaging Medical Engineering Research Center, Lanzhou, China
- Precision Image Collaborative Innovation Gansu International Science and Technology Cooperation Base, Lanzhou, China
| | - Wen-Jing Li
- The First Clinical Medical of Lanzhou University, Lanzhou, China
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Intelligent Imaging Medical Engineering Research Center, Lanzhou, China
- Precision Image Collaborative Innovation Gansu International Science and Technology Cooperation Base, Lanzhou, China
| | - Yong-Sheng Xu
- The First Clinical Medical of Lanzhou University, Lanzhou, China
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Intelligent Imaging Medical Engineering Research Center, Lanzhou, China
- Precision Image Collaborative Innovation Gansu International Science and Technology Cooperation Base, Lanzhou, China
| | - Lu-Lu Jia
- The First Clinical Medical of Lanzhou University, Lanzhou, China
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Intelligent Imaging Medical Engineering Research Center, Lanzhou, China
- Precision Image Collaborative Innovation Gansu International Science and Technology Cooperation Base, Lanzhou, China
| | - Miao-Miao Wang
- The First Clinical Medical of Lanzhou University, Lanzhou, China
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Intelligent Imaging Medical Engineering Research Center, Lanzhou, China
- Precision Image Collaborative Innovation Gansu International Science and Technology Cooperation Base, Lanzhou, China
| | - Meng-Meng Qu
- The First Clinical Medical of Lanzhou University, Lanzhou, China
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Intelligent Imaging Medical Engineering Research Center, Lanzhou, China
- Precision Image Collaborative Innovation Gansu International Science and Technology Cooperation Base, Lanzhou, China
| | - Li-Li Wang
- The First Clinical Medical of Lanzhou University, Lanzhou, China
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Intelligent Imaging Medical Engineering Research Center, Lanzhou, China
- Precision Image Collaborative Innovation Gansu International Science and Technology Cooperation Base, Lanzhou, China
| | - Xian-de Lu
- The First Clinical Medical of Lanzhou University, Lanzhou, China
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Intelligent Imaging Medical Engineering Research Center, Lanzhou, China
- Precision Image Collaborative Innovation Gansu International Science and Technology Cooperation Base, Lanzhou, China
| | - Jun-Qiang Lei
- The First Clinical Medical of Lanzhou University, Lanzhou, China
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Intelligent Imaging Medical Engineering Research Center, Lanzhou, China
- Precision Image Collaborative Innovation Gansu International Science and Technology Cooperation Base, Lanzhou, China
| |
Collapse
|
10
|
Huang Z, Xin JY, Wu LL, Luo HC, Li K. Dynamic contrast-enhanced ultrasonography with sonazoid predicts microvascular invasion in early-stage hepatocellular carcinoma. Br J Radiol 2023; 96:20230164. [PMID: 37750942 PMCID: PMC10607401 DOI: 10.1259/bjr.20230164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/24/2023] [Accepted: 08/17/2023] [Indexed: 09/27/2023] Open
Abstract
OBJECTIVE Microvascular invasion (MVI) is an independent risk factor for the early recurrence and poor survival of hepatocellular carcinoma (HCC). This study aims to investigate the potential clinical value of dynamic contrast-enhanced ultrasound (DCE-ultrasound)-Sonazoid in pre-operatively assessing MVI in HCC. METHODS AND MATERIALS This single centre prospective study included 140 patients with histopathologically confirmed single HCC lesions. Patients were classified according to the post-operative pathological information presence of MVI: MVI+ group (n = 32) and MVI- group (n = 108). All patients underwent DCE-ultrasound within 1 week before surgery. The quantitative perfusion parameters of HCC lesions, margins of HCC lesions, and distal liver parenchyma were obtained and analyzed. RESULTS Clinicopathological (serum alpha-fetoprotein, Des-gamma-carboxyprothrombin, and pathological grade) and grayscale imaging features (tumor size) were significantly different between the MVI+ and MVI- groups (p < 0.05). Further quantitative analysis showed that when comparing the MVI+ and MVI- groups, half-decrease time and wash-out rate of HCC lesions and peak enhancement in the arterial phase of difference between the margin area of HCC and distal liver parenchyma were significantly different (p = 0.045, p = 0.035, and p = 0.023, respectively). Combining the above three quantitative parameters, the accuracy, sensitivity, specificity, positive-predictive value, and negative-predictive value were 69.3% (97/140), 37.8% (17/45), 84.3% (80/95), 53.1% (17/32), 74.1% (80/108), respectively. CONCLUSION DCE-ultrasound with quantitative perfusion analysis has the potential to predict MVI in HCC lesions. ADVANCES IN KNOWLEDGE DCE-ultrasound with quantitative perfusion analysis has the potential to predict MVI in HCC lesions.
