1
|
Goulielmaki M, Stokidis S, Anagnostou T, Voutsas IF, Gritzapis AD, Baxevanis CN, Fortis SP. Frequencies of an Immunogenic HER-2/ neu Epitope of CD8+ T Lymphocytes Predict Favorable Clinical Outcomes in Prostate Cancer. Int J Mol Sci 2023; 24:ijms24065954. [PMID: 36983028 PMCID: PMC10058793 DOI: 10.3390/ijms24065954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/08/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
HER-2/neu is the human epidermal growth factor receptor 2, which is associated with the progression of prostate cancer (PCa). HER-2/neu-specific T cell immunity has been shown to predict immunologic and clinical responses in PCa patients treated with HER-2/neu peptide vaccines. However, its prognostic role in PCa patients receiving conventional treatment is unknown, and this was addressed in this study. The densities of CD8+ T cells specific for the HER-2/neu(780-788) peptide in the peripheral blood of PCa patients under standard treatments were correlated with TGF-β/IL-8 levels and clinical outcomes. We demonstrated that PCa patients with high frequencies of HER-2/neu(780-788)-specific CD8+ T lymphocytes had better progression-free survival (PFS) as compared with PCa patients with low frequencies. Increased frequencies of HER-2/neu(780-788)-specific CD8+ T lymphocytes were also associated with lower levels of TGF-β and IL-8. Our data provide the first evidence of the predictive role of HER-2/neu-specific T cell immunity in PCa.
Collapse
Affiliation(s)
- Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Savvas Stokidis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | | | - Ioannis F Voutsas
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Angelos D Gritzapis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Constantin N Baxevanis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Sotirios P Fortis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| |
Collapse
|
2
|
Duro-Sánchez S, Alonso MR, Arribas J. Immunotherapies against HER2-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15041069. [PMID: 36831412 PMCID: PMC9954045 DOI: 10.3390/cancers15041069] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths among women worldwide. HER2-positive breast cancer, which represents 15-20% of all cases, is characterized by the overexpression of the HER2 receptor. Despite the variety of treatments available for HER2-positive breast cancer, both targeted and untargeted, many patients do not respond to therapy and relapse and eventually metastasize, with a poor prognosis. Immunotherapeutic approaches aim to enhance the antitumor immune response to prevent tumor relapse and metastasis. Several immunotherapies have been approved for solid tumors, but their utility for HER2-positive breast cancer has yet to be confirmed. In this review, we examine the different immunotherapeutic strategies being tested in HER2-positive breast cancer, from long-studied cancer vaccines to immune checkpoint blockade, which targets immune checkpoints in both T cells and tumor cells, as well as the promising adoptive cell therapy in various forms. We discuss how some of these new approaches may contribute to the prevention of tumor progression and be used after standard-of-care therapies for resistant HER2-positive breast tumors, highlighting the benefits and drawbacks of each. We conclude that immunotherapy holds great promise for the treatment of HER2-positive tumors, with the potential to completely eradicate tumor cells and prevent the progression of the disease.
Collapse
Affiliation(s)
- Santiago Duro-Sánchez
- Preclinical & Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autónoma de Barcelona, Campus de la UAB, 08193 Bellaterra, Spain
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Macarena Román Alonso
- Preclinical & Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autónoma de Barcelona, Campus de la UAB, 08193 Bellaterra, Spain
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Joaquín Arribas
- Preclinical & Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autónoma de Barcelona, Campus de la UAB, 08193 Bellaterra, Spain
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Correspondence:
| |
Collapse
|
3
|
Immunogenicity of a xenogeneic multi-epitope HER2+ breast cancer DNA vaccine targeting the dendritic cell restricted antigen-uptake receptor DEC205. Vaccine 2022; 40:2409-2419. [DOI: 10.1016/j.vaccine.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/10/2022] [Accepted: 03/05/2022] [Indexed: 11/18/2022]
|
4
|
Tobias J, Garner-Spitzer E, Drinić M, Wiedermann U. Vaccination against Her-2/neu, with focus on peptide-based vaccines. ESMO Open 2022; 7:100361. [PMID: 35026721 PMCID: PMC8760406 DOI: 10.1016/j.esmoop.2021.100361] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy has been a milestone in combatting cancer, by complementing or even replacing classic treatments like surgery, chemotherapy, radiation, and anti-hormonal therapy. In 15%-30% of breast cancers, overexpression of the human epidermal growth factor receptor 2 (Her-2/neu) is associated with more aggressive tumor development. Passive immunization/immunotherapy with the recombinantly produced Her-2/neu-targeting monoclonal antibodies (mAbs) pertuzumab and trastuzumab has been shown to effectively treat breast cancer and lead to a significantly better prognosis. However, allergic and hypersensitivity reactions, cardiotoxicity, development of resistance, lack of immunological memory which results in continuous application over a long period, and cost-intensiveness are among the drawbacks associated with this treatment. Furthermore, intrinsic or acquired resistance is associated with the application of therapeutic mAbs, leading to the disease recurrence. Conversely, these drawbacks could be potentially overcome by vaccination, i.e. an active immunization/immunotherapy approach by activating the patient’s own immune system to target cancer, along with inducing immunological memory. This review aims to summarize the main approaches investigated and undertaken for the production of Her-2/neu vaccine candidates, with the main focus on peptide-based vaccines and their evaluation in clinical settings. Her-2/neu is overexpressed in 10%-30% of breast and gastric cancer patients and this correlates with poor clinical outcomes. Passive application of trastuzumab and pertuzumab has outstandingly improved the Her-2/neu-related clinical outcomes. Treatment with mAbs is associated with frequent administration, cost-intensiveness, and resistance. Vaccination against Her-2/neu with e.g. mimotope- or peptide-based vaccines can alternatively overcome the mAbs’ drawbacks. Such alternatives may pave the way to therapeutics which could be used as monotherapy or in combination therapies with mAbs.
Collapse
Affiliation(s)
- J Tobias
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - E Garner-Spitzer
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - M Drinić
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - U Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
McCarthy PM, Clifton GT, Vreeland TJ, Adams AM, O'Shea AE, Peoples GE. AE37: a HER2-targeted vaccine for the prevention of breast cancer recurrence. Expert Opin Investig Drugs 2020; 30:5-11. [PMID: 33191799 DOI: 10.1080/13543784.2021.1849140] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION HER2 is a prevalent growth factor in a variety of malignancies, most prominently breast cancer. Over-expression has been correlated with the poorest overall survival and has been the target of successful therapies such as trastuzumab. AE37 is a novel, HER2-directed vaccine based on the AE36 hybrid peptide (aa776-790), which is derived from the intracellular portion of the HER2 protein, and the core portion of the MHC Class II invariant chain (the Ii-Key peptide). This hybrid peptide is given with GM-CSF immunoadjuvant as the AE37 vaccine. AREAS COVERED This article describes in detail the preclinical science leading to the creation of the AE37 vaccine and examines use of this agent in multiple clinical trials for breast and prostate cancer. The safety profile of AE37 is discussed and opinions on the potential of the vaccine in breast and prostate cancer patient subsets along with other malignancies, are offered. EXPERT OPINION Future trials utilizing the AE37 vaccine to treat other HER2-expressing malignancies are likely to see similar success, and this will be enhanced by combination immunotherapy. Ii-Key modification of other peptides of interest across oncology and virology could yield impressive results over the longer term.
