1
|
Park D, Lee SJ, Park JW. Aptamer-Based Smart Targeting and Spatial Trigger-Response Drug-Delivery Systems for Anticancer Therapy. Biomedicines 2024; 12:187. [PMID: 38255292 PMCID: PMC10813750 DOI: 10.3390/biomedicines12010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
In recent years, the field of drug delivery has witnessed remarkable progress, driven by the quest for more effective and precise therapeutic interventions. Among the myriad strategies employed, the integration of aptamers as targeting moieties and stimuli-responsive systems has emerged as a promising avenue, particularly in the context of anticancer therapy. This review explores cutting-edge advancements in targeted drug-delivery systems, focusing on the integration of aptamers and stimuli-responsive platforms for enhanced spatial anticancer therapy. In the aptamer-based drug-delivery systems, we delve into the versatile applications of aptamers, examining their conjugation with gold, silica, and carbon materials. The synergistic interplay between aptamers and these materials is discussed, emphasizing their potential in achieving precise and targeted drug delivery. Additionally, we explore stimuli-responsive drug-delivery systems with an emphasis on spatial anticancer therapy. Tumor microenvironment-responsive nanoparticles are elucidated, and their capacity to exploit the dynamic conditions within cancerous tissues for controlled drug release is detailed. External stimuli-responsive strategies, including ultrasound-mediated, photo-responsive, and magnetic-guided drug-delivery systems, are examined for their role in achieving synergistic anticancer effects. This review integrates diverse approaches in the quest for precision medicine, showcasing the potential of aptamers and stimuli-responsive systems to revolutionize drug-delivery strategies for enhanced anticancer therapy.
Collapse
Affiliation(s)
- Dongsik Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Su Jin Lee
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Jee-Woong Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| |
Collapse
|
2
|
Zhang Y, Li Z, Huang Y, Zou B, Xu Y. Amplifying cancer treatment: advances in tumor immunotherapy and nanoparticle-based hyperthermia. Front Immunol 2023; 14:1258786. [PMID: 37869003 PMCID: PMC10587571 DOI: 10.3389/fimmu.2023.1258786] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
In the quest for cancer treatment modalities with greater effectiveness, the combination of tumor immunotherapy and nanoparticle-based hyperthermia has emerged as a promising frontier. The present article provides a comprehensive review of recent advances and cutting-edge research in this burgeoning field and examines how these two treatment strategies can be effectively integrated. Tumor immunotherapy, which harnesses the immune system to recognize and attack cancer cells, has shown considerable promise. Concurrently, nanoparticle-based hyperthermia, which utilizes nanotechnology to promote selective cell death by raising the temperature of tumor cells, has emerged as an innovative therapeutic approach. While both strategies have individually shown potential, combination of the two modalities may amplify anti-tumor responses, with improved outcomes and reduced side effects. Key studies illustrating the synergistic effects of these two approaches are highlighted, and current challenges and future prospects in the field are discussed. As we stand on the precipice of a new era in cancer treatment, this review underscores the importance of continued research and collaboration in bringing these innovative treatments from the bench to the bedside.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Li
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu, China
| | - Bingwen Zou
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Xu
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Worku D, Hussen J, De Matteis G, Schusser B, Alhussien MN. Candidate genes associated with heat stress and breeding strategies to relieve its effects in dairy cattle: a deeper insight into the genetic architecture and immune response to heat stress. Front Vet Sci 2023; 10:1151241. [PMID: 37771947 PMCID: PMC10527375 DOI: 10.3389/fvets.2023.1151241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
The need for food products of animal origin is increasing worldwide. Satisfying these needs in a way that has minimal impact on the environment requires cutting-edge technologies and techniques to enhance the genetic quality of cattle. Heat stress (HS), in particular, is affecting dairy cattle with increasing frequency and severity. As future climatic challenges become more evident, identifying dairy cows that are more tolerant to HS will be important for breeding dairy herds that are better adapted to future environmental conditions and for supporting the sustainability of dairy farming. While research into the genetics of HS in the context of the effect of global warming on dairy cattle is gaining momentum, the specific genomic regions involved in heat tolerance are still not well documented. Advances in omics information, QTL mapping, transcriptome profiling and genome-wide association studies (GWAS) have identified genomic regions and variants associated with tolerance to HS. Such studies could provide deeper insights into the genetic basis for response to HS and make an important contribution to future breeding for heat tolerance, which will help to offset the adverse effects of HS in dairy cattle. Overall, there is a great interest in identifying candidate genes and the proportion of genetic variation associated with heat tolerance in dairy cattle, and this area of research is currently very active worldwide. This review provides comprehensive information pertaining to some of the notable recent studies on the genetic architecture of HS in dairy cattle, with particular emphasis on the identified candidate genes associated with heat tolerance in dairy cattle. Since effective breeding programs require optimal knowledge of the impaired immunity and associated health complications caused by HS, the underlying mechanisms by which HS modulates the immune response and renders animals susceptible to various health disorders are explained. In addition, future breeding strategies to relieve HS in dairy cattle and improve their welfare while maintaining milk production are discussed.
Collapse
Affiliation(s)
- Destaw Worku
- Department of Animal Science, College of Agriculture, Food and Climate Sciences, Injibara University, Injibara, Ethiopia
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Giovanna De Matteis
- Council for Agricultural Research and Economics, CREA Research Centre for Animal Production and Aquaculture, Monterotondo, Rome, Italy
| | - Benjamin Schusser
- Reproductive Biotechnology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mohanned Naif Alhussien
- Reproductive Biotechnology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
4
|
Li Z, Deng J, Sun J, Ma Y. Hyperthermia Targeting the Tumor Microenvironment Facilitates Immune Checkpoint Inhibitors. Front Immunol 2020; 11:595207. [PMID: 33240283 PMCID: PMC7680736 DOI: 10.3389/fimmu.2020.595207] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have ushered in a new era of cancer therapy; however, ICIs are only effective in selective patients. The efficacy of ICIs is closely related to the tumor microenvironment. Fever for a long time was thought to directly regulate the immune response, and artificial “fever” from hyperthermia modulates the tumor immune microenvironment by providing danger signals with heat shock proteins (HSPs) as well as subsequent activation of immune systems. Encouraging results have been achieved in preclinical studies focused on potential synergetic effects by combining hyperthermia with ICIs. In this review, we summarized a cluster of immune-related factors that not only make hyperthermia a treatment capable of defending against cancer but also make hyperthermia a reliable treatment that creates a type I-like tumor microenvironment (overexpression of PD-L1 and enrichment of tumor infiltrating lymphocytes) in complementary for the enhancement of the ICIs. Then we reviewed recent preclinical data of the combination regimens involving hyperthermia and ICIs that demonstrated the combined efficacy and illustrated possible approaches to further boost the effectiveness of this combination.
