1
|
Tanahashi Y, Kubota K, Nomura T, Ikeda T, Kutsuna M, Funayama S, Kobayashi T, Ozaki K, Ichikawa S, Goshima S. Improved vascular depiction and image quality through deep learning reconstruction of CT hepatic arteriography during transcatheter arterial chemoembolization. Jpn J Radiol 2024; 42:1243-1254. [PMID: 38888853 PMCID: PMC11522109 DOI: 10.1007/s11604-024-01614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE To evaluate the effect of deep learning reconstruction (DLR) on vascular depiction, tumor enhancement, and image quality of computed tomography hepatic arteriography (CTHA) images acquired during transcatheter arterial chemoembolization (TACE). METHODS Institutional review board approval was obtained. Twenty-seven patients (18 men and 9 women, mean age, 75.7 years) who underwent CTHA immediately before TACE were enrolled. All images were reconstructed using three reconstruction algorithms: hybrid-iterative reconstruction (hybrid-IR), DLR with mild strength (DLR-M), and DLR with strong strength (DLR-S). Vascular depiction, tumor enhancement, feeder visualization, and image quality of CTHA were quantitatively and qualitatively assessed by two radiologists and compared between the three reconstruction algorithms. RESULTS The mean signal-to-noise ratios (SNR) of sub-segmental arteries and sub-sub-segmental arteries, and the contrast-to-noise ratio (CNR) of tumors, were significantly higher on DLR-S than on DLR-M and hybrid-IR (P < 0.001). The mean qualitative score for sharpness of sub-segmental and sub-sub-segmental arteries was significantly better on DLR-S than on DLR-M and hybrid-IR (P < 0.001). There was no significant difference in the feeder artery detection rate of automated feeder artery detection software among three reconstruction algorithms (P = 0.102). The contrast, continuity, and confidence level of feeder artery detection was significantly better on DLR-S than on DLR-M (P = 0.013, 0.005, and 0.001) and hybrid-IR (P < 0.001, P = 0.002, and P < 0.001). The weighted kappa values between two readers for qualitative scores of feeder artery visualization were 0.807-0.874. The mean qualitative scores for sharpness, granulation, and diagnostic acceptability of CTHA were better on DLR-S than on DLR-M and hybrid-IR (P < 0.001). CONCLUSIONS DLR significantly improved the SNR of small hepatic arteries, the CNR of tumor, and feeder artery visualization on CTHA images. DLR-S seems to be better suited to routine CTHA in TACE than does hybrid-IR.
Collapse
Affiliation(s)
- Yukichi Tanahashi
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan.
| | - Koh Kubota
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Takayuki Nomura
- Radiology Service, Hamamatsu University Hospital, Hamamatsu City, Shizuoka, Japan
| | - Takanobu Ikeda
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Masaya Kutsuna
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Satoshi Funayama
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Tatsunori Kobayashi
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Kumi Ozaki
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Shintaro Ichikawa
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Satoshi Goshima
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| |
Collapse
|
2
|
Kamal O, Haghshomar M, Yang J, Lalani T, Bijan B, Yaghmai V, Mendiratta-Lala M, Hong CW, Fowler KJ, Sirlin CB, Kambadakone A, Lee J, Borhani AA, Fung A. CT/MRI technical pitfalls for diagnosis and treatment response assessment using LI-RADS and how to optimize. Abdom Radiol (NY) 2024:10.1007/s00261-024-04632-x. [PMID: 39433603 DOI: 10.1007/s00261-024-04632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024]
Abstract
Hepatocellular carcinoma (HCC), the most common primary liver cancer, is a significant global health burden. Accurate imaging is crucial for diagnosis and treatment response assessment, often eliminating the need for biopsy. The Liver Imaging Reporting and Data System (LI-RADS) standardizes the interpretation and reporting of liver imaging for diagnosis and treatment response assessment, categorizing observations using defined categories that are based on the probability of malignancy or post-treatment tumor viability. Optimized imaging protocols are essential for accurate visualization and characterization of liver findings by LI-RADS. Common technical pitfalls, such as suboptimal postcontrast phase timing, and MRI-specific challenges like subtraction misregistration artifacts, can significantly reduce image quality and diagnostic accuracy. The use of hepatobiliary contrast agents introduces additional challenges including arterial phase degradation and suboptimal uptake in advanced cirrhosis. This review provides radiologists with comprehensive insights into the technical aspects of liver imaging for LI-RADS. We discuss common pitfalls encountered in routine clinical practice and offer practical solutions to optimize imaging techniques. We also highlight technical advances in liver imaging, including multi-arterial MR acquisition and compressed sensing. By understanding and addressing these technical aspects, radiologists can improve accuracy and confidence in the diagnosis and treatment response assessment for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Omar Kamal
- Oregon Health and Science University, Portland, OR, USA.