Collapse
Affiliation(s)
- Patrick M McCarthy
- Department of Surgery, Brooke Army Medical Center , Fort Sam Houston, TX, USA
| | - G Travis Clifton
- Department of Surgery, Brooke Army Medical Center , Fort Sam Houston, TX, USA
| | - Timothy J Vreeland
- Department of Surgery, Brooke Army Medical Center , Fort Sam Houston, TX, USA
| | - Alexandra M Adams
- Department of Surgery, Brooke Army Medical Center , Fort Sam Houston, TX, USA
| | - Anne E O'Shea
- Department of Surgery, Brooke Army Medical Center , Fort Sam Houston, TX, USA
| | | |
Collapse
|
6
|
Brown TA, Mittendorf EA, Hale DF, Myers JW, Peace KM, Jackson DO, Greene JM, Vreeland TJ, Clifton GT, Ardavanis A, Litton JK, Shumway NM, Symanowski J, Murray JL, Ponniah S, Anastasopoulou EA, Pistamaltzian NF, Baxevanis CN, Perez SA, Papamichail M, Peoples GE. Prospective, randomized, single-blinded, multi-center phase II trial of two HER2 peptide vaccines, GP2 and AE37, in breast cancer patients to prevent recurrence. Breast Cancer Res Treat 2020; 181:391-401. [PMID: 32323103 PMCID: PMC7188712 DOI: 10.1007/s10549-020-05638-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/08/2020] [Indexed: 12/03/2022]
Abstract
Purpose AE37 and GP2 are HER2 derived peptide vaccines. AE37 primarily elicits a CD4+ response while GP2 elicits a CD8+ response against the HER2 antigen. These peptides were tested in a large randomized trial to assess their ability to prevent recurrence in HER2 expressing breast cancer patients. The primary analyses found no difference in 5-year overall disease-free survival (DFS) but possible benefit in subgroups. Here, we present the final landmark analysis. Methods In this 4-arm, prospective, randomized, single-blinded, multi-center phase II trial, disease-free node positive and high-risk node negative breast cancer patients enrolled after standard of care therapy. Six monthly inoculations of vaccine (VG) vs. control (CG) were given as the primary vaccine series with 4 boosters at 6-month intervals. Demographic, safety, immunologic, and DFS data were evaluated. Results 456 patients were enrolled; 154 patients in the VG and 147 in CG for AE37, 89 patients in the VG and 91 in CG for GP2. The AE37 arm had no difference in DFS as compared to CG, but pre-specified exploratory subgroup analyses showed a trend towards benefit in advanced stage (p = 0.132, HR 0.573 CI 0.275–1.193), HER2 under-expression (p = 0.181, HR 0.756 CI 0.499–1.145), and triple-negative breast cancer (p = 0.266, HR 0.443 CI 0.114–1.717). In patients with both HER2 under-expression and advanced stage, there was significant benefit in the VG (p = 0.039, HR 0.375 CI 0.142–0.988) as compared to CG. The GP2 arm had no significant difference in DFS as compared to CG, but on subgroup analysis, HER2 positive patients had no recurrences with a trend toward improved DFS (p = 0.052) in VG as compared to CG. Conclusions This phase II trial reveals that AE37 and GP2 are safe and possibly associated with improved clinical outcomes of DFS in certain subgroups of breast cancer patients. With these findings, further evaluations are warranted of AE37 and GP2 vaccines given in combination and/or separately for specific subsets of breast cancer patients based on their disease biology.
Collapse
Affiliation(s)
- Tommy A Brown
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, San Antonio, TX, USA
| | - Elizabeth A Mittendorf
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Division of Breast Surgery, Department of Surgery, Breast Oncology Program, Brigham and Women's Hospital, Dana-Farber/Brigham and Women's Hospital, Boston, MA, USA
| | - Diane F Hale
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, San Antonio, TX, USA
| | - John W Myers
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, San Antonio, TX, USA
| | - Kaitlin M Peace
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, San Antonio, TX, USA
| | - Doreen O Jackson
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, San Antonio, TX, USA
| | - Julia M Greene
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, San Antonio, TX, USA
| | - Timothy J Vreeland
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - G Travis Clifton
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, San Antonio, TX, USA
| | - Alexandros Ardavanis
- Cancer Immunology and Immunotherapy Center, St. Savas Cancer Hospital, Athens, Greece
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - J Symanowski
- Department of Cancer Biostatistics, Levine Cancer Institute, Charlotte, NC, USA
| | - James L Murray
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sathibalan Ponniah
- Cancer Vaccine Development Laboratory, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - E A Anastasopoulou
- Cancer Immunology and Immunotherapy Center, St. Savas Cancer Hospital, Athens, Greece
| | - N F Pistamaltzian
- Cancer Immunology and Immunotherapy Center, St. Savas Cancer Hospital, Athens, Greece
| | | | - Sonia A Perez
- Cancer Immunology and Immunotherapy Center, St. Savas Cancer Hospital, Athens, Greece
| | - Michael Papamichail
- Cancer Immunology and Immunotherapy Center, St. Savas Cancer Hospital, Athens, Greece
| | - George E Peoples
- Department of Surgery, Uniformed Services Health University, Bethesda, MD, USA. .,Cancer Vaccine Development Program, 1305 East Houston Street, San Antonio, TX, 78205, USA.
| |
Collapse
|
7
|
Arab A, Yazdian-Robati R, Behravan J. HER2-Positive Breast Cancer Immunotherapy: A Focus on Vaccine Development. Arch Immunol Ther Exp (Warsz) 2020; 68:2. [PMID: 31915932 PMCID: PMC7223380 DOI: 10.1007/s00005-019-00566-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Abstract
Clinical progress in the field of HER2-positive breast cancer therapy has been dramatically improved by understanding of the immune regulatory mechanisms of tumor microenvironment. Passive immunotherapy utilizing recombinant monoclonal antibodies (mAbs), particularly trastuzumab and pertuzumab has proved to be an effective strategy in HER2-positive breast cancer treatment. However, resistance to mAb therapy and relapse of disease are still considered important challenges in clinical practice. There are increasing reports on the induction of cellular and humoral immune responses in HER2-positive breast cancer patients. More recently, increasing efforts are focused on using HER2-derived peptide vaccines for active immunotherapy. Here, we discuss the development of various HER2-derived vaccines tested in animal models and human clinical trials. Different formulations and strategies to improve immunogenicity of the antigens in animal studies are also discussed. Furthermore, other immunotherapeutic approaches to HER2 breast cancer including, CTLA-4 inhibitors, immune checkpoint inhibitors, anti PD-1/PD-L1 antibodies are presented.