Collapse
Affiliation(s)
- Zhe Huang
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Jun-Yi Xin
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Ling-Ling Wu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Hong-Chang Luo
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Kaiyan Li
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| |
Collapse
|
11
|
Li J, Su X, Xu X, Zhao C, Liu A, Yang L, Song B, Song H, Li Z, Hao X. Preoperative prediction and risk assessment of microvascular invasion in hepatocellular carcinoma. Crit Rev Oncol Hematol 2023; 190:104107. [PMID: 37633349 DOI: 10.1016/j.critrevonc.2023.104107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and highly lethal tumors worldwide. Microvascular invasion (MVI) is a significant risk factor for recurrence and poor prognosis after surgical resection for HCC patients. Accurately predicting the status of MVI preoperatively is critical for clinicians to select treatment modalities and improve overall survival. However, MVI can only be diagnosed by pathological analysis of postoperative specimens. Currently, numerous indicators in serology (including liquid biopsies) and imaging have been identified to effective in predicting the occurrence of MVI, and the multi-indicator model based on deep learning greatly improves accuracy of prediction. Moreover, several genes and proteins have been identified as risk factors that are strictly associated with the occurrence of MVI. Therefore, this review evaluates various predictors and risk factors, and provides guidance for subsequent efforts to explore more accurate predictive methods and to facilitate the conversion of risk factors into reliable predictors.
Collapse
Affiliation(s)
- Jian Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China; Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Xin Su
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China; Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Xiao Xu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China; Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Changchun Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China; Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Ang Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China; Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Liwen Yang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Baoling Song
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Hao Song
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Zihan Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, China.
| |
Collapse
|
12
|
Zhu Y, Feng B, Cai W, Wang B, Meng X, Wang S, Ma X, Zhao X. Prediction of Microvascular Invasion in Solitary AFP-Negative Hepatocellular Carcinoma ≤ 5 cm Using a Combination of Imaging Features and Quantitative Dual-Layer Spectral-Detector CT Parameters. Acad Radiol 2023; 30 Suppl 1:S104-S116. [PMID: 36958989 DOI: 10.1016/j.acra.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/25/2023]
Abstract
RATIONALE AND OBJECTIVES AFP-negative hepatocellular carcinoma (AFPN-HCC) within 5 cm is a special subgroup of HCC. This study aimed to investigate the value of dual-layer spectral-detector CT (DLCT) and construct a scoring model based on imaging features as well as DLCT for predicting microvascular invasion (MVI) in AFPN-HCC within 5 cm. METHODS This retrospective study enrolled 104 HCC patients who underwent multiphase contrast-enhanced DLCT studies preoperatively. Combined radiological features (CR) and combined DLCT quantitative parameter (CDLCT) were constructed to predict MVI. Multivariable logistic regression was applied to identify potential predictors of MVI. Based on the coefficient of the regression model, a scoring model was developed. The predictive efficacy was assessed through ROC analysis. RESULTS Microvascular invasion (MVI) was found in 28 (26.9%) AFPN-HCC patients. Among single parameters, the effective atomic number in arterial phase demonstrated the best predictive efficiency for MVI with an area under the curve (AUC) of 0.792. CR and CDLCT showed predictive performance with AUCs of 0.848 and 0.849, respectively. A risk score (RS) was calculated using the independent predictors of MVI as follows: RS = 2 × (mosaic architecture) + 2 × (corona enhancement) + 2 × (incomplete tumor capsule) + 2 × (2-trait predictor of venous invasion [TTPVI]) + 3 × (CDLCT > -1.229). Delong's test demonstrated this scoring system could significantly improve the AUC to 0.929 compared with CR (p = 0.016) and CDLCT (p = 0.034). CONCLUSION The scoring model combining radiological features with DLCT provides a promising tool for predicting MVI in solitary AFPN-HCC within 5 cm preoperatively.