| | - Maryam Haghshomar
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jessica Yang
- Royal Prince Alfred and Concord Hospitals, Sydney, NSW, Australia
| | - Tasneem Lalani
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bijan Bijan
- University of California Davis Medical Center, Sacramento, CA, USA
| | | | | | | | | | | | | | - James Lee
- University of Kentucky, Lexington, KY, USA
| | - Amir A Borhani
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alice Fung
- Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
3
|
Arribas Anta J, Moreno-Vedia J, García López J, Rios-Vives MA, Munuera J, Rodríguez-Comas J. Artificial intelligence for detection and characterization of focal hepatic lesions: a review. Abdom Radiol (NY) 2024:10.1007/s00261-024-04597-x. [PMID: 39369107 DOI: 10.1007/s00261-024-04597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/07/2024]
Abstract
Focal liver lesions (FLL) are common incidental findings in abdominal imaging. While the majority of FLLs are benign and asymptomatic, some can be malignant or pre-malignant, and need accurate detection and classification. Current imaging techniques, such as computed tomography (CT) and magnetic resonance imaging (MRI), play a crucial role in assessing these lesions. Artificial intelligence (AI), particularly deep learning (DL), offers potential solutions by analyzing large data to identify patterns and extract clinical features that aid in the early detection and classification of FLLs. This manuscript reviews the diagnostic capacity of AI-based algorithms in processing CT and MRIs to detect benign and malignant FLLs, with an emphasis in the characterization and classification of these lesions and focusing on differentiating benign from pre-malignant and potentially malignant lesions. A comprehensive literature search from January 2010 to April 2024 identified 45 relevant studies. The majority of AI systems employed convolutional neural networks (CNNs), with expert radiologists providing reference standards through manual lesion delineation, and histology as the gold standard. The studies reviewed indicate that AI-based algorithms demonstrate high accuracy, sensitivity, specificity, and AUCs in detecting and characterizing FLLs. These algorithms excel in differentiating between benign and malignant lesions, optimizing diagnostic protocols, and reducing the needs of invasive procedures. Future research should concentrate on the expansion of data sets, the improvement of model explainability, and the validation of AI tools across a range of clinical setting to ensure the applicability and reliability of such tools.
