1
|
Angrini M, Varthaman A, Cremer I. Toll-Like Receptors (TLRs) in the Tumor Microenvironment (TME): A Dragon-Like Weapon in a Non-fantasy Game of Thrones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:145-173. [DOI: 10.1007/978-3-030-44518-8_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
2
|
Phung CD, Tran TH, Kim JO. Engineered nanoparticles to enhance natural killer cell activity towards onco-immunotherapy: a review. Arch Pharm Res 2020; 43:32-45. [DOI: 10.1007/s12272-020-01218-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
|
3
|
mTOR Inhibitors Can Enhance the Anti-Tumor Effects of DNA Vaccines through Modulating Dendritic Cell Function in the Tumor Microenvironment. Cancers (Basel) 2019; 11:cancers11050617. [PMID: 31052575 PMCID: PMC6562783 DOI: 10.3390/cancers11050617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023] Open
Abstract
The life span of dendritic cells (DCs) can become short following induced activation, which is associated with metabolic transition due to the regulation of mechanistic target of rapamycin (mTOR). The purpose of this study was to investigate the potential of inhibiting mTOR to modulate DC functions for elevating the anti-tumor effects of DNA vaccines. Therefore, the influences of various inhibitors of mTOR (mTORi) on the expressions of DC maturation markers, the abilities of antigen presenting and processing of BMM-derived DCs and the tumor killing effects of E7-specific CD8+ T lymphocytes activated by BMM-derived DCs were in vitro examined. The anti-tumor effects of connective tissue growth factor (CTGF)/E7 DNA vaccine and/or mTORi were also in vivo analyzed. In our study, suppressive effects of mTORi on the DC maturation markers expressed on BMMCs could be reversed. The mTORi-treated mature BMM-derived DCs tended to be non-apoptotic. These mTORi-treated BMM-derived DCs could have better antigen presenting and processing abilities. The E7-specific cytotoxic CD8+ T lymphocytes could have more potent tumoricidal activity following activation of mTORi-treated BMM-derived DCs. For tumor-bearing mice, those treated with CTGF/E7 DNA vaccine and mTORi indeed can have higher percentages of mature DCs in the TME, better disease control and longer survivals. Consequently, application of mTORi can be a pharmacological approach for temporally increasing life span, antigen presenting and antigen processing of DCs to strengthen the therapeutic outcome of cancer immunotherapy.
Collapse
|
4
|
Mohamed SIA, Jantan I, Nafiah MA, Seyed MA, Chan KM. Dendritic cells pulsed with generated tumor cell lysate from Phyllanthus amarus Schum. & Thonn. induces anti-tumor immune response. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:232. [PMID: 30081891 PMCID: PMC6080389 DOI: 10.1186/s12906-018-2296-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/24/2018] [Indexed: 01/02/2023]
Abstract
Background Dendritic cells (DCs) are unique antigen presenting cells (APC) which play a pivotal role in immunotherapy and induction of an effective immune response against tumors. In the present study, 80% ethanol extract of Phyllanthus amarus was used to generate tumor lysate (TLY) derived from HCT 116 and MCF-7 cancer cell lines via induction of apoptosis. Monocyte-derived DCs were generated ex vivo from the adherent population of peripheral blood mononuclear cells (PBMCs). The generated TLY were used to impulse DCs to investigate its effect on their cellular immune functions including antigen presentation capacity, phagocytic activity, chemotaxis capacity, T-cell proliferation and cytokines release. Methods The effect of P. amarus-generated TLY on DCs maturation was evaluated by determination of MHC class I, II and CD 11c expression as well as the co-stimulatory molecules CD 83 and 86 by using flow cytometry. The phagocytic capacity of TLY-pulsed DCs was investigated through FITC-dextran uptake by using flow cytometry. The effect on the cytokines release including IL-12, IL-6 and IL-10 was elucidated by using ELISA. The migration capacity and T cell proliferation activity of pulsed DCs were measured. The relative gene expression levels of cytokines were determined by using qRT-PCR. The major constituents of P. amarus extract were qualitatively and quantitatively analyzed by using validated reversed-phase high performance liquid chromatography (HPLC) methods. Results P. amarus-generated TLY significantly up-regulated the expression levels of MHC class I, CD 11 c, CD 83 and 86 in pulsed DCs. The release of interleukin IL-12 and IL-6 was enhanced by TLY-DCs at a ratio of 1 DC: 3 tumor apoptotic bodies (APO), however, the release of IL-10 was suppressed. The migration ability as well as allogeneic T-cell proliferation activities of loaded DCs were significantly enhanced, but their phagocytic capacity was highly attenuated. The gene expression profiles for IL-12 and IL-6 of DCs showed increase in their mRNA gene expression in TLY pulsed DCs versus unloaded and LPS-treated only DCs. Conclusion The effect of P. amarus-generated TLY on the immune effector mechanisms of DCs verified its potential to induce an in vitro anti-tumor immune response against the recognized tumor antigen.