Collapse
Affiliation(s)
- Yongjian Zhu
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bing Feng
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Cai
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bingzhi Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing China
| | - Xuan Meng
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuang Wang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaohong Ma
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xinming Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
13
|
Li M, Fan Y, You H, Li C, Luo M, Zhou J, Li A, Zhang L, Yu X, Deng W, Zhou J, Zhang D, Zhang Z, Chen H, Xiao Y, Huang B, Wang J. Dual-Energy CT Deep Learning Radiomics to Predict Macrotrabecular-Massive Hepatocellular Carcinoma. Radiology 2023; 308:e230255. [PMID: 37606573 DOI: 10.1148/radiol.230255] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Background It is unknown whether the additional information provided by multiparametric dual-energy CT (DECT) could improve the noninvasive diagnosis of the aggressive macrotrabecular-massive (MTM) subtype of hepatocellular carcinoma (HCC). Purpose To evaluate the diagnostic performance of dual-phase contrast-enhanced multiparametric DECT for predicting MTM HCC. Materials and Methods Patients with histopathologic examination-confirmed HCC who underwent contrast-enhanced DECT between June 2019 and June 2022 were retrospectively recruited from three independent centers (center 1, training and internal test data set; centers 2 and 3, external test data set). Radiologic features were visually analyzed and combined with clinical information to establish a clinical-radiologic model. Deep learning (DL) radiomics models were based on DL features and handcrafted features extracted from virtual monoenergetic images and material composition images on dual phase using binary least absolute shrinkage and selection operators. A DL radiomics nomogram was developed using multivariable logistic regression analysis. Model performance was evaluated with the area under the receiver operating characteristic curve (AUC), and the log-rank test was used to analyze recurrence-free survival. Results A total of 262 patients were included (mean age, 54 years ± 12 [SD]; 225 men [86%]; training data set, n = 146 [56%]; internal test data set, n = 35 [13%]; external test data set, n = 81 [31%]). The DL radiomics nomogram better predicted MTM than the clinical-radiologic model (AUC = 0.91 vs 0.77, respectively, for the training set [P < .001], 0.87 vs 0.72 for the internal test data set [P = .04], and 0.89 vs 0.79 for the external test data set [P = .02]), with similar sensitivity (80% vs 87%, respectively; P = .63) and higher specificity (90% vs 63%; P < .001) in the external test data set. The predicted positive MTM groups based on the DL radiomics nomogram had shorter recurrence-free survival than predicted negative MTM groups in all three data sets (training data set, P = .04; internal test data set, P = .01; and external test data set, P = .03). Conclusion A DL radiomics nomogram derived from multiparametric DECT accurately predicted the MTM subtype in patients with HCC. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Chu and Fishman in this issue.
Collapse
Affiliation(s)
- Mengsi Li
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Yaheng Fan
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Huayu You
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Chao Li
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Ma Luo
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Jing Zhou
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Anqi Li
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Lina Zhang
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Xiao Yu
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Weiwei Deng
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Jinhui Zhou
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Dingyue Zhang
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Zhongping Zhang
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Haimei Chen
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Yuanqiang Xiao
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Bingsheng Huang
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Jin Wang
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| |
Collapse
|
14
|
Borges AP, Antunes C, Caseiro-Alves F. Spectral CT: Current Liver Applications. Diagnostics (Basel) 2023; 13:diagnostics13101673. [PMID: 37238163 DOI: 10.3390/diagnostics13101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Using two different energy levels, dual-energy computed tomography (DECT) allows for material differentiation, improves image quality and iodine conspicuity, and allows researchers the opportunity to determine iodine contrast and radiation dose reduction. Several commercialized platforms with different acquisition techniques are constantly being improved. Furthermore, DECT clinical applications and advantages are continually being reported in a wide range of diseases. We aimed to review the current applications of and challenges in using DECT in the treatment of liver diseases. The greater contrast provided by low-energy reconstructed images and the capability of iodine quantification have been mostly valuable for lesion detection and characterization, accurate staging, treatment response assessment, and thrombi characterization. Material decomposition techniques allow for the non-invasive quantification of fat/iron deposition and fibrosis. Reduced image quality with larger body sizes, cross-vendor and scanner variability, and long reconstruction time are among the limitations of DECT. Promising techniques for improving image quality with lower radiation dose include the deep learning imaging reconstruction method and novel spectral photon-counting computed tomography.