Collapse
Affiliation(s)
- Zihui Li
- Oncology Department, The Third People's Hospital of Hubei Province, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Jie Deng
- Oncology Department, The Third People's Hospital of Hubei Province, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Jianhai Sun
- Oncology Department, The Third People's Hospital of Hubei Province, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Yanling Ma
- Oncology Department, The Third People's Hospital of Hubei Province, Affiliated Hospital of Jianghan University, Wuhan, China
| |
Collapse
|
5
|
MR Thermometry Data Correlate with Pathological Response for Soft Tissue Sarcoma of the Lower Extremity in a Single Center Analysis of Prospectively Registered Patients. Cancers (Basel) 2020; 12:cancers12040959. [PMID: 32295076 PMCID: PMC7226612 DOI: 10.3390/cancers12040959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background: There is a strong biologic rationale for using locoregional hyperthermia in soft tissue sarcoma and a randomized trial reported significant improvements with hyperthermia. The aim of this study was to describe the opportunities of magnetic resonance (MR)-based thermometry in a cohort of soft tissue sarcoma patients undergoing combined radiotherapy and locoregional hyperthermia. Patients and Methods: For eleven evaluable patients, tumor volume (VTu) and a separate volume for temperature analysis with reliable temperature distribution (Vtherm) were contoured for every hyperthermia treatment (103 therapies). Temperature data were recorded for all tumors and were correlated with clinical features and pathologic response data. Results: Of 48 patients with high-risk soft tissue sarcomas treated with radio(chemo)therapy and locoregional hyperthermia, MR thermometry was possible in 11 (23%) patients. For all patients, the temperature superseded by 90% of VTu (T90(VTu)) and T90 (Vtherm) were in the range of 37–43 °C and 40–45 °C, respectively. Larger tumors tended to reach higher temperatures. For tumors showing a pathologic response in the resection specimen after preoperative treatment, temperature (T90 (Vtherm)) was significantly higher than in tumors without pathologic response. Conclusion: Lower extremity sarcomas undergoing preoperative treatment with locoregional hyperthermia are especially suitable for MR thermometry. MR thermometry is a promising non-invasive way for temperature measurement during locoregional hyperthermia, showing a positive dose-response relationship.
Collapse
|
6
|
Cesna V, Sukovas A, Jasukaitiene A, Naginiene R, Barauskas G, Dambrauskas Z, Paskauskas S, Gulbinas A. Narrow line between benefit and harm: Additivity of hyperthermia to cisplatin cytotoxicity in different gastrointestinal cancer cells. World J Gastroenterol 2018; 24:1072-1083. [PMID: 29563752 PMCID: PMC5850127 DOI: 10.3748/wjg.v24.i10.1072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/02/2018] [Accepted: 01/15/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the response to hyperthermia and chemotherapy, analyzing apoptosis, cytotoxicity, and cisplatin concentration in different digestive system cancer cells.
METHODS AGS (gastric cancer cell line), Caco-2 (colon cancer cell line) and T3M4 (pancreatic cancer cell line) were treated by cisplatin and different temperature setting (37 °C to 45 °C) either in isolation, or in combination. Treatment lasted for one hour. 48 h after the treatment viability was evaluated by MTT, cell apoptosis by Annexin V-PE and 7ADD flow cytometry. Intracellular cisplatin concentration was measured immediately after the treatment, using mass spectrometry. Isobologram analysis was performed to evaluate the mathematical combined effect of temperature and cisplatin.
RESULTS AGS cells were the most sensitive to isolated application of hyperthermia. Hyperthermia, in addition to cisplatin treatment, did not provoke a synergistic effect at intervals from 37 °C to 41 °C in neither cancer cell line. However, a temperature of 43 °C enhanced cisplatin cytotoxicity for Caco-2 cells. Moreover, isobologram analysis revealed mathematical antagonistic effects of cisplatin and temperature combined treatment in AGS cells; variations between synergistic, additive, and antagonistic effects in Caco-2 cells; and additive and antagonistic effects in T3M4 cells. Combined treatment enhanced initiation of cell apoptosis in AGS, Caco-2, and T3M4 cells by 61%, 20%, and 19% respectively. The increase of intracellular cisplatin concentration was observed at 43 °C by 30%, 20%, and 18% in AGS, Caco-2, and T3M4 cells, respectively.
CONCLUSION In addition to cisplatin, hyperthermia up to 43 °C does not affect the viability of cancer cells in a synergistic manner.
Collapse
Affiliation(s)
- Vaidotas Cesna
- Department of Surgery, Lithuanian University of Health Sciences, Kaunas LT-50161, Lithuania
| | - Arturas Sukovas
- Department of Obstetrics and Gynecology, Lithuanian University of Health Sciences, Kaunas LT-50161, Lithuania
| | - Aldona Jasukaitiene
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas LT-50161, Lithuania
| | - Rima Naginiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas LT-50161, Lithuania
| | - Giedrius Barauskas
- Department of Surgery, Lithuanian University of Health Sciences, Kaunas LT-50161, Lithuania
| | - Zilvinas Dambrauskas
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas LT-50161, Lithuania
| | - Saulius Paskauskas
- Department of Obstetrics and Gynecology, Lithuanian University of Health Sciences, Kaunas LT-50161, Lithuania
| | - Antanas Gulbinas
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas LT-50161, Lithuania
| |
Collapse
|
7
|
Preventive and promotive effects of habitual hot spa-bathing on the elderly in Japan. Sci Rep 2018; 8:133. [PMID: 29317745 PMCID: PMC5760572 DOI: 10.1038/s41598-017-18488-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022] Open
Abstract
Although body-warming with hot spa-bathing has been proposed to exert medical therapeutic effects on certain diseases, whether body-warming has preventive and promotive effects remains unknown. To clarify this issue, an epidemiological questionnaire study regarding personal hot spa-bathing habits and disease history was carried out in Japan, where individuals engage in daily warm water bathing. Questionnaires regarding hot spa-bathing habits and disease history were randomly sent to 20,000 residents aged ≥65 years living in Beppu, a city in Japan that has the highest concentration of hot spa sources in the world. The results showed that habitual hot spa-bathing exerts preventive or promotive effects on the occurrence of certain diseases, such as hypertension (preventive) and collagen disease (promotive) in women, and cardiovascular diseases (preventive) and colon cancer survival (promotive) in men. These findings suggest that habitual body warming is an effective and economical method with beneficial preventive and promotive effects on various diseases.
