1
|
Eibschutz LS, Matcuk G, Chiu MKJ, Lu MY, Gholamrezanezhad A. Updates on the Applications of Spectral Computed Tomography for Musculoskeletal Imaging. Diagnostics (Basel) 2024; 14:732. [PMID: 38611645 PMCID: PMC11011285 DOI: 10.3390/diagnostics14070732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Spectral CT represents a novel imaging approach that can noninvasively visualize, quantify, and characterize many musculoskeletal pathologies. This modality has revolutionized the field of radiology by capturing CT attenuation data across multiple energy levels and offering superior tissue characterization while potentially minimizing radiation exposure compared to traditional enhanced CT scans. Despite MRI being the preferred imaging method for many musculoskeletal conditions, it is not viable for some patients. Moreover, this technique is time-consuming, costly, and has limited availability in many healthcare settings. Thus, spectral CT has a considerable role in improving the diagnosis, characterization, and treatment of gout, inflammatory arthropathies, degenerative disc disease, osteoporosis, occult fractures, malignancies, ligamentous injuries, and other bone-marrow pathologies. This comprehensive review will delve into the diverse capabilities of dual-energy CT, a subset of spectral CT, in addressing these musculoskeletal conditions and explore potential future avenues for its integration into clinical practice.
Collapse
Affiliation(s)
- Liesl S. Eibschutz
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90007, USA (M.K.-J.C.); (M.Y.L.)
| | - George Matcuk
- Department of Radiology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael Kuo-Jiun Chiu
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90007, USA (M.K.-J.C.); (M.Y.L.)
| | - Max Yang Lu
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90007, USA (M.K.-J.C.); (M.Y.L.)
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90007, USA (M.K.-J.C.); (M.Y.L.)
| |
Collapse
|
2
|
Selles M, van Osch JAC, Maas M, Boomsma MF, Wellenberg RHH. Advances in metal artifact reduction in CT images: A review of traditional and novel metal artifact reduction techniques. Eur J Radiol 2024; 170:111276. [PMID: 38142571 DOI: 10.1016/j.ejrad.2023.111276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Metal artifacts degrade CT image quality, hampering clinical assessment. Numerous metal artifact reduction methods are available to improve the image quality of CT images with metal implants. In this review, an overview of traditional methods is provided including the modification of acquisition and reconstruction parameters, projection-based metal artifact reduction techniques (MAR), dual energy CT (DECT) and the combination of these techniques. Furthermore, the additional value and challenges of novel metal artifact reduction techniques that have been introduced over the past years are discussed such as photon counting CT (PCCT) and deep learning based metal artifact reduction techniques.
Collapse
Affiliation(s)
- Mark Selles
- Department of Radiology, Isala, 8025 AB Zwolle, the Netherlands; Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, 1105 AZ Amsterdam, the Netherlands; Amsterdam Movement Sciences, 1081 BT Amsterdam, the Netherlands.
| | | | - Mario Maas
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, 1105 AZ Amsterdam, the Netherlands; Amsterdam Movement Sciences, 1081 BT Amsterdam, the Netherlands
| | | | - Ruud H H Wellenberg
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, 1105 AZ Amsterdam, the Netherlands; Amsterdam Movement Sciences, 1081 BT Amsterdam, the Netherlands
| |
Collapse
|
3
|
Daniel S, Kopp M, Vollbrecht T, Zeilinger M, Fitz T, Muttke A, Feuerlein U, Uder M, May MS. Personalization of thoracoabdominal CT examinations using scanner integrated clinical decision support systems - Impact on the acquisition technique, scan range, and reconstruction type. Eur J Radiol 2023; 167:111078. [PMID: 37688917 DOI: 10.1016/j.ejrad.2023.111078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