Collapse
Affiliation(s)
- Julia Arribas Anta
- Department of Gastroenterology, University Hospital, 12 Octubre, Madrid, Spain
| | - Juan Moreno-Vedia
- Scientific and Technical Department, Sycai Technologies S.L., Barcelona, Spain
| | - Javier García López
- Scientific and Technical Department, Sycai Technologies S.L., Barcelona, Spain
| | - Miguel Angel Rios-Vives
- Diagnostic Imaging Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Advanced Medical Imaging, Artificial Intelligence, and Imaging-Guided Therapy Research Group, Institut de Recerca Sant Pau - Centre CERCA, Barceona, Spain
| | - Josep Munuera
- Diagnostic Imaging Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Advanced Medical Imaging, Artificial Intelligence, and Imaging-Guided Therapy Research Group, Institut de Recerca Sant Pau - Centre CERCA, Barceona, Spain
| | | |
Collapse
|
4
|
Okimoto N, Yasaka K, Cho S, Koshino S, Kanzawa J, Asari Y, Fujita N, Kubo T, Suzuki Y, Abe O. New liver window width in detecting hepatocellular carcinoma on dynamic contrast-enhanced computed tomography with deep learning reconstruction. Radiol Phys Technol 2024; 17:658-665. [PMID: 38837119 PMCID: PMC11341740 DOI: 10.1007/s12194-024-00817-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/12/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Changing a window width (WW) alters appearance of noise and contrast of CT images. The aim of this study was to investigate the impact of adjusted WW for deep learning reconstruction (DLR) in detecting hepatocellular carcinomas (HCCs) on CT with DLR. This retrospective study included thirty-five patients who underwent abdominal dynamic contrast-enhanced CT. DLR was used to reconstruct arterial, portal, and delayed phase images. The investigation of the optimal WW involved two blinded readers. Then, five other blinded readers independently read the image sets for detection of HCCs and evaluation of image quality with optimal or conventional liver WW. The optimal WW for detection of HCC was 119 (rounded to 120 in the subsequent analyses) Hounsfield unit (HU), which was the average of adjusted WW in the arterial, portal, and delayed phases. The average figures of merit for the readers for the jackknife alternative free-response receiver operating characteristic analysis to detect HCC were 0.809 (reader 1/2/3/4/5, 0.765/0.798/0.892/0.764/0.827) in the optimal WW (120 HU) and 0.765 (reader 1/2/3/4/5, 0.707/0.769/0.838/0.720/0.791) in the conventional WW (150 HU), and statistically significant difference was observed between them (p < 0.001). Image quality in the optimal WW was superior to those in the conventional WW, and significant difference was seen for some readers (p < 0.041). The optimal WW for detection of HCC was narrower than conventional WW on dynamic contrast-enhanced CT with DLR. Compared with the conventional liver WW, optimal liver WW significantly improved detection performance of HCC.
Collapse
Affiliation(s)
- Naomasa Okimoto
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Koichiro Yasaka
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Shinichi Cho
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Saori Koshino
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Jun Kanzawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yusuke Asari
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Nana Fujita
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takatoshi Kubo
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yuichi Suzuki
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
5
|
Kanzawa J, Yasaka K, Ohizumi Y, Morita Y, Kurokawa M, Abe O. Effect of deep learning reconstruction on the assessment of pancreatic cystic lesions using computed tomography. Radiol Phys Technol 2024:10.1007/s12194-024-00834-6. [PMID: 39147953 DOI: 10.1007/s12194-024-00834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
This study aimed to compare the image quality and detection performance of pancreatic cystic lesions between computed tomography (CT) images reconstructed by deep learning reconstruction (DLR) and filtered back projection (FBP). This retrospective study included 54 patients (mean age: 67.7 ± 13.1) who underwent contrast-enhanced CT from May 2023 to August 2023. Among eligible patients, 30 and 24 were positive and negative for pancreatic cystic lesions, respectively. DLR and FBP were used to reconstruct portal venous phase images. Objective image quality analyses calculated quantitative image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) using regions of interest on the abdominal aorta, pancreatic lesion, and pancreatic parenchyma. Three blinded radiologists performed subjective image quality assessment and lesion detection tests. Lesion depiction, normal structure illustration, subjective image noise, and overall image quality were utilized as subjective image quality indicators. DLR significantly reduced quantitative image noise compared with FBP (p < 0.001). SNR and CNR were significantly improved in DLR compared with FBP (p < 0.001). Three radiologists rated significantly higher scores for DLR in all subjective image quality indicators (p ≤ 0.029). Performance of DLR and FBP were comparable in lesion detection, with no statistically significant differences in the area under the receiver operating characteristic curve, sensitivity, specificity and accuracy. DLR reduced image noise and improved image quality with a clearer depiction of pancreatic structures. These improvements may have a positive effect on evaluating pancreatic cystic lesions, which can contribute to appropriate management of these lesions.