Collapse
|
8
|
Multhoff G, Habl G, Combs SE. Rationale of hyperthermia for radio(chemo)therapy and immune responses in patients with bladder cancer: Biological concepts, clinical data, interdisciplinary treatment decisions and biological tumour imaging. Int J Hyperthermia 2016; 32:455-63. [PMID: 27050781 DOI: 10.3109/02656736.2016.1152632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bladder cancer, the most common tumour of the urinary tract, ranks fifth among all tumour entities. While local treatment or intravesical instillation of bacillus Calmette-Guerin (BCG) provides a treatment option for non-muscle invasive bladder cancer of low grade, surgery or radio(chemo)therapy (RT) are frequently applied in high grade tumours. It remains a matter of debate whether surgery or RT is superior with respect to clinical outcome and quality of life. Surgical resection of bladder cancer can be limited by acute side effects, whereas, RT, which offers a non-invasive treatment option with organ- and functional conservation, can cause long-term side effects. Bladder toxicity by RT mainly depends on the total irradiation dose, fraction size and tumour volume. Therefore, novel approaches are needed to improve clinical outcome. Local tumour hyperthermia is currently used either as an ablation therapy or in combination with RT to enhance anti-tumour effects. In combination with RT an increase of the temperature in the bladder stimulates the local blood flow and as a result can improve the oxygenation state of the tumour, which in turn enhances radiation-induced DNA damage and drug toxicity. Hyperthermia at high temperatures can also directly kill cells, particularly in tumour areas which are poorly perfused, hypoxic or have a low tissue pH. This review summarises current knowledge relating to the role of hyperthermia in RT to treat bladder cancer, the induction and manifestation of immunological responses induced by hyperthermia, and the utilisation of the stress proteins as tumour-specific targets for tumour detection and monitoring of therapeutic outcome.
Collapse
Affiliation(s)
- Gabriele Multhoff
- a Department of Radiation Oncology , Technische Universität München, Klinikum rechts der Isar , Munich ;,b Department of Innovative Radiation Oncology, Department of Radiation Sciences , Helmholtz Zentrum München , Neuherberg , Germany
| | - Gregor Habl
- a Department of Radiation Oncology , Technische Universität München, Klinikum rechts der Isar , Munich
| | - Stephanie E Combs
- a Department of Radiation Oncology , Technische Universität München, Klinikum rechts der Isar , Munich ;,b Department of Innovative Radiation Oncology, Department of Radiation Sciences , Helmholtz Zentrum München , Neuherberg , Germany
| |
Collapse
|
9
|
D'Onofrio M, Barbi E, Girelli R, Tinazzi Martini P, De Robertis R, Ciaravino V, Salvia R, Butturini G, Frigerio I, Milazzo T, Crosara S, Paiella S, Pederzoli P, Bassi C. Variation of tumoral marker after radiofrequency ablation of pancreatic adenocarcinoma. J Gastrointest Oncol 2016; 7:213-20. [PMID: 27034788 DOI: 10.3978/j.issn.2078-6891.2015.085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND To evaluate the correlation between variations of CA 19.9 blood levels and the entity of necrosis at CT after radiofrequency ablation (RFA) of unresectable pancreatic adenocarcinoma. METHODS In this study, from June 2010 to February 2014, patients with diagnosis of unresectable and not metastatic pancreatic ductal adenocarcinoma, expressing tumor marker CA 19.9, treated with RFA procedure were included. All these patients underwent RFA. CT study was performed 1 week after RFA. The dosage of CA 19.9 levels was performed 1 month after RFA. Features of necrosis at CT, as mean entity, density and necrosis percentages compared to the original lesion, were evaluated and compared by using t-test with CA 19.9 blood levels variations after RFA procedure. RESULTS In this study were included 51 patients with diagnosis of unresectable and not metastatic pancreatic ductal adenocarcinoma, expressing tumor marker CA 19.9, treated with RFA procedure and with CT study and CA 19.9 available for analysis. After the procedure, CA 19.9 blood levels reduced in 24/51 (47%), remained stable in 10/51 (20%) and increased in 17/51 (33%). In patients with CA 19.9 levels reduced, the tumor marker were reduced less than 20% in 4/24 (17%) and more than 20% in 20/24 (83%); instead the tumor marker were reduced less than 30% in 8/24 (33%) and more than 30% in 16/24 (67%). At CT scan necrotic area density difference was not statistically significant. Also there was no statistically significant difference among the mean area, the mean volume and the mean ablation volume in percentage related to the treated tumor among the three different groups of patients divided depending on the CA 19.9 blood levels. But a tendency to a statistically significant difference was found in comparing the mean percentage of ablation volume between two subgroups of patients with a decrease of CA 19.9 levels with less or more than 20% reduction of tumor markers and between two subgroups with less or more than 30% reduction of CA 19.9 levels. CONCLUSIONS RFA of unresectable pancreatic adenocarcinoma induces reduction of CA 19.9 blood levels in about half of the cases.
Collapse
Affiliation(s)
- Mirko D'Onofrio
- 1 Department of Radiology, G.B. Rossi Hospital, University of Verona, Verona, Italy ; 2 Department of Radiology, 3 Department of Surgery, Casa di Cura Dott. Pederzoli, Peschiera del Garda, Verona, Italy ; 4 Department of Surgery, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Emilio Barbi
- 1 Department of Radiology, G.B. Rossi Hospital, University of Verona, Verona, Italy ; 2 Department of Radiology, 3 Department of Surgery, Casa di Cura Dott. Pederzoli, Peschiera del Garda, Verona, Italy ; 4 Department of Surgery, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Roberto Girelli
- 1 Department of Radiology, G.B. Rossi Hospital, University of Verona, Verona, Italy ; 2 Department of Radiology, 3 Department of Surgery, Casa di Cura Dott. Pederzoli, Peschiera del Garda, Verona, Italy ; 4 Department of Surgery, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Paolo Tinazzi Martini
- 1 Department of Radiology, G.B. Rossi Hospital, University of Verona, Verona, Italy ; 2 Department of Radiology, 3 Department of Surgery, Casa di Cura Dott. Pederzoli, Peschiera del Garda, Verona, Italy ; 4 Department of Surgery, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Riccardo De Robertis
- 1 Department of Radiology, G.B. Rossi Hospital, University of Verona, Verona, Italy ; 2 Department of Radiology, 3 Department of Surgery, Casa di Cura Dott. Pederzoli, Peschiera del Garda, Verona, Italy ; 4 Department of Surgery, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Valentina Ciaravino
- 1 Department of Radiology, G.B. Rossi Hospital, University of Verona, Verona, Italy ; 2 Department of Radiology, 3 Department of Surgery, Casa di Cura Dott. Pederzoli, Peschiera del Garda, Verona, Italy ; 4 Department of Surgery, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Roberto Salvia
- 1 Department of Radiology, G.B. Rossi Hospital, University of Verona, Verona, Italy ; 2 Department of Radiology, 3 Department of Surgery, Casa di Cura Dott. Pederzoli, Peschiera del Garda, Verona, Italy ; 4 Department of Surgery, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Giovanni Butturini
- 1 Department of Radiology, G.B. Rossi Hospital, University of Verona, Verona, Italy ; 2 Department of Radiology, 3 Department of Surgery, Casa di Cura Dott. Pederzoli, Peschiera del Garda, Verona, Italy ; 4 Department of Surgery, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Isabella Frigerio
- 1 Department of Radiology, G.B. Rossi Hospital, University of Verona, Verona, Italy ; 2 Department of Radiology, 3 Department of Surgery, Casa di Cura Dott. Pederzoli, Peschiera del Garda, Verona, Italy ; 4 Department of Surgery, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Teresa Milazzo