Collapse
Affiliation(s)
- Atefeh Arab
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Rezvan Yazdian-Robati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Behravan
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,School of Pharmacy, University of Waterloo, Waterloo, ON, Canada. .,Theraphage Inc., Kitchener, ON, Canada.
| |
Collapse
|
8
|
Baxevanis CN, Fortis SP, Perez SA. The balance between breast cancer and the immune system: Challenges for prognosis and clinical benefit from immunotherapies. Semin Cancer Biol 2019; 72:76-89. [PMID: 31881337 DOI: 10.1016/j.semcancer.2019.12.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Cancer evolution is a complex process influenced by genetic factors and extracellular stimuli that trigger signaling pathways to coordinate the continuous and dynamic interaction between tumor cells and the elements of the immune system. For over 20 years now, the immune mechanisms controlling cancer progression have been the focus of intensive research. It is well established that the immune system conveys protective antitumor immunity by destroying immunogenic tumor variants, but also facilitates tumor progression by shaping tumor immunogenicity in a process called "immunoediting". It is also clear that immune-guided tumor editing is associated with tumor evasion from immune surveillance and therefore reinforcing the endogenous antitumor immunity is a desired goal in the context of cancer therapies. The tumor microenvironment (TME) is a complex network which consists of various cell types and factors having important roles regarding tumor development and progression. Tumor infiltrating lymphocytes (TILs) and other tumor infiltrating immune cells (TIICs) are key to our understanding of tumor immune surveillance based on tumor immunogenicity, whereby the densities and location of TILs and TIICs in the tumor regions, as well as their functional programs (comprising the "immunoscore") have a prominent role for prognosis and prediction for several cancers. The presence of tertiary lymphoid structures (TLS) in the TME or in peritumoral areas has an influence on the locally produced antitumor immune response, and therefore also has a significant prognostic impact. The cross-talk between elements of the immune system with tumor cells in the TME is greatly influenced by hypoxia, the gut and/or the local microbiota, and several metabolic elements, which, in a dynamic interplay, have a crucial role for tumor cell heterogeneity and reprogramming of immune cells along their activation and differentiation pathways. Taking into consideration the recent clinical success with the application immunotherapies for the treatment of several cancer types, increasing endeavors have been made to gain better insights into the mechanisms underlying phenotypic and metabolic profiles in the context of tumor progression and immunotherapy. In this review we will address (i) the role of TILs, TIICs and TLS in breast cancer (BCa); (ii) the different metabolic-based pathways used by immune and breast cancer cells; and (iii) implications for immunotherapy-based strategies in BCa.
Collapse
Affiliation(s)
- Constantin N Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Ave., 11522, Athens, Greece.
| | - Sotirios P Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Ave., 11522, Athens, Greece
| | - Sonia A Perez
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Ave., 11522, Athens, Greece
| |
Collapse
|
9
|
Mittendorf EA, Ardavanis A, Symanowski J, Murray JL, Shumway NM, Litton JK, Hale DF, Perez SA, Anastasopoulou EA, Pistamaltzian NF, Ponniah S, Baxevanis CN, von Hofe E, Papamichail M, Peoples GE. Primary analysis of a prospective, randomized, single-blinded phase II trial evaluating the HER2 peptide AE37 vaccine in breast cancer patients to prevent recurrence. Ann Oncol 2016; 27:1241-8. [PMID: 27029708 DOI: 10.1093/annonc/mdw150] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/19/2016] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AE37 is the Ii-Key hybrid of the MHC class II peptide, AE36 (HER2 aa:776-790). Phase I studies showed AE37 administered with granulocyte macrophage colony-stimulating factor (GM-CSF) to be safe and highly immunogenic. A prospective, randomized, multicenter phase II adjuvant trial was conducted to evaluate the vaccine's efficacy. METHODS Clinically disease-free node-positive and high-risk node-negative breast cancer patients with tumors expressing any degree of HER2 [immunohistochemistry (IHC) 1-3+] were enrolled. Patients were randomized to AE37 + GM-CSF versus GM-CSF alone. Toxicity was monitored. Clinical recurrences were documented and disease-free survival (DFS) analyzed. RESULTS The trial enrolled 298 patients; 153 received AE37 + GM-CSF and 145 received GM-CSF alone. The groups were well matched for clinicopathologic characteristics. Toxicities have been minimal. At the time of the primary analysis, the recurrence rate in the vaccinated group was 12.4% versus 13.8% in the control group [relative risk reduction 12%, HR 0.885, 95% confidence interval (CI) 0.472-1.659, P = 0.70]. The Kaplan-Meier estimated 5-year DFS rate was 80.8% in vaccinated versus 79.5% in control patients. In planned subset analyses of patients with IHC 1+/2+ HER2-expressing tumors, 5-year DFS was 77.2% in vaccinated patients (n = 76) versus 65.7% in control patients (n = 78) (P = 0.21). In patients with triple-negative breast cancer (HER2 IHC 1+/2+ and hormone receptor negative) DFS was 77.7% in vaccinated patients (n = 25) versus 49.0% in control patients (n = 25) (P = 0.12). CONCLUSION The overall intention-to-treat analysis demonstrates no benefit to vaccination. However, the results confirm that the vaccine is safe and suggest that vaccination may have clinical benefit in patients with low HER2-expressing tumors, specifically TNBC. Further evaluation in a randomized trial enrolling TNBC patients is warranted.