Collapse
|
5
|
Abdellateif MS, Shaarawy SM, Kandeel EZ, El-Habashy AH, Salem ML, El-Houseini ME. A novel potential effective strategy for enhancing the antitumor immune response in breast cancer patients using a viable cancer cell-dendritic cell-based vaccine. Oncol Lett 2018; 16:529-535. [PMID: 29928442 PMCID: PMC6006460 DOI: 10.3892/ol.2018.8631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 11/16/2017] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) have been used in a number of clinical trials for cancer immunotherapy; however, they have achieved limited success in solid tumors. Consequently the aim of the present study was to identify a novel potential immunotherapeutic target for breast cancer patients through in vitro optimization of a viable DC-based vaccine. Immature DCs were primed by viable MCF-7 breast cancer cells and the activity and maturation of DCs were assessed through measuring CD83, CD86 and major histocompatibility complex (MHC)-II expression, in addition to different T cell subpopulations, namely CD4+ T cells, CD8+ T cells, and CD4+CD25+ forkhead box protein 3 (Foxp3)+ regulatory T cells (Tregs), by flow cytometric analysis. Foxp3 level was also measured by enzyme-linked immunosorbent assay (ELISA) in addition to reverse-transcription quantitative polymerase chain reaction. The levels of interleukin-12 (IL-12) and interferon-γ (IFN-γ) were determined by ELISA. Finally, the cytotoxicity of cytotoxic T lymphocytes (CTLs) was evaluated through measuring lactate dehydrogenase (LDH) release by ELISA. The results demonstrated that CD83+, CD86+ and MHC-II+ DCs were significantly elevated (P<0.001) following priming with breast cancer cells. In addition, there was increased activation of CD4+ and CD8+ T-cells, with a significant decrease of CD4+CD25+Foxp3+ Tregs (P<0.001). Furthermore, a significant downregulation of FOXP3 gene expression (P<0.001) was identified, and a significant decrease in the level of its protein following activation (P<0.001) was demonstrated by ELISA. Additionally, significant increases in the secretion of IL-12 and IFN-γ (P=0.001) were observed. LDH release was significantly increased (P<0.001), indicating a marked cytotoxicity of CTLs against cancer cells. Therefore viable breast cancer cell-DC-based vaccines could expose an innovative avenue for a novel breast cancer immunotherapy.
Collapse
Affiliation(s)
- Mona S. Abdellateif
- Medical Biochemistry and Molecular Biology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Sabry M. Shaarawy
- Medical Biochemistry and Molecular Biology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Eman Z. Kandeel
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Ahmed H. El-Habashy
- Department of Pathology, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Mohamed L. Salem
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Gharbia 31511, Egypt
| | - Motawa E. El-Houseini
- Medical Biochemistry and Molecular Biology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| |
Collapse
|
6
|
Loss of MAPK-activated protein kinase 2 enables potent dendritic cell-driven anti-tumour T cell response. Sci Rep 2017; 7:11746. [PMID: 28924177 PMCID: PMC5603533 DOI: 10.1038/s41598-017-12208-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Maintaining dendritic cells (DC) in a state of dysfunction represents a key mechanism by which tumour cells evade recognition and elimination by the immune system. Limited knowledge about the intracellular mediators of DC dysfunction restricts success of therapies aimed at reactivating a DC-driven anti-tumour immune response. Using a cell type-specific murine knock-out model, we have identified MAPK-activated protein kinase 2 (MK2) as a major guardian of a suppressive DC phenotype in the melanoma tumour microenvironment. MK2 deletion in CD11c+ cells led to an expansion of stimulatory CD103+ DCs, mounting a potent CD8+ T cell response that resulted in elimination of highly aggressive B16-F10 tumours upon toll-like receptor (TLR) activation in the presence of tumour antigen. Moreover, tumour infiltration by suppressive myeloid cells was strongly diminished. These insights into the regulation of DC functionality reveal MK2 as a targetable pathway for DC-centred immunomodulatory cancer therapies.
Collapse
|
7
|
Liu L, Yi H, Wang C, He H, Li P, Pan H, Sheng N, Ji M, Cai L, Ma Y. Integrated Nanovaccine with MicroRNA-148a Inhibition Reprograms Tumor-Associated Dendritic Cells by Modulating miR-148a/DNMT1/SOCS1 Axis. THE JOURNAL OF IMMUNOLOGY 2016; 197:1231-41. [DOI: 10.4049/jimmunol.1600182] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/08/2016] [Indexed: 12/26/2022]
|
8
|
Xu J, Huang Y, Chen XX, Zheng SC, Chen P, Mo MH. The Mechanisms of Pharmacological Activities of Ophiocordyceps sinensis Fungi. Phytother Res 2016; 30:1572-1583. [PMID: 27373780 DOI: 10.1002/ptr.5673] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 12/17/2022]
Abstract
The entomopathogenic fungus Ophiocordyceps sinensis, formerly known as Cordyceps sinensis, has long been used as a traditional Chinese medicine for the treatment of many illnesses. In recent years its usage has increased dramatically because of the improvement of people's living standard and the emphasis on health. Such demands have resulted in over-harvesting of this fungus in the wild. Fortunately, scientists have demonstrated that artificially cultured and fermented mycelial products of O. sinensis have similar pharmacological activities to wild O. sinensis. The availability of laboratory cultures will likely to further expand its usage for the treatment of various illnesses. In this review, we summarize recent results on the pharmacological activities of the components of O. sinensis and their putative mechanisms of actions. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jin Xu
- Laboratory for Conservation and Utilization of Bioresources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, China
| | - Ying Huang
- Laboratory for Conservation and Utilization of Bioresources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, China
| | - Xiang-Xiang Chen
- Laboratory for Conservation and Utilization of Bioresources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, China
| | - Shuai-Chao Zheng
- Laboratory for Conservation and Utilization of Bioresources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, China
| | - Peng Chen
- Yunnan Academy of Forestry, Kunming, 650201, China
| | - Ming-He Mo
- Laboratory for Conservation and Utilization of Bioresources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
9
|
Combining antibody–drug conjugates and immune-mediated cancer therapy: What to expect? Biochem Pharmacol 2016; 102:1-6. [DOI: 10.1016/j.bcp.2015.12.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 12/09/2015] [Indexed: 12/22/2022]
|
10
|
Wei FQ, Sun W, Wong TS, Gao W, Wen YH, Wei JW, Wei Y, Wen WP. Eliciting cytotoxic T lymphocytes against human laryngeal cancer-derived antigens: evaluation of dendritic cells pulsed with a heat-treated tumor lysate and other antigen-loading strategies for dendritic-cell-based vaccination. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:18. [PMID: 26795730 PMCID: PMC4722756 DOI: 10.1186/s13046-016-0295-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/17/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Dendritic cells (DCs) have been used successfully in clinical pilot studies. However, tumor-specific immunity and clinical responses were only induced in certain cancer patients. It has been well documented that immunotherapy efficacy can be optimized for responses using antigen pulsing. METHODS The human laryngeal squamous cell cancer (LSCC) cell line SNU899 was used to evaluate the in vitro anti-tumor efficacy of three different preparations of dendritic cell (DC) vaccines consisting of either whole tumor cells or their derivatives including: i) DCs pulsed with a tumor cell supernatant (DC-TCS), ii) DCs pulsed with whole-cell tumor stressed lysate (DC-TSL), and iii) DCs pulsed with irradiated tumor cells (DC-ITC). RESULTS Our results showed that DC-TSL is an effective source of tumor-associated antigens (TAAs) for pulsing DCs. DC-TSL induced the highest expansion of TAA-specific T cells, the strongest Th1 cytokine response, and the most potent cytotoxic T lymphocyte (CTL) activity. DC-TCS and DC-ITC inhibited T cell activation but induced a certain extent of CTL activity. CONCLUSIONS These data suggest that DC-TSL is a more potent inducer of antitumor immunity against laryngeal cancer than other antigen-loading strategies using whole tumor cell materials. This strategy provides an alternative approach for DC-based immunotherapy for laryngeal cancer.