- 1 Department of Radiology, G.B. Rossi Hospital, University of Verona, Verona, Italy ; 2 Department of Radiology, 3 Department of Surgery, Casa di Cura Dott. Pederzoli, Peschiera del Garda, Verona, Italy ; 4 Department of Surgery, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Stefano Crosara
- 1 Department of Radiology, G.B. Rossi Hospital, University of Verona, Verona, Italy ; 2 Department of Radiology, 3 Department of Surgery, Casa di Cura Dott. Pederzoli, Peschiera del Garda, Verona, Italy ; 4 Department of Surgery, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Salvatore Paiella
- 1 Department of Radiology, G.B. Rossi Hospital, University of Verona, Verona, Italy ; 2 Department of Radiology, 3 Department of Surgery, Casa di Cura Dott. Pederzoli, Peschiera del Garda, Verona, Italy ; 4 Department of Surgery, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Paolo Pederzoli
- 1 Department of Radiology, G.B. Rossi Hospital, University of Verona, Verona, Italy ; 2 Department of Radiology, 3 Department of Surgery, Casa di Cura Dott. Pederzoli, Peschiera del Garda, Verona, Italy ; 4 Department of Surgery, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Claudio Bassi
- 1 Department of Radiology, G.B. Rossi Hospital, University of Verona, Verona, Italy ; 2 Department of Radiology, 3 Department of Surgery, Casa di Cura Dott. Pederzoli, Peschiera del Garda, Verona, Italy ; 4 Department of Surgery, G.B. Rossi Hospital, University of Verona, Verona, Italy
| |
Collapse
|
10
|
Yang R, Tang Q, Miao F, An Y, Li M, Han Y, Wang X, Wang J, Liu P, Chen R. Inhibition of heat-shock protein 90 sensitizes liver cancer stem-like cells to magnetic hyperthermia and enhances anti-tumor effect on hepatocellular carcinoma-burdened nude mice. Int J Nanomedicine 2015; 10:7345-58. [PMID: 26677324 PMCID: PMC4677660 DOI: 10.2147/ijn.s93758] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE To explore the thermoresistance and expression of heat-shock protein 90 (HSP90) in magnetic hyperthermia-treated human liver cancer stem-like cells (LCSCs) and the effects of a heat-shock protein HSP90 inhibitor 17-allylamino-17-demethoxgeldanamycin (17-AAG) on hepatocellular carcinoma-burdened nude mice. METHODS CD90(+) LCSCs were isolated by magnetic-activated cell sorting from BEL-7404. Spheroid formation, proliferation, differentiation, drug resistance, and tumor formation assays were performed to identify stem cell characteristics. CD90-targeted thermosensitive magnetoliposomes (TMs)-encapsulated 17-AAG (CD90@17-AAG/TMs) was prepared by reverse-phase evaporation and its characteristics were studied. Heat tolerance in CD90(+) LCSCs and the effect of CD90@17-AAG/TMs-mediated heat sensitivity were examined in vitro and in vivo. RESULTS CD90(+) LCSCs showed significant stem cell-like properties. The 17-AAG/TMs were successfully prepared and were spherical in shape with an average size of 128.9±7.7 nm. When exposed to magnetic hyperthermia, HSP90 was up-regulated in CD90(+) LCSCs. CD90@17-AAG/TMs inhibited the activity of HSP90 and increased the sensitivity of CD90(+) LCSCs to magnetic hyperthermia. CONCLUSION The inhibition of HSP90 could sensitize CD90(+) LCSCs to magnetic hyperthermia and enhance its anti-tumor effects in vitro and in vivo.
Collapse
Affiliation(s)
- Rui Yang
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Qiusha Tang
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Fengqin Miao
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Yanli An
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Nanjing, People’s Republic of China
| | - Mengfei Li
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Yong Han
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Xihui Wang
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Juan Wang
- Department of Infectious Disease, The Third People’s Hospital of Nantong, Nangtong, People’s Republic of China
| | - Peidang Liu
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Rong Chen
- Department of Oncology, Zhongda Hospital, Nangjing, Jiangsu Province, People’s Republic of China
| |
Collapse
|
11
|
Use of warm Ringer’s lactate solution in the management of locally advanced giant cell tumor of bone. Int J Clin Oncol 2015; 21:177-85. [DOI: 10.1007/s10147-015-0856-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
|
12
|
Frey B, Weiss EM, Rubner Y, Wunderlich R, Ott OJ, Sauer R, Fietkau R, Gaipl US. Old and new facts about hyperthermia-induced modulations of the immune system. Int J Hyperthermia 2012; 28:528-42. [PMID: 22690925 DOI: 10.3109/02656736.2012.677933] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Hyperthermia (HT) is a potent sensitiser for radiotherapy (RT) and chemotherapy (CT) and has been proven to modulate directly or indirectly cells of the innate and adaptive immune system. We will focus in this article on how anti-tumour immunity can be induced by HT. In contrast to some in vitro assays, in vivo examinations showed that natural killer cells and phagocytes like granulocytes are directly activated against the tumour by HT. Since heat also activates dendritic cells (DCs), HT should be combined with further death stimuli (RT, CT or immune therapy) to allocate tumour antigen, derived from, for example, necrotic tumour cells, for uptake by DCs. We will outline that induction of immunogenic tumour cells and direct tumour cell killing by HT in combination with other therapies contributes to immune activation against the tumour. Studies will be presented showing that non-beneficial effects of HT on immune cells are mostly timely restricted. A special focus is set on immune activation mediated by extracellular present heat shock proteins (HSPs) carrying tumour antigens and further danger signals released by dying tumour cells. Local HT treatment in addition to further stress stimuli exerts abscopal effects and might be considered as in situ tumour vaccination. An increased natural killer (NK) cell activity, lymphocyte infiltration and HSP-mediated induction of immunogenic tumour cells have been observed in patients. Treatments with the addition of HT therefore can be considered as a personalised cancer treatment approach by specifically activating the immune system against the individual unique tumour.
Collapse
Affiliation(s)
- Benjamin Frey
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Basel MT, Balivada S, Wang H, Shrestha TB, Seo GM, Pyle M, Abayaweera G, Dani R, Koper OB, Tamura M, Chikan V, Bossmann SH, Troyer DL. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. Int J Nanomedicine 2012; 7:297-306. [PMID: 22287840 PMCID: PMC3265998 DOI: 10.2147/ijn.s28344] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Using magnetic nanoparticles to absorb alternating magnetic field energy as a method of generating localized hyperthermia has been shown to be a potential cancer treatment. This report demonstrates a system that uses tumor homing cells to actively carry iron/iron oxide nanoparticles into tumor tissue for alternating magnetic field treatment. Paramagnetic iron/ iron oxide nanoparticles were synthesized and loaded into RAW264.7 cells (mouse monocyte/ macrophage-like cells), which have been shown to be tumor homing cells. A murine model of disseminated peritoneal pancreatic cancer was then generated by intraperitoneal injection of Pan02 cells. After tumor development, monocyte/macrophage-like cells loaded with iron/ iron oxide nanoparticles were injected intraperitoneally and allowed to migrate into the tumor. Three days after injection, mice were exposed to an alternating magnetic field for 20 minutes to cause the cell-delivered nanoparticles to generate heat. This treatment regimen was repeated three times. A survival study demonstrated that this system can significantly increase survival in a murine pancreatic cancer model, with an average post-tumor insertion life expectancy increase of 31%. This system has the potential to become a useful method for specifically and actively delivering nanoparticles for local hyperthermia treatment of cancer.