Collapse
Affiliation(s)
- E A Mittendorf
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - A Ardavanis
- Cancer Immunology and Immunotherapy Center, St Savas Cancer Hospital, Athens, Greece
| | - J Symanowski
- Department of Cancer Biostatistics, Levine Cancer Institute, Charlotte
| | - J L Murray
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - N M Shumway
- Department of Hematology/Oncology, Brooke Army Medical Center, Ft Sam Houston Cancer Vaccine Development Laboratory, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda
| | - J K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - D F Hale
- Department of Surgery, Brooke Army Medical Center, Ft Sam Houston
| | - S A Perez
- Cancer Immunology and Immunotherapy Center, St Savas Cancer Hospital, Athens, Greece
| | - E A Anastasopoulou
- Cancer Immunology and Immunotherapy Center, St Savas Cancer Hospital, Athens, Greece
| | - N F Pistamaltzian
- Cancer Immunology and Immunotherapy Center, St Savas Cancer Hospital, Athens, Greece
| | - S Ponniah
- Cancer Vaccine Development Laboratory, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda
| | - C N Baxevanis
- Cancer Immunology and Immunotherapy Center, St Savas Cancer Hospital, Athens, Greece
| | | | - M Papamichail
- Cancer Immunology and Immunotherapy Center, St Savas Cancer Hospital, Athens, Greece
| | - G E Peoples
- Cancer Vaccine Development Program, San Antonio Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, USA
| |
Collapse
|
10
|
The efficacy of chimeric vaccines constructed with PEP-1 and Ii-Key linking to a hybrid epitope from heterologous viruses. Biologicals 2015; 43:377-82. [PMID: 26153399 DOI: 10.1016/j.biologicals.2015.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 01/17/2023] Open
Abstract
The heterologous epitope-peptide from different viruses may represent an attractive candidate vaccine. In order to evaluate the role of cell-permeable peptide (PEP-1) and Ii-Key moiety from the invariant chain (Ii) of MHC on the heterologous peptide chimeras, we linked the two vehicles to hybrid epitopes on the VP2 protein (aa197-209) of the infectious bursal disease virus and HN protein (aa345-353) of the Newcastle disease virus. The chimeric vaccines were prepared and injected into mice. The immune effects were measured by indirect ELISA. The results showed that the vehicle(s) could significantly boost immune effects against the heterologous epitope peptide. The Ii-Key-only carrier induced more effective immunological responses, compared with the PEP-1 and Ii-Key hybrid vehicle. The carrier-peptide hybrids all showed strong colocalization with major histocompatibility complex (MHC) class II molecules compared with the epitope-peptide (weakly-binding) after co-transfection into 293T cells. Together, our results lay the groundwork for designing new hybrid vaccines based on Ii-Key and/or PEP-1 peptides.
Collapse
|
11
|
Mittendorf EA, Alatrash G, Xiao H, Clifton GT, Murray JL, Peoples GE. Breast cancer vaccines: ongoing National Cancer Institute-registered clinical trials. Expert Rev Vaccines 2014; 10:755-74. [DOI: 10.1586/erv.11.59] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Perez SA, Peoples GE, Papamichail M, Baxevanis CN. Invariant chain-peptide fusion vaccine using HER-2/neu. Methods Mol Biol 2014; 1139:321-336. [PMID: 24619690 DOI: 10.1007/978-1-4939-0345-0_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A novel method for amplifying the activity of major histocompatibility complex (MHC) class II helper epitopes entails linking a 4-amino-acid moiety (LRMK) from the invariant chain (Ii) of MHC (referred to as Ii-Key) to the N-terminal end of the epitope peptide either directly or using a simple polymethylene spacer (-ava-). Ii-Key catalyzes binding of the linked epitope to the MHC class II molecule, thereby enhancing the overall potency of presentation. HER-2(776-790) (or AE36), which is derived from the intracellular domain of HER-2/neu, has been intensively used as an Ii-key/HER-2(776-790) (or AE37) fusion (hybrid) vaccine in clinical trials. This chapter describes procedures for the synthesis, reconstitution, sterility testing, and storage of both AE36 and AE37 for their use in clinical trials. Also provided is a detailed information about their in vivo administration and analysis of in-depth protocols for monitoring of immune activation upon vaccination with AE37.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Differentiation, B-Lymphocyte/administration & dosage
- Antigens, Differentiation, B-Lymphocyte/chemistry
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/immunology
- Breast Neoplasms/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/chemistry
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cell Proliferation
- Female
- Histocompatibility Antigens Class II/administration & dosage
- Histocompatibility Antigens Class II/chemistry
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Humans
- Molecular Sequence Data
- Ovarian Neoplasms/immunology
- Protein Structure, Tertiary
- Receptor, ErbB-2/administration & dosage
- Receptor, ErbB-2/chemistry
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Sonia A Perez
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece
| | | | | | | |
Collapse
|
13
|
Perez SA, Anastasopoulou EA, Tzonis P, Gouttefangeas C, Kalbacher H, Papamichail M, Baxevanis CN. AE37 peptide vaccination in prostate cancer: a 4-year immunological assessment updates on a phase I trial. Cancer Immunol Immunother 2013; 62:1599-608. [PMID: 23934022 PMCID: PMC11029046 DOI: 10.1007/s00262-013-1461-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/26/2013] [Indexed: 01/24/2023]
Abstract
In our recent phase I trial, we demonstrated that the AE37 vaccine is safe and induces HER-2/neu-specific immunity in a heterogeneous population of HER-2/neu (+) prostate cancer patients. Herein, we tested whether one AE37 boost can induce long-lasting immunological memory in these patients. Twenty-three patients from the phase I study received one AE37 boost 6-month post-primary vaccinations. Local/systemic toxicities were evaluated following the booster injection. Immunological responses were monitored 1-month (long-term booster; LTB) and 3-year (long-term immunity; LTI) post-booster by delayed-type hypersensitivity, IFN-γ ELISPOT and proliferation assays. Regulatory T cell (Treg) frequencies, plasma transforming growth factor-β (TGF-β) and indoleamine 2,3-deoxygenase (IDO) activity levels were also determined at the same time points. The AE37 booster was safe and well tolerated. Immunological monitoring revealed vaccine-specific long-term immunity in most of the evaluated patients during both LTB and LTI, although individual levels of immunity during LTI were decreased compared with those measured 3 years earlier during LTB. This was paralleled with increased Tregs, TGF-β levels and IDO activity. One AE37 booster generated long-term immunological memory in HER-2/neu (+) prostate cancer patients, which was detectable 3 years later, albeit with a tendency to decline. Boosted patients had favorable clinical outcome in terms of overall and/or metastasis-free survival compared with historical groups with similar clinical characteristics at diagnosis. We suggest that more boosters and/or concomitant disarming of suppressor circuits may be necessary to sustain immunological memory, and therefore, further studies to optimize the AE37 booster schedule are warranted.