Collapse
Affiliation(s)
- Fan-Qin Wei
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Sun Yat-sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China. .,Institute of Otorhinolaryngology Head and Neck Surgery, Sun Yat-sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China. .,Department of Otorhinolaryngology Head and Neck Surgery, the Sixth Affiliated Hospital of Sun Yat-Sen University, Yuancun Second Cross Road 26#, Guangzhou, 510655, Guangdong, P.R. China.
| | - Wei Sun
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Sun Yat-sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China.
| | - Thian-Sze Wong
- Department of Surgery, The University of Hong Kong, Pokfulam Road 102#, Hong Kong, P.R. China.
| | - Wei Gao
- Department of Surgery, The University of Hong Kong, Pokfulam Road 102#, Hong Kong, P.R. China.
| | - Yi-Hui Wen
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Sun Yat-sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China. .,Institute of Otorhinolaryngology Head and Neck Surgery, Sun Yat-sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China.
| | - Jia-Wei Wei
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Sun Yat-sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China. .,Institute of Otorhinolaryngology Head and Neck Surgery, Sun Yat-sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China.
| | - Yi Wei
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Sun Yat-sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China. .,Institute of Otorhinolaryngology Head and Neck Surgery, Sun Yat-sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China.
| | - Wei-Ping Wen
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Sun Yat-sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China. .,Institute of Otorhinolaryngology Head and Neck Surgery, Sun Yat-sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China.
| |
Collapse
|
11
|
Melanoma-derived factors alter the maturation and activation of differentiated tissue-resident dendritic cells. Immunol Cell Biol 2015; 94:24-38. [PMID: 26010746 DOI: 10.1038/icb.2015.58] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/05/2015] [Accepted: 05/20/2015] [Indexed: 01/26/2023]
Abstract
Dendritic cells (DCs) are key regulators of host immunity that are capable of inducing either immune tolerance or activation. In addition to their well-characterized role in shaping immune responses to foreign pathogens, DCs are also known to be critical for the induction and maintenance of anti-tumor immune responses. Therefore, it is important to understand how tumors influence the function of DCs and the quality of immune responses they elicit. Although the majority of studies in this field to date have utilized either immortalized DC lines or DC populations that have been generated under artificial conditions from hematopoietic precursors in vitro, we wished to investigate how tumors impact the function of already differentiated, tissue-resident DCs. Therefore, we used both an ex vivo and in vivo model system to assess the influence of melanoma-derived factors on DC maturation and activation. In ex vivo studies with freshly isolated splenic DCs, we demonstrate that the extent to which DC maturation and activation are altered by these factors correlates with melanoma tumorigenicity, and we identify partial roles for tumor-derived transforming growth factor (TGF)β1 and vascular endothelial growth factor (VEGF)-A in the altered functionality of DCs. In vivo studies using a lung metastasis model of melanoma also demonstrate tumorigenicity-dependent alterations to the function of lung-resident DCs, and skewed production of proinflammatory cytokines and chemokines by these tumor-altered cells is associated with recruitment of an immune infiltrate that may ultimately favor tumor immune escape and outgrowth.
Collapse
|
12
|
Choi SYC, Lin D, Gout PW, Collins CC, Xu Y, Wang Y. Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Adv Drug Deliv Rev 2014; 79-80:222-37. [PMID: 25305336 DOI: 10.1016/j.addr.2014.09.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 09/02/2014] [Accepted: 09/23/2014] [Indexed: 12/21/2022]
Abstract
The development of novel cancer therapeutics is often plagued by discrepancies between drug efficacies obtained in preclinical studies and outcomes of clinical trials. The inconsistencies can be attributed to a lack of clinical relevance of the cancer models used for drug testing. While commonly used in vitro culture systems are advantageous for addressing specific experimental questions, they are often gross, fidelity-lacking simplifications that largely ignore the heterogeneity of cancers as well as the complexity of the tumor microenvironment. Factors such as tumor architecture, interactions among cancer cells and between cancer and stromal cells, and an acidic tumor microenvironment are critical characteristics observed in patient-derived cancer xenograft models and in the clinic. By mimicking these crucial in vivo characteristics through use of 3D cultures, co-culture systems and acidic culture conditions, an in vitro cancer model/microenvironment that is more physiologically relevant may be engineered to produce results more readily applicable to the clinic.