OBJECTIVES This study evaluates the impact of a scanner-integrated, customized clinical decision support system (CDSS) on the acquisition technique, scan range, and reconstruction in thoracoabdominal CT. MATERIALS AND METHODS We applied CDSS in contrast-enhanced examinations of the trunk with various clinical indications on a recent scanner with the capability of dual-energy CT (DECT), anatomic landmark detection (ALD), and iterative metal-artifact reduction (MAR). Simple and comprehensive questions about the patient's breath hold capability, the anatomical region of interest, and metal implants can be answered after the localizer. The acquisition technique (single energy, SECT, or dual energy), scan range (chest-abdomen-pelvis or chest-abdomen), and reconstruction technique (with or without MAR) were then automatically adapted in the examination protocols in coherence with these selections. Retrospectively, we compared the usage rates for these techniques in 624 examinations on the study scanner with 740 examinations on a comparable scanner without CDSS. Subgroup analysis of effective dose (ED), scan duration, and image quality (IQ) was performed in the study group. RESULTS CDSS leads to an increased usage rate of DECT (64.4% vs. 2.8%) and MAR (75.4% vs. 44.0%). All scan range adaptations by ALD were successful. The resulting subjective IQ between single energy and DECT acquisitions was comparable (all p > 0.05). Scan duration was significantly longer in DECT than in SECT (16.9 s vs. 6.5 s; p < 0.001). However, the objective IQ was significantly higher in DECT (CNRD 2.1 vs. 1.8; p < 0.01), and the ED significantly lower (6.7 mSv vs. 7.6 mSv; p = 0.004). CONCLUSION CDSS for thoracoabdominal CT leads to a substantially increased usage rate of innovative techniques during acquisition and reconstruction. Patients with adapted protocols benefit from improved image quality and increased post-processing options at lower radiation doses.
Collapse
Affiliation(s)
- Sascha Daniel
- Departement of Radiology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, 91054, Erlangen, Germany.
| | - Markus Kopp
- Departement of Radiology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Thomas Vollbrecht
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Germany
| | - Martin Zeilinger
- Departement of Radiology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Tim Fitz
- Departement of Radiology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, 91054, Erlangen, Germany
| | | | | | - Michael Uder
- Departement of Radiology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, 91054, Erlangen, Germany; Imaging Science Institute, University Hospital Erlangen, Erlangen, Germany
| | - Matthias S May
- Departement of Radiology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, 91054, Erlangen, Germany; Imaging Science Institute, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
4
|
Layer YC, Mesropyan N, Kupczyk PA, Luetkens JA, Isaak A, Dell T, Attenberger UI, Kuetting D. Combining iterative metal artifact reduction and virtual monoenergetic images severely reduces hip prosthesis-associated artifacts in photon-counting detector CT. Sci Rep 2023; 13:8955. [PMID: 37268675 DOI: 10.1038/s41598-023-35989-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
Aim of this study was to assess the impact of virtual monoenergetic images (VMI) in combination and comparison with iterative metal artifact reduction (IMAR) on hip prosthesis-associated artifacts in photon-counting detector CT (PCD-CT). Retrospectively, 33 scans with hip prosthesis-associated artifacts acquired during clinical routine on a PCD-CT between 08/2022 and 09/2022 were analyzed. VMI were reconstructed for 100-190 keV with and without IMAR, and compared to polychromatic images. Qualitatively, artifact extent and assessment of adjacent soft tissue were rated by two radiologists using 5-point Likert items. Quantitative assessment was performed measuring attenuation and standard deviation in most pronounced hypodense and hyperdense artifacts, artifact-impaired bone, muscle, vessels, bladder and artifact-free corresponding tissue. To quantify artifacts, an adjusted attenuation was calculated as the difference between artifact-impaired tissue and corresponding tissue without artifacts. Qualitative assessment improved for all investigated image reconstructions compared to polychromatic images (PI). VMI100keV in combination with IMAR achieved best results (e.g. diagnostic quality of the bladder: median PI: 1.5 (range 1-4); VMI100keV+IMAR: 5 (3-5); p < 0.0001). In quantitative assessment VMI100keV with IMAR provided best artifact reduction with an adjusted attenuation closest to 0 (e.g. bone: PI: 302.78; VMI100keV+IMAR: 51.18; p < 0.0001). The combination of VMI and IMAR significantly reduces hip prosthesis-associated artifacts in PCD-CT and improves the diagnostic quality of surrounding tissue.
Collapse
Affiliation(s)
- Yannik C Layer
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Narine Mesropyan
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Patrick A Kupczyk
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Alexander Isaak
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Tatjana Dell
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ulrike I Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Daniel Kuetting
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| |
Collapse
|