Collapse
Affiliation(s)
- Sonia A Perez
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Building No. 2, 3rd Floor, 171 Alexandras Avenue, 11522, Athens, Greece,
| | | | | | | | | | | | | |
Collapse
|
14
|
Chen F, Meng F, Pan L, Xu F, Liu X, Yu W. Boosting immune response with the invariant chain segments via association with non-peptide binding region of major histocompatibility complex class II molecules. BMC Immunol 2012; 13:55. [PMID: 23016601 PMCID: PMC3517428 DOI: 10.1186/1471-2172-13-55] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 09/17/2012] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Based on binding of invariant chain (Ii) to major histocompatibility complex (MHC) class II molecules to form complexes, Ii-segment hybrids, Ii-key structure linking an epitope, or Ii class II-associated invariant chain peptide (CLIP) replaced with an epitope were used to increase immune response. It is currently unknown whether the Ii-segment cytosolic and transmembrane domains bind to the MHC non-peptide binding region (PBR) and consequently influence immune response. To investigate the potential role of Ii-segments in the immune response via MHC II/peptide complexes, a few hybrids containing Ii-segments and a multiepitope (F306) from Newcastle disease virus fusion protein (F) were constructed, and their binding effects on MHC II molecules and specific antibody production were compared using confocal microscopy, immunoprecipitation, western blotting and animal experiments. RESULTS One of the Ii-segment/F306 hybrids, containing ND (Asn-Asp) outside the F306 in the Ii-key structure (Ii-key/F306/ND), neither co-localized with MHC II molecules on plasma membrane nor bound to MHC II molecules to form complexes. However, stimulation of mice with the structure produced 4-fold higher antibody titers compared with F306 alone. The two other Ii-segment/F306 hybrids, in which the transmembrane and cytosolic domains of Ii were linked to this structure (Cyt/TM/Ii-key/F306/ND), partially co-localized on plasma membrane with MHC class II molecules and weakly bound MHC II molecules to form complexes. They induced mice to produce approximately 9-fold higher antibody titers compared with F306 alone. Furthermore, an Ii/F306 hybrid (F306 substituting CLIP) co-localized well with MHC II molecules on the membrane to form complexes, although it increased antibody titer about 3-fold relative to F306 alone. CONCLUSIONS These results suggest that Ii-segments improve specific immune response by binding to the non-PBR on MHC class II molecules and enabling membrane co-localization with MHC II molecules, resulting in the formation of relatively stable MHC II/peptide complexes on the plasma membrane, and signal transduction.
Collapse
Affiliation(s)
- Fangfang Chen
- Key Laboratory of Zoonoses of Anhui Province, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | | | | | | | | | | |
Collapse
|
15
|
Xu M, Kallinteris NL, von Hofe E. CD4+ T-cell activation for immunotherapy of malignancies using Ii-Key/MHC class II epitope hybrid vaccines. Vaccine 2012; 30:2805-10. [DOI: 10.1016/j.vaccine.2012.02.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/09/2012] [Accepted: 02/13/2012] [Indexed: 01/20/2023]
|
16
|
Benavides LC, Sears AK, Gates JD, Clifton GT, Clive KS, Carmichael MG, Holmes JP, Mittendorf EA, Ponniah S, Peoples GE. Comparison of different HER2/neu vaccines in adjuvant breast cancer trials: implications for dosing of peptide vaccines. Expert Rev Vaccines 2011; 10:201-10. [PMID: 21332269 DOI: 10.1586/erv.10.167] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have performed multiple adjuvant clinical trials using immunogenic peptides from the HER2/neu protein (AE37/E75/GP2) plus (GM-CSF) given intradermally to breast cancer patients. Four trials were performed with similar dose-escalation design with increasing doses of peptide (AE37/E75/GP2) and varying amounts of GM-CSF. Dose reductions (DRs) were made for significant local and/or systemic toxicity by decreasing GM-CSF for subsequent inoculations. Ex vivo and in vivo immunologic responses were used to compare groups. Of 132 patients, 39 required DR (30 for robust local reactions [DR-L]). DR patients, particularly DR-L, had greater immune responses both ex vivo and in vivo. Postvaccine delayed-type hypersensitivity in DR-L patients compared with all others was larger for E75 (p = 0.001), AE37 (p = 0.077) and GP2 (p = 0.076). All three peptide vaccines were safe and well-tolerated. These findings have led to a clinically relevant optimal vaccine dosing strategy, which may be applicable to other peptide-based cancer vaccines.
Collapse
Affiliation(s)
- Linda C Benavides
- Department of Surgery, General Surgery Service, Brooke Army Medical Center, 3851 Roger Brooke Drive, Ft. Sam, Houston, TX 78234, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Erskine CL, Krco CJ, Hedin KE, Borson ND, Kalli KR, Behrens MD, Heman-Ackah SM, von Hofe E, Wettstein PJ, Mohamadzadeh M, Knutson KL. MHC class II epitope nesting modulates dendritic cell function and improves generation of antigen-specific CD4 helper T cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:316-24. [PMID: 21613617 DOI: 10.4049/jimmunol.1100658] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CD4 Th cells are critical to the development of coordinated immune responses to infections and tumors. Th cells are activated through interactions of the TCR with MHC class II complexed with peptide. T cell activation is dependent on the density of MHC peptide complexes as well as the duration of interaction of the TCR with APCs. In this study, we sought to determine whether MHC class II peptides could be modified with amino acid sequences that facilitated uptake and presentation with the goal of improving Th cell activation in vitro and in vivo. A model epitope derived from the murine folate receptor α, a self- and tumor Ag, was modified at its carboxyl terminus with the invariant chain-derived Ii-Key peptide and at its N terminus with a peptide that enhances uptake of Ag by APC. Modification of a peptide resulted in enhanced generation of high-avidity murine folate receptor α T cells that persisted in vivo and homed to sites of Ag deposition. The nesting approach was epitope and species independent and specifically excluded expansion of CD4 regulatory T cells. The resulting Th cells were therapeutic, enhanced in vivo helper activity and had an increased ability to resist tolerizing immune microenvironments. In addition to improved immunoadjuvants, this epitope modification strategy may be useful for enhancing ex vivo and in vivo generation of Th cells for preventing and treating diseases.