Collapse
Affiliation(s)
- Stephen Yiu Chuen Choi
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada.
| | - Dong Lin
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada.
| | - Peter W Gout
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada.
| | - Colin C Collins
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada.
| | - Yong Xu
- Department of Urology, Second Affiliated Hospital of Tianjin Medical University, Tianjin, P.R. China.
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada.
| |
Collapse
|
13
|
McDonnell AM, Lesterhuis WJ, Khong A, Nowak AK, Lake RA, Currie AJ, Robinson BWS. Tumor-infiltrating dendritic cells exhibit defective cross-presentation of tumor antigens, but is reversed by chemotherapy. Eur J Immunol 2014; 45:49-59. [PMID: 25316312 DOI: 10.1002/eji.201444722] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 09/19/2014] [Accepted: 10/10/2014] [Indexed: 11/11/2022]
Abstract
Cross-presentation defines the unique capacity of an APC to present exogenous Ag via MHC class I molecules to CD8(+) T cells. DCs are specialized cross-presenting cells and as such have a critical role in antitumor immunity. DCs are routinely found within the tumor microenvironment, but their capacity for endogenous or therapeutically enhanced cross-presentation is not well characterized. In this study, we examined the tumor and lymph node DC cross-presentation of a nominal marker tumor Ag, HA, expressed by the murine mesothelioma tumor AB1-HA. We found that tumors were infiltrated by predominantly CD11b(+) DCs with a semimature phenotype that could not cross-present tumor Ag, and therefore, were unable to induce tumor-specific T-cell activation or proliferation. Although tumor-infiltrating DCs were able to take up, process, and cross-present exogenous cell-bound and soluble Ags, this was significantly impaired relative to lymph node DCs. Importantly, however, systemic chemotherapy using gemcitabine reversed the defect in Ag cross-presentation of tumor DCs. These data demonstrate that DC cross-presentation within the tumor microenvironment is defective, but can be reversed by chemotherapy. These results have important implications for anticancer therapy, particularly regarding the use of immunotherapy in conjunction with cytotoxic chemotherapy.
Collapse
Affiliation(s)
- Alison M McDonnell
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, WA, Australia
| | | | | | | | | | | | | |
Collapse
|
14
|
Müller P, Martin K, Theurich S, Schreiner J, Savic S, Terszowski G, Lardinois D, Heinzelmann-Schwarz VA, Schlaak M, Kvasnicka HM, Spagnoli G, Dirnhofer S, Speiser DE, von Bergwelt-Baildon M, Zippelius A. Microtubule-depolymerizing agents used in antibody-drug conjugates induce antitumor immunity by stimulation of dendritic cells. Cancer Immunol Res 2014; 2:741-55. [PMID: 24916470 DOI: 10.1158/2326-6066.cir-13-0198] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antibody-drug conjugates (ADC) are emerging as powerful treatment strategies with outstanding target-specificity and high therapeutic activity in patients with cancer. Brentuximab vedotin represents a first-in-class ADC directed against CD30(+) malignancies. We hypothesized that its sustained clinical responses could be related to the stimulation of an anticancer immune response. In this study, we demonstrate that the dolastatin family of microtubule inhibitors, from which the cytotoxic component of brentuximab vedotin is derived, comprises potent inducers of phenotypic and functional dendritic cell (DC) maturation. In addition to the direct cytotoxic effect on tumor cells, dolastatins efficiently promoted antigen uptake and migration of tumor-resident DCs to the tumor-draining lymph nodes. Exposure of murine and human DCs to dolastatins significantly increased their capacity to prime T cells. Underlining the requirement of an intact host immune system for the full therapeutic benefit of dolastatins, the antitumor effect was far less pronounced in immunocompromised mice. We observed substantial therapeutic synergies when combining dolastatins with tumor antigen-specific vaccination or blockade of the PD-1-PD-L1 and CTLA-4 coinhibitory pathways. Ultimately, treatment with ADCs using dolastatins induces DC homing and activates cellular antitumor immune responses in patients. Our data reveal a novel mechanism of action for dolastatins and provide a strong rationale for clinical treatment regimens combining dolastatin-based therapies, such as brentuximab vedotin, with immune-based therapies.
Collapse
Affiliation(s)
- Philipp Müller
- Cancer Immunology & Biology, Department of Biomedicine, Departments of
| | - Kea Martin
- Cancer Immunology & Biology, Department of Biomedicine, Departments of
| | - Sebastian Theurich
- Department I of Internal Medicine and Cologne Interventional Immunology and
| | - Jens Schreiner
- Cancer Immunology & Biology, Department of Biomedicine, Departments of
| | | | | | | | | | - Max Schlaak
- Department of Dermatology, Skin Cancer Center (CIO), University Hospital Cologne, Cologne; and
| | | | - Giulio Spagnoli
- Department of Biomedicine, Institute of Surgical Research and Hospital Management, University of Basel, Basel
| | | | - Daniel E Speiser
- Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Alfred Zippelius
- Cancer Immunology & Biology, Department of Biomedicine, Departments of Medical Oncology,
| |
Collapse
|
15
|
Dong H, Bullock TNJ. Metabolic influences that regulate dendritic cell function in tumors. Front Immunol 2014; 5:24. [PMID: 24523723 PMCID: PMC3906600 DOI: 10.3389/fimmu.2014.00024] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/16/2014] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DC) are critical regulators of both activation and tolerance in the adaptive immune response. The dual nature of DC immunoregulatory function depends on their differentiation and activation status. DC found within the tumor microenvironment (TME) and tumor-draining lymph node often exist in an inactive state, which is thought to limit the adaptive immune response elicited by the growing tumor. The major determinants of DC activation and the functional alterations in DC that result from integrating exogenous stimuli have been well investigated. Extensive efforts have been made to elucidate how the TME contributes to the inactivated/dysfunctional phenotype of tumor-associated DC (TADC). Although performed predominantly on in vitro DC cultures, recent evidence indicates that DC undergo required, coordinated alterations in their metabolism upon activation, and dysregulated metabolism in TADC is associated with their reduced immunostimulatory capacity. In this review, we will focus on the role of glycolysis and fatty acid metabolism in DC activation and function and discuss how these metabolic pathways may be regulated in TADC. Further, we consider the need for developing novel experimental approaches to assess metabolic choices in vivo, and the necessity for integrating metabolic regulation into the optimized development of DC for tumor vaccines and immunotherapy for cancer.