Collapse
Affiliation(s)
- Matthew T Basel
- Department of Anatomy and Physiology, College of Veterinary Medicine, Manhattan, KS, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Basel MT, Balivada S, Wang H, Shrestha TB, Seo GM, Pyle M, Abayaweera G, Dani R, Koper OB, Tamura M, Chikan V, Bossmann SH, Troyer DL. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. Int J Nanomedicine 2012. [PMID: 22287840 DOI: 10.2147/ijn.s28344.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Using magnetic nanoparticles to absorb alternating magnetic field energy as a method of generating localized hyperthermia has been shown to be a potential cancer treatment. This report demonstrates a system that uses tumor homing cells to actively carry iron/iron oxide nanoparticles into tumor tissue for alternating magnetic field treatment. Paramagnetic iron/ iron oxide nanoparticles were synthesized and loaded into RAW264.7 cells (mouse monocyte/ macrophage-like cells), which have been shown to be tumor homing cells. A murine model of disseminated peritoneal pancreatic cancer was then generated by intraperitoneal injection of Pan02 cells. After tumor development, monocyte/macrophage-like cells loaded with iron/ iron oxide nanoparticles were injected intraperitoneally and allowed to migrate into the tumor. Three days after injection, mice were exposed to an alternating magnetic field for 20 minutes to cause the cell-delivered nanoparticles to generate heat. This treatment regimen was repeated three times. A survival study demonstrated that this system can significantly increase survival in a murine pancreatic cancer model, with an average post-tumor insertion life expectancy increase of 31%. This system has the potential to become a useful method for specifically and actively delivering nanoparticles for local hyperthermia treatment of cancer.
Collapse
Affiliation(s)
- Matthew T Basel
- Department of Anatomy and Physiology, College of Veterinary Medicine, Manhattan, KS, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
He Y, Ge H, Li S. Haematoporphyrin based photodynamic therapy combined with hyperthermia provided effective therapeutic vaccine effect against colon cancer growth in mice. Int J Med Sci 2012; 9:627-33. [PMID: 23055814 PMCID: PMC3465846 DOI: 10.7150/ijms.4865] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/05/2012] [Indexed: 01/01/2023] Open
Abstract
Photodynamic therapy (PDT) has become an attractive option used in tumor treatment via its direct tumoricidal activities or its immune-boosting activities. On the other hand, heat shock protein 70 has been found to be largely associated with the establishment of anti-tumor activities offered by hyperthermia treated tumor cells. In the present study, we found that injection of tumor-bearing mice with colon cancer cell line CT-26 treated with haematoporphyrin based photodynamic therapy (hematoporphyrin monomethyl ether based PDT, HMME-PDT) together with hyperthermia demonstrated the most effective therapeutic effects against tumor growth, followed by cells treated by hyperthermia alone. CT-26 cells treated only with HMME-PDT failed to provide any therapeutic effects, although significant cell death was induced by HMME-PDT. Compared to hyperthermia treatment, HMME-PDT induced more efficient surface localization of HSP70 on CT-26 cells which correlated with efficient activation of cytolytic CD8 T cells and with effective anti-tumor responses. Thus, our study demonstrated that the surface expression of HSP70 may play a more important role than the total expression or release of this molecule in the activation of immune responses. And our study offered a novel modified PDT approach to the treatment of tumor cells intrinsically low on HSP70 expression.
Collapse
Affiliation(s)
- Yaoming He
- Department of General Surgery, Shanghai East Hospital of Tongji University, No. 150 Jimo Road, Shanghai 200120, China
| | | | | |
Collapse
|
16
|
Zhong H, Yang Y, Ma S, Xiu F, Cai Z, Zhao H, Du L. Induction of a tumour-specific CTL response by exosomes isolated from heat-treated malignant ascites of gastric cancer patients. Int J Hyperthermia 2011; 27:604-11. [PMID: 21846196 DOI: 10.3109/02656736.2011.564598] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Tumour cell-derived exosomes may represent a novel type of cancer vaccine. However, the immunogenicity of exosomes derived from tumour cells has been shown to be poor. Therefore, in this study, exosome immunogenicity following heat treatment of exosomes from malignant ascites obtained from gastric cancer patients was evaluated. MATERIALS AND METHODS Tumour-derived exosomes were isolated from heat-treated and untreated malignant ascites of gastric cancer patients using serial centrifugation and sucrose gradient ultracentrifugation. Next, in vitro experiments were performed to investigate the influence of heat treatment on exosome immunogenicity. RESULTS Exosomes from heat-treated malignant ascites of gastric cancer patients (HS exosomes) were found to contain higher concentrations of heat shock proteins, Hsp70 and Hsp60, than exosomes derived from untreated malignant ascites obtained from gastric cancer patients. Additional in vitro studies suggest that exosomes derived from heat-treated malignant ascites are able to promote dendritic cell (DC) maturation and induce a tumour-specific cytotoxic T lymphocyte (CTL) response. CONCLUSIONS Overall, these results demonstrate that exposure to heat stress can improve the immunogenicity of exosomes obtained from malignant ascites of gastric cancer patients.