Collapse
Affiliation(s)
- Courtney L Erskine
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Circulating regulatory T cells (CD4+CD25+FOXP3+) decrease in breast cancer patients after vaccination with a modified MHC class II HER2/neu (AE37) peptide. Vaccine 2010; 28:7476-82. [DOI: 10.1016/j.vaccine.2010.09.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 09/09/2010] [Accepted: 09/10/2010] [Indexed: 12/13/2022]
|
19
|
Perez SA, Kallinteris NL, Bisias S, Tzonis PK, Georgakopoulou K, Varla-Leftherioti M, Papamichail M, Thanos A, von Hofe E, Baxevanis CN. Results from a Phase I Clinical Study of the Novel Ii-Key/HER-2/neu(776–790) Hybrid Peptide Vaccine in Patients with Prostate Cancer. Clin Cancer Res 2010; 16:3495-506. [DOI: 10.1158/1078-0432.ccr-10-0085] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Zinckgraf JW, Sposato M, Zielinski V, Powell D, Treanor JJ, von Hofe E. Identification of HLA class II H5N1 hemagglutinin epitopes following subvirion influenza A (H5N1) vaccination. Vaccine 2009; 27:5393-401. [PMID: 19596415 DOI: 10.1016/j.vaccine.2009.06.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 06/09/2009] [Accepted: 06/22/2009] [Indexed: 12/17/2022]
Abstract
Prophylactic immunization against influenza infection requires CD4+ T-helper cell activity for optimal humoral and cellular immunity. Currently there is one FDA approved H5N1 subvirion vaccine available, although stockpiles of this vaccine are insufficient for broad population coverage and the vaccine has only demonstrated modest immunogenicity. Specific activation of CD4+ T-helper cells using class II H5N1 HA peptide vaccines may be a useful component in immunization strategy and design. Identification of HLA class II HA epitopes was undertaken in this report by obtaining PBMCs from volunteers previously immunized with an H5N1 inactivated subvirion vaccine, followed by direct ex vivo stimulation of CD4+ T cells against different sources of potential HA class II epitopes. In the 1st round of analysis, 35 donors were tested via IFN-gamma ELISPOT using pools of overlapping HA peptides derived from the H5N1 A/Thailand/4(SP-528)/2004 virus, recombinant H5N1 (rHA) and inactivated H5N1 subvirion vaccine. In addition, a series of algorithm-predicted epitopes coupled with the Ii-Key moiety of the MHC class II-associated invariant chain for enhanced MHC class II charging were also included. Specific responses were observed for all 20 peptide pools, with 6-26% of vaccinated individuals responding to any given pool (donor response frequency) and a magnitude of response ranging from 3- to >10-fold above background levels. Responses were similarly observed with the majority of algorithm-predicted epitopes, with a donor response frequency of up to 29% and a magnitude of response ranging from 3-10-fold (11/24 peptides) to >10-fold above background (7/24 peptides). PBMCs from vaccine recipients that had detectable responses to H5N1 rHA following 1st round analysis were used in a 2nd round of testing to confirm the identity of specific peptides based on the results of the 1st screening. Sixteen individual HA peptides identified from the library elicited CD4+ T cell responses between 3- and >10-fold above background, with two peptides being recognized in 21% of recipients tested. Eight of the putative MHC class II epitopes recognized were found in regions showing partial to significant sequence homology with New Caledonia H1N1 influenza HA, while eight were unique to H5N1 HA. This is the first study to identify H5N1 HA epitope-specific T cells in vaccine recipients and offers hope for the design of a synthetic peptide vaccine to prime CD4+ T-helper cells. Such a vaccine could be used to provide at least some minimal level of H5N1 protection on its own and/or prime for a subsequent dose of a more traditional but supply-limited vaccine.
Collapse
Affiliation(s)
- John W Zinckgraf
- Antigen Express, Inc, One Innovation Drive, Worcester, MA 01605, United States
| | | | | | | | | | | |
Collapse
|
21
|
Mittendorf EA, Holmes JP, Murray JL, von Hofe E, Peoples GE. CD4+T cells in antitumor immunity: utility of an Ii-Key HER2/neu hybrid peptide vaccine (AE37). Expert Opin Biol Ther 2008; 9:71-8. [DOI: 10.1517/14712590802614538] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Holmes JP, Benavides LC, Gates JD, Carmichael MG, Hueman MT, Mittendorf EA, Murray JL, Amin A, Craig D, von Hofe E, Ponniah S, Peoples GE. Results of the first phase I clinical trial of the novel II-key hybrid preventive HER-2/neu peptide (AE37) vaccine. J Clin Oncol 2008; 26:3426-33. [PMID: 18612158 DOI: 10.1200/jco.2007.15.7842] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE HER-2/neu is overexpressed in breast cancer and is the source of immunogenic peptides. CD4(+) T-helper peptides for HER-2/neu are being evaluated in vaccine trials. The addition of Ii-Key, a four-amino-acid LRMK modification, increases vaccine potency when compared with unmodified class II epitopes. We present the results of the first human phase I trial of the Ii-Key hybrid HER-2/neu peptide (AE37) vaccine in disease-free, node-negative breast cancer patients. PATIENTS AND METHODS The dose escalation trial included five dose groups, to determine safety and optimal dose of the hybrid peptide (100 microg, 500 microg, 1,000 microg) and granulocyte-macrophage colony-stimulating factor (GM-CSF; range, 0 to 250 microg). In the event of significant local toxicity, GM-CSF (or peptide in absence of GM-CSF) was reduced by 50%. Immunologic response was monitored by delayed-type hypersensitivity and [(3)H]thymidine proliferative assays for both the hybrid AE37 (LRMK-positive HER-2/neu:776-790) and AE36 (unmodified HER-2/neu:776-790). RESULTS All 15 patients completed the trial with no grade 3 to 5 toxicities. Dose reductions occurred in 47% of patients. In the second group (peptide, 500 microg; GM-CSF, 250 microg), all patients required dose reductions, prompting peptide-only inoculations in the third group. The vaccine induced dose-dependent immunologic responses in vitro and in vivo to AE37, as well as AE36. CONCLUSION The hybrid AE37 vaccine seems safe and well tolerated with minimal toxicity if properly dosed. AE37 is capable of eliciting HER-2/neu-specific immune responses, even without the use of an adjuvant. This trial represents the first human experience with the Ii-Key modification, and to our knowledge, AE37 is the first peptide vaccine to show potency in the absence of an immunoadjuvant.