Collapse
Affiliation(s)
- Han Dong
- Experimental Pathology Program, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
16
|
Xu Y, Wang M. [Progress in immunotherapy for non-small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2014; 17:34-41. [PMID: 24398312 PMCID: PMC6000202 DOI: 10.3779/j.issn.1009-3419.2014.01.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In recent years, the five-year survival rate of patients with advanced stage non-small cell lung cancer (NSCLC) remains low despite recent advances in surgery, irradiation, chemotherapy, and targeted therapy. Immunotherapy which utilizes the immune system to control and eradicate cancer is a viable treatment approach for malignancy. Immunotherapy in patients with lung cancer has made breakthrough progress recently. Novel immunotherapeutic agents, such as antigen-specific tumour vaccines, checkpoint inhibitors, etc, have all been evaluated in lung cancer, and some have shown prolonged survival time in phase II trials and III trails. The immune-related response criteria for the evaluation of antitumor responses with immunotherapeutic agents have been made. Now, immunotherapy will likely be a fundamentally new concept for the treatment of NSCLC.
Collapse
Affiliation(s)
- Yan Xu
- Department of Respiratory Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Science
and Peking Union Medical College, Beijing 100730, China
| | - Mengzhao Wang
- Department of Respiratory Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Science
and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
17
|
Hargadon KM. Tumor-altered dendritic cell function: implications for anti-tumor immunity. Front Immunol 2013; 4:192. [PMID: 23874338 PMCID: PMC3708450 DOI: 10.3389/fimmu.2013.00192] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/27/2013] [Indexed: 01/20/2023] Open
Abstract
Dendritic cells (DC) are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programing of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti-tumor immunity.
Collapse
Affiliation(s)
- Kristian M Hargadon
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College , Hampden-Sydney, VA , USA
| |
Collapse
|
18
|
Gatti G, Nuñez NG, Nocera DA, Dejager L, Libert C, Giraudo C, Maccioni M. Direct effect of dsRNA mimetics on cancer cells induces endogenous IFN-β production capable of improving dendritic cell function. Eur J Immunol 2013; 43:1849-61. [PMID: 23636788 DOI: 10.1002/eji.201242902] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 03/13/2013] [Accepted: 04/25/2013] [Indexed: 12/27/2022]
Abstract
Viral double-stranded RNA (dsRNA) mimetics have been explored in cancer immunotherapy to promote antitumoral immune response. Polyinosine-polycytidylic acid (poly I:C) and polyadenylic-polyuridylic acid (poly A:U) are synthetic analogs of viral dsRNA and strong inducers of type I interferon (IFN). We describe here a novel effect of dsRNA analogs on cancer cells: besides their potential to induce cancer cell apoptosis through an IFN-β autocrine loop, dsRNA-elicited IFN-β production improves dendritic cell (DC) functionality. Human A549 lung and DU145 prostate carcinoma cells significantly responded to poly I:C stimulation, producing IFN-β at levels that were capable of activating STAT1 and enhancing CXCL10, CD40, and CD86 expression on human monocyte-derived DCs. IFN-β produced by poly I:C-activated human cancer cells increased the capacity of monocyte-derived DCs to stimulate IFN-γ production in an allogeneic stimulatory culture in vitro. When melanoma murine B16 cells were stimulated in vitro with poly A:U and then inoculated into TLR3(-/-) mice, smaller tumors were elicited. This tumor growth inhibition was abrogated in IFNAR1(-/-) mice. Thus, dsRNA compounds are effective adjuvants not only because they activate DCs and promote strong adaptive immunity, but also because they can directly act on cancer cells to induce endogenous IFN-β production and contribute to the antitumoral response.
Collapse
Affiliation(s)
- Gerardo Gatti
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
19
|
A polysaccharide isolated from Pueraria lobata enhances maturation of murine dendritic cells. Int J Biol Macromol 2013; 52:184-91. [DOI: 10.1016/j.ijbiomac.2012.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 09/12/2012] [Accepted: 09/15/2012] [Indexed: 02/07/2023]
|
20
|
Toll-like receptor 7 agonist therapy with imidazoquinoline enhances cancer cell death and increases lymphocytic infiltration and proinflammatory cytokine production in established tumors of a renal cell carcinoma mouse model. JOURNAL OF ONCOLOGY 2012; 2012:103298. [PMID: 22481916 PMCID: PMC3317372 DOI: 10.1155/2012/103298] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 11/14/2011] [Indexed: 12/16/2022]
Abstract
Imidazoquinolines are synthetic toll-like receptor 7 and 8 agonists and potent dendritic cell activators with established anticancer activity. Here we test the hypothesis that imidazoquinoline has in vivo efficacy within established renal cell carcinoma (RCC) tumors. Immunocompetent mice bearing syngeneic RCC xenografts were treated with imidazoquinoline or placebo at two separate time points. Harvested tumors were assayed by TUNEL/caspase-3/Ki67 immunostains to evaluate cell death/apoptosis/proliferation, and CD3/B220/CD45 immunostains to evaluate T-cell lymphocyte/B-cell lymphocyte/pan-leukocyte tumor infiltration. ELISA measurement of tumor and serum levels of proinflammatory cytokines, IL-6 and MCP-1, was performed. A single imidazoquinoline dose significantly decreased RCC tumor growth by 50% and repeat dosing compounded the effect, without observed weight loss or other toxicity. Tumor immunostaining revealed significant increases in cell death and apoptosis without changes in cell proliferation, supporting induction of apoptosis as the primary mechanism of tumor growth suppression. Imidazoquinoline treatment also significantly enhanced peritumoral aggregation and intratumoral infiltration by T-cell lymphocytes, while increasing intratumoral (but not serum) levels of proinflammatory cytokines. In conclusion, imidazoquinoline treatment enhances T-cell lymphocyte infiltration and proinflammatory cytokine production within established mouse RCC tumors, while suppressing tumor growth via induction of cancer cell apoptosis. These findings support a therapeutic role for imidazoquinoline in RCC.