Collapse
Affiliation(s)
- Ana P Borges
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| | - Célia Antunes
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| | - Filipe Caseiro-Alves
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| |
Collapse
|
15
|
Wei J, Jiang H, Zhou Y, Tian J, Furtado FS, Catalano OA. Radiomics: A radiological evidence-based artificial intelligence technique to facilitate personalized precision medicine in hepatocellular carcinoma. Dig Liver Dis 2023:S1590-8658(22)00863-5. [PMID: 36641292 DOI: 10.1016/j.dld.2022.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/16/2023]
Abstract
The high postoperative recurrence rates in hepatocellular carcinoma (HCC) remain a major hurdle in its management. Appropriate staging and treatment selection may alleviate the extent of fatal recurrence. However, effective methods to preoperatively evaluate pathophysiologic and molecular characteristics of HCC are lacking. Imaging plays a central role in HCC diagnosis and stratification due to the non-invasive diagnostic criteria. Vast and crucial information is hidden within image data. Other than providing a morphological sketch for lesion diagnosis, imaging could provide new insights to describe the pathophysiological and genetic landscape of HCC. Radiomics aims to facilitate diagnosis and prognosis of HCC using artificial intelligence techniques to harness the immense information contained in medical images. Radiomics produces a set of archetypal and robust imaging features that are correlated to key pathological or molecular biomarkers to preoperatively risk-stratify HCC patients. Inferred with outcome data, comprehensive combination of radiomic, clinical and/or multi-omics data could also improve direct prediction of response to treatment and prognosis. The evolution of radiomics is changing our understanding of personalized precision medicine in HCC management. Herein, we review the key techniques and clinical applications in HCC radiomics and discuss current limitations and future opportunities to improve clinical decision making.
Collapse
Affiliation(s)
- Jingwei Wei
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China.
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR. China
| | - Yu Zhou
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; School of Life Science and Technology, Xidian University, Xi'an, PR. China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, PR. China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR. China.
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States.
| |
Collapse
|
16
|
Gao W, Zhang Y, Dou Y, Zhao L, Wu H, Yang Z, Liu A, Zhu L, Hao F. Association between extramural vascular invasion and iodine quantification using dual-energy computed tomography of rectal cancer: a preliminary study. Eur J Radiol 2023; 158:110618. [PMID: 36455337 DOI: 10.1016/j.ejrad.2022.110618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/02/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE This study aimed to investigate whether histopathological confirmed extramural vascular invasion (EMVI) is associated with quantitative parameters derived from dual-energy computed tomography (DECT) of rectal cancer. METHODS This retrospective study included patients with rectal cancer who underwent rectal cancer surgery and DECT (including arterial-, venous-, and delay-phase scanning) between November 2019 and November 2020. The EMVI of rectal cancer was confirmed via postoperative pathological results. Iodine concentration (IC), IC normalized to the aorta (NIC), and CT attenuation values of the three phases were measured and compared between patients with and without EMVI. Receiver operating characteristic (ROC) curves were generated to determine the diagnostic performance of these DECT quantitative parameters. RESULTS Herein, 36 patients (22 men and 14 women) with a mean age of 62 [range, 43-77] years) with (n = 13) and without (n = 23) EMVI were included. Patients with EMVI exhibited significantly higher IC in the venous and delay phases (venous-phase: 2.92 ± 0.6 vs 2.34 ± 0.48; delay-phase: 2.46 ± 0.47 vs 1.88 ± 0.35) and NIC in all the three phases (arterial-phase: 0.31 ± 0.12 vs 0.24 ± 0.06; venous-phase: 0.58 ± 0.11 vs 0.41 ± 0.07; delay-phase: 0.68 ± 0.10 vs 0.46 ± 0.08) than patients without EMVI. Among them, the highest area under the ROC curve (AUC) was obtained in the delay-phase NIC (AUC = 0.983). IC in the arterial-phase and CT attenuation in all the three phases did not significantly differ between patients with and without EMVI (p = 0.205-0.869). CONCLUSION Iodine quantification using dual-energy CT, especially the NIC of the tumor, differs between the EMVI-positive and EMVI-negative groups and seems to help predict the EMVI of rectal cancer in this preliminary study; however, a larger sample size study is warranted in the future.
Collapse
Affiliation(s)
- Wei Gao
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia 010050, China
| | - Yuqi Zhang
- Graduate School of the First Clinical Medical College, Inner Mongolia Medical University, Huhhot, Inner Mongolia 010050, China
| | - Yana Dou
- Siemens Healthineers, Wangjing Zhonghuan South Road, Chaoyang District, Beijing 1000102, China
| | - Lei Zhao
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia 010050, China
| | - Hui Wu
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia 010050, China
| | - Zhenxing Yang
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia 010050, China
| | - Aishi Liu
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia 010050, China
| | - Lu Zhu
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia 010050, China
| | - Fene Hao
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia 010050, China.
| |
Collapse
|