Collapse
Affiliation(s)
- Jarrod P Holmes
- Department of Surgery, General Surgery Service, Brooke Army Medical Center, 3851 Roger Brooke Dr, Fort Sam Houston, TX, 78234, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Voutsas IF, Gritzapis AD, Mahaira LG, Salagianni M, Hofe EV, Kallinteris NL, Baxevanis CN. Induction of potent CD4+ T cell-mediated antitumor responses by a helper HER-2/neu peptide linked to the Ii-Key moiety of the invariant chain. Int J Cancer 2007; 121:2031-2041. [PMID: 17634957 DOI: 10.1002/ijc.22936] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Ii-Key fragment from the MHC class II-associated invariant chain (or Ii protein) has been shown to facilitate direct charging of MHC class II epitopes to the peptide binding groove. The purpose of the present study was to test the potential of a series of Ii-Key/HER-2/neu776-790 hybrid peptides to generate increased frequencies of peptide-specific CD4+ T cells over the native peptide in mice transgenic (Tg) for a chimeric human mouse class II molecule (DR4-IE) (H-2b) as well as their antitumor potency. Following in vivo priming, such hybrid peptides induced increased proliferation and frequencies of IFN-gamma producing CD4+ T cells in response to either syngeneic dendritic cells pulsed with native peptide, or HLA-DR4+ human tumor cell lines expressing HER-2/neu. Hybrid peptides were more stable in an off-rate kinetics assay compared to the native peptide. In addition, antigen-specific CD4+ T cells from hybrid peptide immunized DR4-IE Tg mice synergized with HER-2/neu(435-443)-specific CD8+ T cells from HLA-A2.1 Tg HHD (H-2b) mice in producing antitumor immunity into SCID mice xenografted with the HER-2/neu+, HLA-A2.1+ and HLA-DR4+ FM3 human melanoma cell line. High proportions of these adoptively transferred HER-2/neu peptide-specific CD4+ and CD8+ T cells infiltrated FM3-induced tumors (tumor infiltrating lymphocytes; TIL) in SCID mice. CD8+ TIL exhibited long-lasting antitumor activity when cotransferred with CD4+ TIL, inducing regression of FM3 tumors in a group of untreated, tumor-bearing SCID mice, following adoptive transfer. Our data show that Ii-Key modified HER-2/neu776-790 hybrid peptides are sufficiently potent to provide antigen-specific CD4+ TH cells with therapeutic antitumor activity.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation, B-Lymphocyte/chemistry
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Proliferation
- Cells, Cultured
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Histocompatibility Antigens Class II/chemistry
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Humans
- Kinetics
- Mice
- Mice, SCID
- Mice, Transgenic
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/metabolism
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ioannis F Voutsas
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece
| | - Angelos D Gritzapis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece
| | - Louisa G Mahaira
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece
| | - Maria Salagianni
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece
| | - Eric von Hofe
- Antigen Express Inc., Biotech III, One Innovation Drive, Worcester, MA
| | | | | |
Collapse
|
24
|
Sotiriadou NN, Kallinteris NL, Gritzapis AD, Voutsas IF, Papamichail M, von Hofe E, Humphreys RE, Pavlis T, Perez SA, Baxevanis CN. Ii-Key/HER-2/neu(776-790) hybrid peptides induce more effective immunological responses over the native peptide in lymphocyte cultures from patients with HER-2/neu+ tumors. Cancer Immunol Immunother 2007; 56:601-13. [PMID: 16960693 PMCID: PMC11030832 DOI: 10.1007/s00262-006-0213-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 07/20/2006] [Indexed: 11/28/2022]
Abstract
We have demonstrated that coupling an immunoregulatory segment of the MHC class II-associated invariant chain (Ii), the Ii-Key peptide, to a promiscuous MHC class II epitope significantly enhances its presentation to CD4+ T cells. Here, a series of homologous Ii-Key/HER-2/neu(776-790) hybrid peptides, varying systematically in the length of the epitope(s)-containing segment, are significantly more potent than the native peptide in assays using T cells from patients with various types of tumors overexpressing HER-2/neu. In particular, priming normal donor and patient PBMCs with Ii-Key hybrid peptides enhances recognition of the native peptide either pulsed onto autologous dendritic cells (DCs) or naturally presented by IFN-gamma-treated autologous tumor cells. Moreover, patient-derived CD4+ T cells primed with the hybrid peptides provide a significantly stronger helper effect to autologous CD8+ T cells specific for the HER-2/neu(435-443) CTL epitope, as illustrated by either IFN-gamma ELISPOT assays or specific autologous tumor cell lysis. Hybrid peptide-specific CD4+ T cells strongly enhanced the antitumor efficacy of HER-2/neu(435-443) peptide-specific CTL in the therapy of xenografted SCID mice inoculated with HER-2/neu overexpressing human tumor cell lines. Our data indicate that the promiscuously presented vaccine peptide HER-2/neu(776-790) is amenable to Ii-Key-enhancing effects and supports the therapeutic potential of vaccinating patients with HER-2/neu+ tumors with such Ii-Key/HER-2/neu(776-790) hybrid peptides.
Collapse
Affiliation(s)
- Nectaria N. Sotiriadou
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Avenue, 115 22 Athens, Greece
| | | | - Angelos D. Gritzapis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Avenue, 115 22 Athens, Greece
| | - Ioannis F. Voutsas
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Avenue, 115 22 Athens, Greece
| | - Michael Papamichail
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Avenue, 115 22 Athens, Greece
| | - Eric von Hofe
- Antigen Express Inc., 100 Barber Avenue, Worcester, MA 01606-2478 USA
| | | | - Theodoros Pavlis
- Surgical Clinic “Mitera-Hospital, Erythrou Stavrou 6, Marousi, Greece
| | - Sonia A. Perez
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Avenue, 115 22 Athens, Greece
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Avenue, 115 22 Athens, Greece
| |
Collapse
|
25
|
Kallinteris NL, Lu X, Blackwell CE, von Hofe E, Humphreys RE, Xu M. Ii-Key/MHC class II epitope hybrids: a strategy that enhances MHC class II epitope loading to create more potent peptide vaccines. Expert Opin Biol Ther 2006; 6:1311-21. [PMID: 17223739 DOI: 10.1517/14712598.6.12.1311] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Life-threatening diseases, such as cancer and pandemic influenza, demand new efforts towards effective vaccine design. Peptides represent a simple, safe and adaptable basis for vaccine development; however, the potency of peptide vaccines is insufficient in most cases for significant therapeutic efficacy. Several methods, such as Ligand Epitope Antigen Presentation System and ISCOMATRIX, have been developed to enhance the potency of peptide vaccines. One way of increasing the loading of MHC class II peptides occurs through the use of Ii-Key technology. Ii-Key (LRMK), a portion of the MHC class II-associated invariant chain (Ii), facilitates the direct loading of epitopes to the MHC class II molecule groove. Linking the Ii-Key moiety via a simple polymethylene bridge to an MHC class II epitope, to generate an Ii-Key/MHC class II epitope hybrid, greatly enhances the vaccine potency of the tethered epitope. The combination of such Ii-Key/MHC class II epitope hybrids with MHC class I epitope-containing peptides might generate a potent peptide vaccine for malignancies and infectious diseases. The Ii-Key hybrid technology is compared with other methods that enhance the potency of a peptide vaccine.