Collapse
|
21
|
Abstract
The lymphatic system has long been accepted as a passive escape route for metastasizing tumor cells. The classic view that lymphatics solely regulate fluid balance, lipid metabolism, and immune cell trafficking to the LN is now being challenged. Research in the field is entering a new phase with increasing evidence suggesting that lymphatics play an active role modulating inflammation, autoimmune disease, and the anti-tumor immune response. Evidence exists to suggest that the lymphatics and chemokines guide LN bi-functionally, driving immunity vs. tolerance according to demand. At sites of chronic inflammation, autoimmunity, and tumors, however, the same chemokines and aberrant lymphangiogenesis foster disease progression. These caveats point to the existence of a complex, finely balanced relationship between lymphatics and the immune system in health and disease. This review discusses emerging concepts in the fields of immunology, tumor biology, and lymphatic physiology, identifying critical, overlapping functions of lymphatics, the LN and lymphoid factors in tipping the balance of immunity vs. tolerance in favor of a growing tumor.
Collapse
Affiliation(s)
- Jacqueline D Shields
- Medical Research Council Cancer Cell Unit, Hutchison/Medical Research Council Research Centre, Cambridge, UK.
| |
Collapse
|
22
|
Núñez NG, Andreani V, Crespo MI, Nocera DA, Breser ML, Morón G, Dejager L, Libert C, Rivero V, Maccioni M. IFNβ produced by TLR4-activated tumor cells is involved in improving the antitumoral immune response. Cancer Res 2011; 72:592-603. [PMID: 22139376 DOI: 10.1158/0008-5472.can-11-0534] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Toll-like receptor (TLR) ligands may be a valuable tool to promote antitumor responses by reinforcing antitumor immunity. In addition to their expression in immune cells, functional TLRs are also expressed by many cancer cells, but their significance has been controversial. In this study, we examined the action of TLR ligands on tumor pathophysiology as a result of direct tumor cell effects. B16 murine melanoma cells were stimulated in vitro with a TLR4 ligand (LPS-B16) prior to inoculation into TLR4-deficient mice (Tlr4 (lps-del)). Under such conditions, B16 cells yielded smaller tumors than nonstimulated B16 cells. The apoptosis/proliferation balance of the cells was not modified by TLR ligand treatment, nor was this effect compromised in immunocompromised nude mice. Mechanistic investigations revealed that IFNβ was the critical factor produced by TLR4-activated tumor cells in mediating their in vivo outgrowth. Transcriptional analysis showed that TLR4 activation on B16 cells induced changes in the expression of type I IFN and type I IFN-related genes. Most importantly, culture supernatants from LPS-B16 cells improved the maturation of bone marrow-derived dendritic cells (BMDC) from TLR4-deficient mice, upregulating the expression of interleukin-12 and costimulatory molecules on those cells. BMDC maturation was blunted by addition of an IFNβ-neutralizing antibody. Moreover, tumor growth inhibition observed in LPS-B16 tumors was abrogated in IFNAR1-deficient mice lacking a functional type I IFN receptor for binding IFN. Together, our findings show that tumor cells can be induced through the TLR4 pathway to produce IFN and positively contribute to the antitumoral immune response.
Collapse
Affiliation(s)
- Nicolás Gonzalo Núñez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Venlafaxine inhibits the development and differentiation of dendritic cells through the regulation of p-glycoprotein. Int Immunopharmacol 2011; 11:1348-57. [DOI: 10.1016/j.intimp.2011.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 04/18/2011] [Accepted: 04/28/2011] [Indexed: 01/16/2023]
|
24
|
Ex vivo stimulation of murine dendritic cells by an exopolysaccharide from one of the anamorph of Cordyceps sinensis. Cell Biochem Funct 2011; 29:555-61. [DOI: 10.1002/cbf.1787] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 04/19/2011] [Accepted: 06/06/2011] [Indexed: 11/07/2022]
|
25
|
Mendoza-Coronel E, Camacho-Sandoval R, Bonifaz LC, López-Vidal Y. PD-L2 induction on dendritic cells exposed to Mycobacterium avium downregulates BCG-specific T cell response. Tuberculosis (Edinb) 2011; 91:36-46. [DOI: 10.1016/j.tube.2010.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 10/06/2010] [Accepted: 11/16/2010] [Indexed: 11/26/2022]
|
26
|
Oral administration of a soluble 1–3, 1–6 β-glucan during prophylactic survivin peptide vaccination diminishes growth of a B cell lymphoma in mice. Int Immunopharmacol 2009; 9:1298-303. [DOI: 10.1016/j.intimp.2009.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 07/24/2009] [Accepted: 07/27/2009] [Indexed: 11/19/2022]
|
27
|
Rivas-Caicedo A, Soldevila G, Fortoul TI, Castell-Rodríguez A, Flores-Romo L, García-Zepeda EA. Jak3 is involved in dendritic cell maturation and CCR7-dependent migration. PLoS One 2009; 4:e7066. [PMID: 19759904 PMCID: PMC2738966 DOI: 10.1371/journal.pone.0007066] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 08/18/2009] [Indexed: 11/18/2022] Open
Abstract
Background CCR7-mediated signalling is important for dendritic cell maturation and homing to the lymph nodes. We have previously demonstrated that Jak3 participates in the signalling pathway of CCR7 in T lymphocytes. Methodology and Principal Findings Here, we used Jak3−/− mice to analyze the role of Jak3 in CCR7-mediated dendritic cells migration and function. First, we found no differences in the generation of DCs from Jak3−/− bone marrow progenitors, when compared to wild type cells. However, phenotypic analysis of the bone marrow derived DCs obtained from Jak3−/− mice showed reduced expression of co-stimulatory molecules compared to wild type (Jak3+/+). In addition, when we analyzed the migration of Jak3−/− and Jak3+/+ mature DCs in response to CCL19 and CCL21 chemokines, we found that the absence of Jak3 results in impaired chemotactic responses both in vitro and in vivo. Moreover, lymphocyte proliferation and contact hypersensitivity experiments showed that DC-mediated T lymphocyte activation is reduced in the absence of Jak3. Conclusion/Significance Altogether, our data provide strong evidence that Jak3 is important for DC maturation, migration and function, through a CCR7-mediated signalling pathway.