Collapse
Affiliation(s)
- Jun Kanzawa
- Department of Radiology, University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Koichiro Yasaka
- Department of Radiology, University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan.
| | - Yuji Ohizumi
- Department of Radiology, University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Yuichi Morita
- Department of Radiology, University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Mariko Kurokawa
- Department of Radiology, University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
6
|
Hamada A, Yasaka K, Hatano S, Kurokawa M, Inui S, Kubo T, Watanabe Y, Abe O. Deep-Learning Reconstruction of High-Resolution CT Improves Interobserver Agreement for the Evaluation of Pulmonary Fibrosis. Can Assoc Radiol J 2024; 75:542-548. [PMID: 38293802 DOI: 10.1177/08465371241228468] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Objective: This study aimed to investigate whether deep-learning reconstruction (DLR) improves interobserver agreement in the evaluation of honeycombing for patients with interstitial lung disease (ILD) who underwent high-resolution computed tomography (CT) compared with hybrid iterative reconstruction (HIR). Methods: In this retrospective study, 35 consecutive patients suspected of ILD who underwent CT including the chest region were included. High-resolution CT images of the unilateral lung with DLR and HIR were reconstructed for the right and left lungs. A radiologist placed regions of interest on the lung and measured standard deviation of CT attenuation (i.e., quantitative image noise). In the qualitative image analyses, 5 blinded readers assessed the presence of honeycombing and reticulation, qualitative image noise, artifacts, and overall image quality using a 5-point scale (except for artifacts which was evaluated using a 3-point scale). Results: The quantitative and qualitative image noise in DLR was remarkably reduced compared to that in HIR (P < .001). Artifacts and overall DLR quality were significantly improved compared to those of HIR (P < .001 for 4 out of 5 readers). Interobserver agreement in the evaluations of honeycombing and reticulation for DLR (0.557 [0.450-0.693] and 0.525 [0.470-0.541], respectively) were higher than those for HIR (0.321 [0.211-0.520] and 0.470 [0.354-0.533], respectively). A statistically significant difference was found for honeycombing (P = .014). Conclusions: DLR improved interobserver agreement in the evaluation of honeycombing in patients with ILD on CT compared to HIR.
Collapse
Affiliation(s)
- Akiyoshi Hamada
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | - Koichiro Yasaka
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | - Sosuke Hatano
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | - Mariko Kurokawa
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | - Shohei Inui
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | - Takatoshi Kubo
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | - Yusuke Watanabe
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
7
|
Fujita N, Yasaka K, Hatano S, Sakamoto N, Kurokawa R, Abe O. Deep learning reconstruction for high-resolution computed tomography images of the temporal bone: comparison with hybrid iterative reconstruction. Neuroradiology 2024; 66:1105-1112. [PMID: 38514472 DOI: 10.1007/s00234-024-03330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE We investigated whether the quality of high-resolution computed tomography (CT) images of the temporal bone improves with deep learning reconstruction (DLR) compared with hybrid iterative reconstruction (HIR). METHODS This retrospective study enrolled 36 patients (15 men, 21 women; age, 53.9 ± 19.5 years) who had undergone high-resolution CT of the temporal bone. Axial and coronal images were reconstructed using DLR, HIR, and filtered back projection (FBP). In qualitative image analyses, two radiologists independently compared the DLR and HIR images with FBP in terms of depiction of structures, image noise, and overall quality, using a 5-point scale (5 = better than FBP, 1 = poorer than FBP) to evaluate image quality. The other two radiologists placed regions of interest on the tympanic cavity and measured the standard deviation of CT attenuation (i.e., quantitative image noise). Scores from the qualitative and quantitative analyses of the DLR and HIR images were compared using, respectively, the Wilcoxon signed-rank test and the paired t-test. RESULTS Qualitative and quantitative image noise was significantly reduced in DLR images compared with HIR images (all comparisons, p ≤ 0.016). Depiction of the otic capsule, auditory ossicles, and tympanic membrane was significantly improved in DLR images compared with HIR images (both readers, p ≤ 0.003). Overall image quality was significantly superior in DLR images compared with HIR images (both readers, p < 0.001). CONCLUSION Compared with HIR, DLR provided significantly better-quality high-resolution CT images of the temporal bone.
