1
|
Bélanger V, Benmoussa A, Napartuk M, Warin A, Laverdière C, Marcoux S, Levy E, Marcil V. The Role of Oxidative Stress and Inflammation in Cardiometabolic Health of Children During Cancer Treatment and Potential Impact of Key Nutrients. Antioxid Redox Signal 2021; 35:293-318. [PMID: 33386063 DOI: 10.1089/ars.2020.8143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Significance: The 5-year survival rate of childhood cancers is now reaching 84%. However, treatments cause numerous acute and long-term side effects. These include cardiometabolic complications, namely hypertension, dyslipidemia, hyperglycemia, insulin resistance, and increased fat mass. Recent Advances: Many antineoplastic treatments can induce oxidative stress (OxS) and trigger an inflammatory response, which may cause acute and chronic side effects. Critical Issues: Clinical studies have reported a state of heightened OxS and inflammation during cancer treatment in children as the result of treatment cytotoxic action on both cancerous and noncancerous cells. Higher levels of OxS and inflammation are associated with treatment side effects and with the development of cardiometabolic complications. Key nutrients (omega-3 polyunsaturated fatty acids, dietary antioxidants, probiotics, and prebiotics) have the potential to modulate inflammatory and oxidative responses and, therefore, could be considered in the search for adverse complication prevention means as long as antineoplastic treatment efficiency is maintained. Future Directions: There is a need to better understand the relationship between cardiometabolic complications, OxS, inflammation and diet during pediatric cancer treatment, which represents the ultimate goal of this review. Antioxid. Redox Signal. 35, 293-318.
Collapse
Affiliation(s)
- Véronique Bélanger
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Abderrahim Benmoussa
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Mélanie Napartuk
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Alexandre Warin
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada
| | | | - Sophie Marcoux
- Department of Public Health & Preventive Medicine, Université de Montréal, Montreal, Canada
| | - Emile Levy
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada.,Department of Pediatrics, Université de Montréal, Montreal, Canada
| | - Valérie Marcil
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| |
Collapse
|
2
|
Al Moutaery M, Al Rayes H, Al Swailam R, Elfaki I, Khan HA, Arshaduddin M, Tariq M. Protective effect of a cysteine prodrug and antioxidant, L-2-oxothiazolidine-4-carboxylate, against ethanol-induced gastric lesions in rats. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2012; 64:233-7. [PMID: 20829008 DOI: 10.1016/j.etp.2010.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/12/2010] [Accepted: 08/15/2010] [Indexed: 02/05/2023]
Abstract
Earlier studies have suggested an important role of glutathione (GSH) in cytoprotection against free radicals induced oxidative damage. This study reports gastroprotective effects of a cysteine precursor, L-2-oxothiazolidine-4-carboxylate (OTC), in experimental models of gastric secretion and ulceration. Acid secretion studies (volume and acidity) were undertaken in pylorus-ligated rats whereas the gastric lesions were induced by ethanol. Different groups of animals were treated with OTC (0, 100, 200 and 400 mg/kg). The levels of gastric wall mucus, nonprotein sulfhydryls (NP-SH) and myeloperoxidase (MPO) were measured in the glandular stomach of rats following ethanol-induced gastric lesions. Both medium and high doses of OTC significantly reduced the volume and acidity of gastric secretion in pylorus-ligated rats. Pretreatment with OTC significantly and dose-dependently attenuated the formation of ethanol-induced gastric lesion. OTC significantly protected the gastric mucosa against ethanol-induced depletion of gastric wall mucus, NP-SH and MPO. The gastroprotective effects of OTC may be attributed to its ability to inhibit neutrophils activity and replenish GSH demand.
Collapse
Affiliation(s)
- Meshal Al Moutaery
- Prince Sultan Cardiac Center, Armed Forces Hospital, Riyadh, Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
3
|
Cheng SL, Huang-Liu R, Sheu JN, Chen ST, Sinchaikul S, Tsay GJ. Toxicogenomics of A375 human malignant melanoma cells. Pharmacogenomics 2007; 8:1017-36. [PMID: 17716235 DOI: 10.2217/14622416.8.8.1017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Toxicogenomics applications are increasingly applied to the evaluation of preclinical drug safety, and to explain toxicities associated with compounds at the mechanism level. In this review, we aim to describe the application of toxicogenomics tools for studying the genotoxic effect of active compounds on the gene-expression profile of A375 human malignant melanoma cells, through the other molecular functions of target genes, regulatory pathways and mechanisms of malignant melanomas. It also includes the current systems biology approaches, which are very useful for analyzing the biological system and understanding the entire mechanisms of malignant melanomas. We believe that this review would be very potent and useful for studying the toxicogenomics of A375 melanoma cells, and for further diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Sun-Long Cheng
- Chung Shan Medical University, Department of Plastic Surgery, Chung Shan Medical University Hospital, Taichung, 40242, Taiwan
| | | | | | | | | | | |
Collapse
|