Collapse
Affiliation(s)
- Ana Rivas-Caicedo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, México, D.F., Mexico
| | - Gloria Soldevila
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, México, D.F., Mexico
| | - Teresa I. Fortoul
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, México, D.F., Mexico
| | - Andrés Castell-Rodríguez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, México, D.F., Mexico
| | | | - Eduardo A. García-Zepeda
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, México, D.F., Mexico
- * E-mail:
| |
Collapse
|
28
|
Optimization of dendritic cell loading with tumor cell lysates for cancer immunotherapy. J Immunother 2009; 31:620-32. [PMID: 18600182 DOI: 10.1097/cji.0b013e31818213df] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The immune response to cancer is critically determined by the way in which tumor cells die. As necrotic, stress-associated death can be associated with activation of antitumor immunity, whole tumor cell antigen loading strategies for dendritic cell (DC)-based vaccination have commonly used freeze-thaw "necrotic" lysates as an immunogenic source of tumor-associated antigens. In this study, the effect of such lysates on the ability of DCs to mature in response to well-established maturation stimuli was examined, and methods to enhance lysate-induced DC activation explored. Freeze-thaw lysates were prepared from murine tumor cell lines and their effects on bone marrow-derived DC maturation and function examined. Unmodified freeze-thaw tumor cell lysates inhibited the toll-like receptor-induced maturation and function of bone marrow-derived DCs, preventing up-regulation of CD40, CD86, and major histocompatibility complex class II, and reducing secretion of inflammatory cytokines [interleukin (IL)-12 p70, tumor necrosis factor-alpha, and IL-6]. Although IL-10 secretion was increased by lysate-pulsed DCs, this was not responsible for the observed suppression of IL-12. Although activation of the nuclear factor-kappaB pathway remained intact, the kinase activity of phosphorylated p38 mitogen-activated protein kinase was inhibited in lysate-pulsed DCs. Lysate-induced DC suppression was partially reversed in vitro by induction of tumor cell stress before lysis, and only DCs loaded with stressed lysates afforded protection against tumor challenge in vivo. These data suggest that ex vivo freeze-thaw of tumor cells does not effectively mimic in vivo immunogenic necrosis, and advocates careful characterization and optimization of tumor cell-derived vaccine sources for cancer immunotherapy.
Collapse
|
29
|
Optimization of dendritic cell loading with tumor cell lysates for cancer immunotherapy. JOURNAL OF IMMUNOTHERAPY (HAGERSTOWN, MD. : 1997) 2009. [PMID: 18600182 DOI: 10.1097/cji.0b013e31818213df00002371-200809000-00003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The immune response to cancer is critically determined by the way in which tumor cells die. As necrotic, stress-associated death can be associated with activation of antitumor immunity, whole tumor cell antigen loading strategies for dendritic cell (DC)-based vaccination have commonly used freeze-thaw "necrotic" lysates as an immunogenic source of tumor-associated antigens. In this study, the effect of such lysates on the ability of DCs to mature in response to well-established maturation stimuli was examined, and methods to enhance lysate-induced DC activation explored. Freeze-thaw lysates were prepared from murine tumor cell lines and their effects on bone marrow-derived DC maturation and function examined. Unmodified freeze-thaw tumor cell lysates inhibited the toll-like receptor-induced maturation and function of bone marrow-derived DCs, preventing up-regulation of CD40, CD86, and major histocompatibility complex class II, and reducing secretion of inflammatory cytokines [interleukin (IL)-12 p70, tumor necrosis factor-alpha, and IL-6]. Although IL-10 secretion was increased by lysate-pulsed DCs, this was not responsible for the observed suppression of IL-12. Although activation of the nuclear factor-kappaB pathway remained intact, the kinase activity of phosphorylated p38 mitogen-activated protein kinase was inhibited in lysate-pulsed DCs. Lysate-induced DC suppression was partially reversed in vitro by induction of tumor cell stress before lysis, and only DCs loaded with stressed lysates afforded protection against tumor challenge in vivo. These data suggest that ex vivo freeze-thaw of tumor cells does not effectively mimic in vivo immunogenic necrosis, and advocates careful characterization and optimization of tumor cell-derived vaccine sources for cancer immunotherapy.