Collapse
|
26
|
Kallinteris NL, Wu S, Lu X, Humphreys RE, von Hofe E, Xu M. Enhanced CD4+ T-cell response in DR4-transgenic mice to a hybrid peptide linking the Ii-Key segment of the invariant chain to the melanoma gp100(48-58) MHC class II epitope. J Immunother 2005; 28:352-8. [PMID: 16000953 DOI: 10.1097/01.cji.0000170362.45456.00] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Linking the Ii-Key functional group LRMK, through a simple polymethylene linker, to the melanoma gp100(48-58) MHC class II epitope significantly enhances the vaccine response to that epitope in DR4-IE transgenic mice. A homologous series of Ii-Key/gp100(46-58) hybrids was synthesized to test the influence of spacer length (between Ii-Key and the gp100(48-58) epitope) on in vivo enhancement of gp100(48-58)-specific CD4+ T-lymphocyte responses. As measured by IFN-gamma and IL-4 ELISPOT cytokine assays, the most effective vaccine hybrid was the one with a shorter linker between Ii-Key and the epitope. Mechanistic reasons for this observation are considered. This structure-activity relationship was seen with bulk and CD4+ purified T cells, and both primary and secondary in vitro restimulation assays. CFA augmented the IFN-gamma response and to a lesser extent the IL-4 response. CpG enhanced a strong IFN-gamma response, with a negligible IL-4 response. The 3- to 5-times enhancement of the total ELISPOT responses (number of spots x mean spot area) observed after vaccination with peptides consisting of an MHC class II epitope engineered into an Ii-Key hybrid indicates a potent vaccine effect. Such constructs can be applied to many diagnostic and therapeutic uses.
Collapse
|
27
|
Guo BL, Liu Z, Aldrich WA, Lopez RD. Innate Anti-breast Cancer Immunity of Apoptosis-resistant Human γδ-T cells. Breast Cancer Res Treat 2005; 93:169-75. [PMID: 16187237 DOI: 10.1007/s10549-005-4792-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We previously identified a CD2-initiated signaling pathway which inhibits activation-induced cell death in mitogen-stimulated human gammadelta-T cells permitting the large-scale expansion of these cells. Here we report the innate anti-tumor activity of expanded human gammadelta-T cells against human breast cancer cells. Apoptosis-resistant human gammadelta-T cells which were expanded in vitro from cultured human peripheral blood mononuclear cells displayed lytic activity against breast cancer cell lines MDA-MB-231, MCF-7 and T-47D, but failed to kill normal human skin fibroblasts and normal human liver cells. Monoclonal antibodies (mAb) directed against the gammadelta-T cell receptor (TCR) or mAb directed against either the Vgamma9 or the Vdelta2 TCR chains were able to block gammadelta-T cell-mediated lysis of MDA-MB-231 cells. In addition, mAb against intercellular adhesion molecules-1 (ICAM-1/CD54) or CD18 (beta subunit of ICAM-1 counter-receptor) also blocked gammadelta-T cell-mediated killing of MDA-MB-231 cells. Ex vivo expanded human gammadelta-T cells are thus able to innately recognize and kill human breast cancer cells in a gammadelta-TCR-dependent manner; ICAM-1 and CD18 also appear to be involved in the interactions between sensitive breast cancer cells and cytolytic gammadelta-T cells. As apoptosis-resistant human gammadelta-T cells can now readily be expanded to large numbers (clinical scale), these findings must be considered in the context of developing adoptive immunotherapy strategies to exploit gammadelta-T cell innate immune responses for the primary or adjuvant treatment of breast cancer.
Collapse
Affiliation(s)
- Ben L Guo
- Bone Marrow Transplantation Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
28
|
Knutson KL, Disis ML. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 2005; 54:721-8. [PMID: 16010587 PMCID: PMC11032889 DOI: 10.1007/s00262-004-0653-2] [Citation(s) in RCA: 492] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 11/11/2004] [Indexed: 10/25/2022]
Abstract
Historically, cancer-directed immune-based therapies have focused on eliciting a cytotoxic T cell (CTL) response, primarily due to the fact that CTL can directly kill tumors. In addition, many putative tumor antigens are intracellular proteins, and CTL respond to peptides presented in the context of MHC class I which are most often derived from intracellular proteins. Recently, increasing importance is being given to the stimulation of a CD4+ T helper cell (Th) response in cancer immunotherapy. Th cells are central to the development of an immune response by activating antigen-specific effector cells and recruiting cells of the innate immune system such as macrophages and mast cells. Two predominant Th cell subtypes exist, Th1 and Th2. Th1 cells, characterized by secretion of IFN-gamma and TNF-alpha, are primarily responsible for activating and regulating the development and persistence of CTL. In addition, Th1 cells activate antigen-presenting cells (APC) and induce limited production of the type of antibodies that can enhance the uptake of infected cells or tumor cells into APC. Th2 cells favor a predominantly humoral response. Particularly important during Th differentiation is the cytokine environment at the site of antigen deposition or in the local lymph node. Th1 commitment relies on the local production of IL-12, and Th2 development is promoted by IL-4 in the absence of IL-12. Specifically modulating the Th1 cell response against a tumor antigen may lead to effective immune-based therapies. Th1 cells are already widely implicated in the tissue-specific destruction that occurs during the pathogenesis of autoimmune diseases, such as diabetes mellitus and multiple sclerosis. Th1 cells directly kill tumor cells via release of cytokines that activate death receptors on the tumor cell surface. We now know that cross-priming of the tumor-specific response by potent APC is a major mechanism of the developing endogenous immune response; therefore, even intracellular proteins can be presented in the context of MHC class II. Indeed, recent studies demonstrate the importance of cross-priming in eliciting CTL. Many vaccine strategies aim to stimulate the Th response specific for a tumor antigen. Early clinical trials have shown that focus on the Th effector arm of the immune system can result in significant levels of both antigen-specific Th cells and CTL, the generation of long lasting immunity, and a Th1 phenotype resulting in the development of epitope spreading.
Collapse
Affiliation(s)
- K L Knutson
- Department of Immunology, Mayo Clinic College of Medicine, 342C Guggenheim Bldg., 200 First St. SW, Rochester, MN 55906, USA.
| | | |
Collapse
|
29
|
Pupa SM, Tagliabue E, Ménard S, Anichini A. HER-2: A biomarker at the crossroads of breast cancer immunotherapy and molecular medicine. J Cell Physiol 2005; 205:10-8. [PMID: 15887236 DOI: 10.1002/jcp.20387] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The oncoprotein encoded by the HER-2 oncogene is a member of the HER family of receptor tyrosine kinases and is actually the first successfully exploited target molecule in new biomolecular therapies of solid tumors. The association of HER-2 overexpression with human tumors, its extracellular accessibility, as well as its involvement in tumor aggressiveness are all factors that make this receptor an appropriate target for tumor-specific therapy. In addition, HER-2 overexpression fosters its immunogenicity, as shown by the frequency of B and T cell-mediated responses against this oncoprotein in cancer patients, and it is being investigated as a promising molecule for either passive and active immunotherapy strategies. This review summarizes a number of immune intervention approaches that target HER-2 in breast cancer.
Collapse
Affiliation(s)
- Serenella M Pupa
- Molecular Targeting Unit, Department of Experimental Oncology, Istituto Nazionale Tumori, Milan, Italy
| | | | | | | |
Collapse
|