Collapse
Affiliation(s)
- Haijun Zhong
- Department of Chemotherapy, Zhejiang Cancer Hospital, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Li X, Ferrel GL, Guerra MC, Hode T, Lunn JA, Adalsteinsson O, Nordquist RE, Liu H, Chen WR. Preliminary safety and efficacy results of laser immunotherapy for the treatment of metastatic breast cancer patients. Photochem Photobiol Sci 2011; 10:817-21. [PMID: 21373701 DOI: 10.1039/c0pp00306a] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We report our preliminary results of a pilot clinical trial of late-stage breast cancer patients treated by laser immunotherapy (LIT), a local intervention using an 805 nm laser for non-invasive irradiation, indocyanine green for selective thermal effect, and immunoadjuvant (glycated chitosan) for immunological stimulation. Ten breast cancer patients were enrolled in this study; all patients were considered to be out of other available treatment options. Toxicity was individually evaluated through physical exams and laboratory tests. Adverse reactions only occurred in the area of treatment due to photothermal injury and local administration of immunoadjuvant. No grade 3 or 4 side effects were observed. Treatment efficacy of LIT was also evaluated by physical examination and tomography. In 8 patients available for evaluation, the objective response rate was 62.5% and the clinical beneficial response rate was 75%. While the study is still ongoing, the initial outcomes of this clinical trial show that LIT is well tolerated and is promising in the treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Xiaosong Li
- Department of Oncology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rowe RW, Strebel FR, Proett JM, Deng W, Chan D, He G, Siddik Z, Bull JMC. Fever-range whole body thermotherapy combined with oxaliplatin: a curative regimen in a pre-clinical breast cancer model. Int J Hyperthermia 2011; 26:565-76. [PMID: 20707651 DOI: 10.3109/02656736.2010.483635] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Studies were conducted to test whether fever-range whole body thermal therapy would boost the efficacy of oxaliplatin chemotherapy without substantial toxicity. MATERIALS AND METHODS The effect of mild heat (40 degrees C) on oxaliplatin cytotoxicity, cellular uptake, and platinum-DNA adduct formation was studied in vitro using the MTLn3 tumour cell line. In vivo oxaliplatin was administered at various doses and times before, during and after fever-range thermal therapy (6 h at 40 degrees C) to rats bearing an MTLn3 mammary adenocarcinoma. Tumour growth, survival, and toxicity were measured to determine treatment outcome. RESULTS Heating halved the oxaliplatin IC-50 dose for MTLn3 cells. Cellular uptake of platinum and platinum adducts increased by 34% and 36%, respectively, with heat. In vivo, 50% of all rats given 10 mg/kg oxaliplatin 24 h before thermal therapy were completely immunologically cured, while a further 11% regressed their primary tumour but ultimately succumbed to metastases, and 17% experienced a limited response with increased survival. The curative response occurred only in a narrow range of doses, with most cures at 10 mg/kg. Thermochemotherapy-treated, but uncured, animals had delayed incidence and slowed growth of metastases. Anti-tumour efficacy was greatest, and toxicity was least, when oxaliplatin was administered 12 or 24 h before fever-range whole body thermal therapy. CONCLUSIONS When properly dosed and scheduled, oxaliplatin thermochemotherapy achieved permanent eradication of all primary and metastatic tumours in 50% of animals, seemingly through an immune response. Successful clinical translation of this protocol would yield hitherto unseen cures and substantial improvement in quality of life.
Collapse
Affiliation(s)
- R Wanda Rowe
- University of Texas Medical School, Division of Oncology, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Muthana M, Multhoff G, Pockley AG. Tumour infiltrating host cells and their significance for hyperthermia. Int J Hyperthermia 2010; 26:247-55. [PMID: 20388022 DOI: 10.3109/02656730903413375] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Much information can be gained by investigating the consequences of hyperthermia on individual cell populations in vitro, however the precise effects of such a therapeutic modality in vivo depend on the tumour microenvironment and the cellular composition therein. Although the direct cytotoxic effects of hyperthermia on tumour tissue can lead to an immediate reduction in tumour volume, long-term benefits to local and distal tumour recurrence will very much depend on the induction of immunity and the capacity of effector cells to traffic to tumours and elicit their cytotoxic functions. The immunological sequelae to hyperthermia are even more important in those instances when large tumour volumes preclude the delivery of appropriate thermal damage. The development of protective anti-tumour immunity requires a plethora of interactions and responses, the vast majority of which can be influenced by temperatures that are consistent with fever-like temperatures (39 degrees -40 degrees C), as well as hyperthermia treatment (<41 degrees C). This article reviews current knowledge relating to the effects of hyperthermia treatment on aspects of the induction and manifestation of immunological responses that are most pertinent to the development and maintenance of protective anti-tumour immunity.
Collapse
Affiliation(s)
- Munitta Muthana
- Department of Infection and Immunity, The Medical School, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
20
|
Brusa D, Migliore E, Garetto S, Simone M, Matera L. Immunogenicity of 56 degrees C and UVC-treated prostate cancer is associated with release of HSP70 and HMGB1 from necrotic cells. Prostate 2009; 69:1343-52. [PMID: 19496055 DOI: 10.1002/pros.20981] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Prostate hyperthermia and photodynamic therapy can be delivered by a variety of procedures which result in a wide range of temperatures and light energy and cause different kinds of cell death. METHODS We have addressed the immunogenic effect of heating and UVC irradiation on the prostate cancer (PCa) cell line LNCaP, by studying the release of Danger Associated Molecule Pattern (DAMP) molecules HSP70 and HMGB1 and the dendritic cell (DC) antigen-presenting efficiency. RESULTS Intracellular upmodulation and extracellular release of HSP70 were inversely correlated. Mild temperatures (43-47 degrees C) induced an early increase of intracellular HSP70, whereas the highest temperature (56 degrees C) induced its extrusion from the cell. Likewise, UVC caused an immediate migration of HSP70 into the cell medium in the absence of any intracellular modulation. 56 degrees C and UVC also induced a robust release of HMGB1. The release of DAMP molecules was closely associated with post-apoptotic membrane damage, as shown by double Annexin V/propidium iodide staining, whereas beta-tubulin, a structural component of cell membranes, was specifically induced by 56 degrees C heating. Tumor uptake strongly impaired the cytokine-driven maturation of DCs and 56 degrees C heating led to a significant recovery of CD83 and CCR7 DC maturation markers, but did not influence the antigen cross-presentation activity. On the contrary, UVC-treated LNCaP had negligible effects on DC maturation, but increased the cross-priming of tumor specific CTL. CONCLUSIONS These data may be of use in the design of effective non-surgical PCa ablations that combine tumor destruction with long lasting immunity.
Collapse
Affiliation(s)
- Davide Brusa
- Laboratory of Tumor Immunology, Department of Internal Medicine, University of Turin, Turin, Italy
| | | | | | | | | |
Collapse
|
21
|
Abstract
OBJECTIVE To examine cellular and immunologic mechanisms by which intraoperative hypothermia affects surgical patients. SUMMARY BACKGROUND DATA Avoidance of perioperative hypothermia has recently become a focus of attention as an important quality performance measure, aimed at optimizing the care of surgical patients. Anesthetized surgical patients are particularly at risk for hypothermia, which has been directly linked to the development of sequelae, such as coagulopathy, infection, morbid myocardial events, and death after surgery. However, many of the underlying immunologic mechanisms remain unclear. METHODS Venous blood samples from healthy volunteers were exposed for up to 4 hours to various temperatures following the addition of a 1 ng/mL lipopolysaccharide challenge. Innate immune function, assessed by the ability of monocytes to present antigen and coordinate cytokine release, was determined by qualitative and quantitative measurements of HLA-DR surface expression 2 hours following incubation, and proinflammatory tumor necrosis factor-alpha (TNF-alpha) and anti-inflammatory (IL-10) cytokine release in the first 4 hours. RESULTS Monocyte incubation at hypothermic temperatures (34 degrees C) reduced HLA-DR surface expression, delayed TNF-alpha clearance, and increased IL-10 release. Conversely, hyperthermia (40 degrees C) increased monocyte antigen presentation and resulted in rapid decay of TNF-alpha. However, IL-10 release was also increased. Normothermia (37 degrees C) attenuated IL-10 release following the initial proinflammatory surge. CONCLUSION Hypothermia exerts multiple effects at the cellular level, which impair innate immune function, and are associated with increased septic complications and mortality. These findings provide a physiological basis for perioperative temperature monitoring, which is a valid surgical performance measure that can be used to reduce surgical complications associated with avoidable hypothermia.