Collapse
Affiliation(s)
- Nana Fujita
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Koichiro Yasaka
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Sosuke Hatano
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Naoya Sakamoto
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Ryo Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| |
Collapse
|
8
|
Okimoto N, Yasaka K, Fujita N, Watanabe Y, Kanzawa J, Abe O. Deep learning reconstruction for improving the visualization of acute brain infarct on computed tomography. Neuroradiology 2024; 66:63-71. [PMID: 37991522 PMCID: PMC10761512 DOI: 10.1007/s00234-023-03251-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
PURPOSE This study aimed to investigate the impact of deep learning reconstruction (DLR) on acute infarct depiction compared with hybrid iterative reconstruction (Hybrid IR). METHODS This retrospective study included 29 (75.8 ± 13.2 years, 20 males) and 26 (64.4 ± 12.4 years, 18 males) patients with and without acute infarction, respectively. Unenhanced head CT images were reconstructed with DLR and Hybrid IR. In qualitative analyses, three readers evaluated the conspicuity of lesions based on five regions and image quality. A radiologist placed regions of interest on the lateral ventricle, putamen, and white matter in quantitative analyses, and the standard deviation of CT attenuation (i.e., quantitative image noise) was recorded. RESULTS Conspicuity of acute infarct in DLR was superior to that in Hybrid IR, and a statistically significant difference was observed for two readers (p ≤ 0.038). Conspicuity of acute infarct with time from onset to CT imaging at < 24 h in DLR was significantly improved compared with Hybrid IR for all readers (p ≤ 0.020). Image noise in DLR was significantly reduced compared with Hybrid IR with both the qualitative and quantitative analyses (p < 0.001 for all). CONCLUSION DLR in head CT helped improve acute infarct depiction, especially those with time from onset to CT imaging at < 24 h.
Collapse
Affiliation(s)
- Naomasa Okimoto
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Department of Radiology, Tokyo Metropolitan Bokutoh Hospital, 4-23-15 Kotobashi, Sumida-Ku, Tokyo, 130-8575, Japan
| | - Koichiro Yasaka
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Nana Fujita
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Yusuke Watanabe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Jun Kanzawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| |
Collapse
|
9
|
Fujita N, Yasaka K, Katayama A, Ohtake Y, Konishiike M, Abe O. Assessing the Effects of Deep Learning Reconstruction on Abdominal CT Without Arm Elevation. Can Assoc Radiol J 2023; 74:688-694. [PMID: 37041699 DOI: 10.1177/08465371231169672] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Purpose: To evaluate the effects of deep learning reconstruction (DLR) on image quality of abdominal computed tomography (CT) in patients without arm elevation compared with hybrid-iterative reconstruction (Hybrid-IR) and filtered back projection (FBP). Methods: In this retrospective study, axial images of 26 patients who underwent CT without arm elevation were reconstructed using DLR, Hybrid-IR, and FBP. Streak artifact index (SAI) was calculated by dividing the standard deviation of CT attenuation in the liver or spleen by that in fat. Two other blinded radiologists evaluated streak artifacts on images (in the liver, spleen, and kidney), depiction of liver vessels, subjective image noise, and overall quality. They were also asked to detect space-occupying lesions other than cysts in the liver, spleen, and kidney. Results: The SAI (liver/spleen) in DLR images was significantly reduced compared with Hybrid-IR and FBP. Regarding qualitative image analysis, streak artifacts in the 3 organs, qualitative image noise, and overall quality in DLR images were rated by both readers as significantly improved compared with Hybrid-IR (P ≤ .012) and FBP (P < .001). Both blinded readers detected more lesions on DLR images than on Hybrid-IR and FBP ones. Conclusion: DLR resulted in significantly better-quality abdominal CT images in patients scanned without elevating their arms with reducing streak artifacts compared with Hybrid-IR and FBP.
Collapse
Affiliation(s)
- Nana Fujita
- Department of Radiology, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Koichiro Yasaka
- Department of Radiology, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Akira Katayama
- Department of Radiology, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
- Department of Radiology, Tokyo-Kita Medical Centre, Kita-ku, Tokyo, Japan
| | - Yuta Ohtake
- Department of Radiology, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Mao Konishiike
- Department of Radiology, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|