Collapse
|
30
|
Yu L, Chen S. Toll-like receptors expressed in tumor cells: targets for therapy. Cancer Immunol Immunother 2008; 57:1271-8. [PMID: 18256828 PMCID: PMC11031105 DOI: 10.1007/s00262-008-0459-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Accepted: 01/14/2008] [Indexed: 12/30/2022]
Abstract
Toll-like receptors (TLRs), mainly expressing in human immune related cells and epithelial cells, play an essential role in the host defense against microbes by recognizing conserved bacterial molecules. Recently, the expression or up-regulation of TLRs has been detected in many tumor cell lines or tumors, especially epithelial derived cancers. Although the TLR profile varies on different tumor cells, the current evidences indicate that the expression of TLRs is functionally associated with tumor progression. TLR expression may promote malignant transformation of epithelial cells. Engagement of TLRs increases tumor growth and tumor immune escape, and induces apoptosis resistance and chemoresistance in some tumor cells. These findings demonstrate that TLR is a promising target for the development of anticancer drugs and make TLR agonists or antagonists the potential agents for tumor therapy.
Collapse
Affiliation(s)
- Li Yu
- Department of Histopathology, The First Affiliated Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou 510080, People's Republic of China.
| | | |
Collapse
|
31
|
Atochina O, Da'dara AA, Walker M, Harn DA. The immunomodulatory glycan LNFPIII initiates alternative activation of murine macrophages in vivo. Immunology 2008; 125:111-21. [PMID: 18373667 DOI: 10.1111/j.1365-2567.2008.02826.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The early pathogen-macrophage interactions that help drive macrophage maturation towards classically or alternatively activated are largely unknown. To examine this question we utilized the immunomodulatory glycan Lacto-N-fucopentaose III (LNFPIII), which contains the Lewis X (LeX) trisaccharide, to activate murine peritoneal macrophages in vivo. Because LNFPIII is known to induce anti-inflammatory responses, we asked if LNFPIII stimulation of macrophages in vivo initiates alternative activation events such as upregulation of Arginase 1, Ym1, FIZZ-1, MGL-1 or macrophage mannose receptor (MMR). Examination of peritoneal exudate cells from mice 20 hr post-LNFPIII injection demonstrated increased Arginase 1 activity, at the mRNA and protein levels, coincident with undetectable inducible nitric oxide synthase expression or nitric oxide production. In addition to Arginase 1, Ym1 expression was also significantly upregulated at 20 and 48 hr after LNFPIII exposure in vivo. However, the expression of FIZZ-1, MGL-1, and MMR was not changed in these macrophages. In an attempt to determine activation requirements for functional activity, we adoptively transferred antigen-pulsed, in vivo LNFPIII activated macrophages into naïve recipients and found that they were capable of triggering recipient T cells to secrete elevated levels of interleukin (IL)-10 and IL-13 compared to mice receiving control macrophages. Together, these data demonstrate that upregulation of expression of Arginase 1 and Ym1 occur very early in activation of macrophages, and can be independent of other alternatively activated (AA) macrophage markers. Importantly, these early events appear to be IL-4/IL-13-independent in our model. In the future we hope to determine if upregulation of these initial AA maturational events is sufficient for these macrophages to exert immunoregulatory activity in vivo.
Collapse
Affiliation(s)
- Olga Atochina
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
32
|
Significance of toll-like receptors expression in tumor growth and spreading: a short review. CANCER MICROENVIRONMENT 2008; 1:37-42. [PMID: 19308683 PMCID: PMC2654361 DOI: 10.1007/s12307-008-0005-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 01/28/2008] [Indexed: 01/03/2023]
Abstract
Toll-like receptors (TLRs) are considered now as crucial sensors of innate immunity. Their role in the recognition of pathogens and the initiation of adaptive immune responses against them is well known. However, in last years TLRs have been identified on several tumor cells, including human malignancies. Their expression in cancer was found to be twofold: either promoting or inhibiting tumor progression. It was also demonstrated that several TLRs agonists, either natural or synthetic ones, may have beneficial effect on tumor-mediated disease, leading to potentiation of immune response to tumor-associated antigens. TLR-agonist linked tumor immunotherapy is still in nascent state, but growing rapidly, also in the area of common human malignancies. To date, the most promising and the most frequently studied interaction in tumor immunotherapy trials seems to be TLR9 and its synthetic agonists.
Collapse
|
33
|
Chang KC, Huang GC, Jones D, Lin YH. Distribution patterns of dendritic cells and T cells in diffuse large B-cell lymphomas correlate with prognoses. Clin Cancer Res 2008; 13:6666-72. [PMID: 18006767 DOI: 10.1158/1078-0432.ccr-07-0504] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Diffuse large B-cell lymphoma (DLBCL), the most common subtype of non-Hodgkin's lymphomas, accounts for 30% to 40% of all lymphoma cases. However, long-term survival by current chemotherapy was achieved in only 40% of patients, warranting the development of novel therapeutic strategies including T-cell immunotherapy. However, the level of baseline immune activation in DLBCL is unclear. EXPERIMENTAL DESIGN The density and distribution of dendritic cells and T cells in 48 cases of primary DLBCL was evaluated by immunohistochemistry. RESULTS Increased numbers of intratumoral CD1a+ dendritic cells and increased S100+ cells and CD45RO+ T cells around the edges of the tumors were seen in 10 of 48 (21%), 9 of 48 (19%), and 10 of 48 (21%) cases and these were correlated with a favorable prognosis (P = 0.015; P = 0.070, and P = 0.017, respectively), along with increased granzyme B+ T cells in tumor beds (P = 0.013). Increased peritumoral T cells were correlated with tumor expression of HLA-DR (r = 0.446; P = 0.002). Extranodal lymphomas showed fewer tumor-associated CD45RO+ T cells (r = -0.407; P = 0.001) and less conspicuous dendritic cell infiltrates. CONCLUSIONS In DLBCL, the presence of baseline antitumor immune response is associated with favorable clinical outcome, and thus adjuvant T-cell immunotherapy may further boost treatment responses.
Collapse
Affiliation(s)
- Kung-Chao Chang
- Department of Pathology and Institute of Clinical Medicine, Medical College, National Cheng Kung University, 138 Sheng-Li Road, Tainan, Taiwan.
| | | | | | | |
Collapse
|