Collapse
|
22
|
Collini P, Sorensen PH, Patel S, Blay JY, Issels RD, Maki RG, Eriksson M, del Muro XG. Sarcomas With Spindle Cell Morphology. Semin Oncol 2009; 36:324-37. [DOI: 10.1053/j.seminoncol.2009.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Borkamo ED, Dahl O, Bruland O, Fluge Ø. Kinetics study on markers of the immune system by gene expression profiling of anin vivoheated tumor. Int J Hyperthermia 2009; 25:41-6. [DOI: 10.1080/02656730802397955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
24
|
Dayanc BE, Beachy SH, Ostberg JR, Repasky EA. Dissecting the role of hyperthermia in natural killer cell mediated anti-tumor responses. Int J Hyperthermia 2009; 24:41-56. [DOI: 10.1080/02656730701858297] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
25
|
Bull JMC, Strebel FR, Jenkins GN, Deng W, Rowe RW. The importance of schedule in whole body thermochemotherapy. Int J Hyperthermia 2009; 24:171-81. [DOI: 10.1080/02656730701883212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- J. M. C. Bull
- The Division of Oncology, The Department of Internal Medicine, The University of Texas Medical School at Houston, TexasUSA
| | - F. R. Strebel
- The Division of Oncology, The Department of Internal Medicine, The University of Texas Medical School at Houston, TexasUSA
| | - G. N. Jenkins
- The Division of Oncology, The Department of Internal Medicine, The University of Texas Medical School at Houston, TexasUSA
| | - W. Deng
- The Division of Oncology, The Department of Internal Medicine, The University of Texas Medical School at Houston, TexasUSA
| | - R. W. Rowe
- The Division of Oncology, The Department of Internal Medicine, The University of Texas Medical School at Houston, TexasUSA
| |
Collapse
|
26
|
Borkamo ED, Dahl O, Bruland O, Fluge Ø. Global gene expression analyses reveal changes in biological processes after hyperthermia in a rat glioma model. Int J Hyperthermia 2009; 24:425-41. [DOI: 10.1080/02656730802081997] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
27
|
Mesothelioma cells escape heat stress by upregulating Hsp40/Hsp70 expression via mitogen-activated protein kinases. J Biomed Biotechnol 2009; 2009:451084. [PMID: 19551156 PMCID: PMC2699487 DOI: 10.1155/2009/451084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 04/06/2009] [Indexed: 01/04/2023] Open
Abstract
Therapy with hyperthermal chemotherapy in pleural diffuse malignant mesothelioma had limited benefits for patients. Here we investigated the effect of heat stress on heat shock proteins (HSP), which rescue tumour cells from apoptosis. In human mesothelioma and mesothelial cells heat stress (39-42 degrees C) induced the phosphorylation of two mitogen activated kinases (MAPK) Erk1/2 and p38, and increased Hsp40, and Hsp70 expression. Mesothelioma cells expressed more Hsp40 and were less sensitive to heat stress compared to mesothelial cells. Inhibition of Erk1/2 MAPK by PD98059 or by Erk1 siRNA down-regulated heat stress-induced Hsp40 and Hsp70 expression and reduced mesothelioma cell survival. Inhibition of p38MAPK by SB203580 or siRNA reduced Hsp40, but not Hsp70, expression and also increased mesothelioma cell death. Thus hyperthermia combined with suppression of p38 MAPK or Hsp40 may represent a novel approach to improve mesothelioma therapy.
Collapse
|
28
|
Chen T, Guo J, Han C, Yang M, Cao X. Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway. THE JOURNAL OF IMMUNOLOGY 2009; 182:1449-59. [PMID: 19155492 DOI: 10.4049/jimmunol.182.3.1449] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Extracellular heat shock proteins (HSP) can activate dendritic cells (DC) and monocytes/macrophages, and HSP derived from tumor cells have been regarded as potent adjuvant facilitating presentation of tumor Ags and induction of antitumor immunity. However, the roles and the underlying mechanisms of releasable HSP in the induction of antitumor immunity have not been fully elucidated. In this study, we report that heat stress can induce the release of various HSP from tumor cells, which, in turn, activate tumor cells to produce chemokines for chemoattraction of DC and T cells via TLR4 signaling pathway. In vivo, we find that the infiltration and function of DC and T cells within tumor after local hyperthermia are increased significantly. We also provide evidence that HSP70 proteins released by tumor cells and TLR4 expressed by tumor cells/DC are essential for the chemoattraction of DC/T cells and for the subsequent induction of tumor-specific antitumor immunity. Therefore, our study suggests that heat stress-induced releasable HSP70 proteins from tumor cells play important roles in the initiation of antitumor immunity by inducing tumor cell production of chemokines and by activating the chemoattracted DC via TLR4 pathway.
Collapse
Affiliation(s)
- Taoyong Chen
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
29
|
Horváth I, Multhoff G, Sonnleitner A, Vígh L. Membrane-associated stress proteins: more than simply chaperones. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1653-64. [PMID: 18371297 DOI: 10.1016/j.bbamem.2008.02.012] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 02/25/2008] [Accepted: 02/25/2008] [Indexed: 01/13/2023]
Abstract
The protein- and/or lipid-mediated association of chaperone proteins to membranes is a widespread phenomenon and implicated in a number of physiological and pathological events that were earlier partially or completely overlooked. A temporary association of certain HSPs with membranes can re-establish the fluidity and bilayer stability and thereby restore the membrane functionality during stress conditions. The fluidity and microdomain organization of membranes are decisive factors in the perception and transduction of stresses into signals that trigger the activation of specific HS genes. Conversely, the membrane association of HSPs may result in the inactivation of membrane-perturbing signals, thereby switch off the heat shock response. Interactions between certain HSPs and specific lipid microdomains ("rafts") might be a previously unrecognized means for the compartmentalization of HSPs to specific signaling platforms, where key signaling proteins are known to be concentrated. Any modulations of the membranes, especially the raft-lipid composition of the cells can alter the extracellular release and thus the immuno-stimulatory activity of certain HSPs. Reliable techniques, allowing mapping of the composition and dynamics of lipid microdomains and simultaneously the spatio-temporal localization of HSPs in and near the plasma membrane can provide suitable means with which to address fundamental questions, such as how HSPs are transported to and translocated through the plasma membrane. The possession of such information is critical if we are to target the membrane association principles of HSPs for successful drug development in most various diseases.
Collapse
Affiliation(s)
- Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, Hungary
| | | | | | | |
Collapse
|
30
|
Lehrnbecher T, Koehl U, Wittekindt B, Bochennek K, Tramsen L, Klingebiel T, Chanock SJ. Changes in host defence induced by malignancies and antineoplastic treatment: implication for immunotherapeutic strategies. Lancet Oncol 2008; 9:269-78. [DOI: 10.1016/s1470-2045(08)70071-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Multhoff G. Heat shock protein 70 (Hsp70): membrane location, export and immunological relevance. Methods 2008; 43:229-37. [PMID: 17920520 DOI: 10.1016/j.ymeth.2007.06.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 06/25/2007] [Indexed: 10/22/2022] Open
Abstract
Stress or heat shock proteins (HSPs) are remarkably conserved in all living organisms. Their expression is induced in response to a variety of physiological and environmental insults. In the cytosol these proteins play an essential role as molecular chaperones by assisting the correct folding of nascent and stress-accumulated misfolded proteins, preventing protein aggregation, transport of proteins, and supporting antigen processing and presentation. Following stress, intracellularly located HSPs fulfill protective functions and thus prevent lethal damage. In contrast, membrane-bound or extracellularly located HSPs act as danger signals and elicit immune responses mediated either by the adaptive or innate immune system. Here, HSPs act as carriers for immunogenic peptides, induce cytokine release or provide recognition sites for natural killer (NK) cells. This article will discuss methods for the detection of membrane-bound and extracellular HSPs and methods for determining their immunological functions.
Collapse
Affiliation(s)
- Gabriele Multhoff
- Department of Radiotherapy and Radiooncology, Technical University Munich, Ismaningerstr. 22, 81675 Munich, Germany.
| |
Collapse
|
32
|
Beachy S, Kisailus A, Repasky E, Subjeck J, Wang X, Kazim A. Engineering secretable forms of chaperones for immune modulation and vaccine development. Methods 2007; 43:184-93. [PMID: 17920514 DOI: 10.1016/j.ymeth.2007.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 06/25/2007] [Indexed: 12/22/2022] Open
|
33
|
|
34
|
Moulin M, Dumontet C, Arrigo AP. Sensitization of chronic lymphocytic leukemia cells to TRAIL-induced apoptosis by hyperthermia. Cancer Lett 2007; 250:117-27. [PMID: 17141951 DOI: 10.1016/j.canlet.2006.10.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 08/31/2006] [Accepted: 10/06/2006] [Indexed: 11/21/2022]
Abstract
We recently reported that, in cultured leukemic T lymphocytes and promyelocytic cells, a mild heat shock treatment (1 h at 42 degrees C) induced a long lasting stimulation of the apoptosis induced by TNF-related apoptosis inducing ligand (TRAIL). On the opposite, no effects were recorded toward normal human T lymphocytes. The apoptogenic efficiency of TRAIL in leukemic lymphocytes is linked to the long lasting increased ability of TRAIL to recognize and bind DR4 and DR5 receptors during hyperthermia. Here, we have analyzed whether this new apoptotic co-treatment could be relevant toward primary cells from patients suffering of chronic lymphocytic leukemia. Analysis of samples from 24 patients with different ages, sex and disease stages revealed that half of them had lymphocytes that, once isolated and analyzed in vitro, positively responded (increase of cell death) to the heat shock plus TRAIL co-treatment. Analysis of the level of expression of various anti-apoptotic proteins in the cell samples revealed a great heterogeneity between patients and no clear relationships could be drawn. Nevertheless, most cell samples that were sensitive to TRAIL plus heat shock induced apoptosis displayed a higher level of cell surface DR4 and DR5 receptors than the non-sensitive counterparts. Hence, analysis of the level of TRAIL surface receptors is a prerequisite for future clinical applications based on this protocol.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Apoptosis
- Cell Membrane/metabolism
- Female
- Hot Temperature
- Humans
- Hyperthermia, Induced
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
- Recombinant Proteins/pharmacology
- TNF-Related Apoptosis-Inducing Ligand/pharmacology
Collapse
Affiliation(s)
- Maryline Moulin
- Laboratoire Stress Oxydant, Chaperons et Apoptose, CNRS UMR 5534, Centre de Génétique Moléculaire et Cellulaire, Université Claude Bernard, Lyon-1, 16 rue Dubois, 69622 Villeurbanne, France
| | | | | |
Collapse
|
35
|
NK cell-based immunotherapies against tumors. Open Med (Wars) 2006. [DOI: 10.2478/s11536-006-0023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractNatural killer (NK) cells provide the first line of defence against pathogens and tumors. Their activation status is regulated by pro-inflammatory cytokines and by ligands that either target inhibitory or activating cell surface receptors belonging to the immunoglobulin-like, C-type lectin or natural cytotoxicity receptor families. Apart from non-classical HLA-E, membrane-bound heat shock protein 70 (Hsp70) has been identified as a tumor-specific recognition structure for NK cells expressing high amounts of the C-type lectin receptor CD94, acting as one component of an activating heterodimeric receptor complex. Full-length Hsp70 protein (Hsp70) or the 14-mer Hsp70 peptide T-K-D-N-N-L-L-G-R-F-E-L-S-G (TKD) in combination with pro-inflammatory cytokines enhances the cytolytic activity of NK cells towards Hsp70 membrane-positive tumors. Based on these findings cytokine/TKD-activated NK cells were adoptively transferred in tumor patients. These findings were compared to results of clinical trials using cytokine-activated NK cells.
Collapse
|
36
|
Schmitt E, Gehrmann M, Brunet M, Multhoff G, Garrido C. Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol 2006; 81:15-27. [PMID: 16931602 DOI: 10.1189/jlb.0306167] [Citation(s) in RCA: 405] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Stress or heat shock proteins (HSPs) are the most conserved proteins present in both prokaryotes and eukaryotes. Their expression is induced in response to a wide variety of physiological and environmental insults. These proteins play an essential role as molecular chaperones by assisting the correct folding of nascent and stress-accumulated misfolded proteins, and preventing their aggregation. HSPs have a dual function depending on their intracellular or extracellular location. Intracellular HSPs have a protective function. They allow the cells to survive lethal conditions. Various mechanisms have been proposed to account for the cytoprotective functions of HSPs. Several HSPs have also been demonstrated to directly interact with various components of the tightly regulated programmed cell death machinery, upstream and downstream of the mitochondrial events. On the other hand, extracellular located or membrane-bound HSPs mediate immunological functions. They can elicit an immune response modulated either by the adaptive or innate immune system. This review will focus on HSP27, HSP70, and HSP90. We will discuss the dual role of these HSPs, protective vs. immunogenic properties, making a special emphasis in their utility as targets in cancer therapy.
Collapse
Affiliation(s)
- E Schmitt
- INSERM U-517, 7 Boulevard Jeanne d'Arc, Faculty of Medicine and Pharmacy, Dijon 21079, France, and Department of Hematology/Oncology, University Hospital Regensburg, Germany
| | | | | | | | | |
Collapse
|