Wang C, Adrianus GN, Sheng N, Toh S, Gong Y, Wang DA. In vitro performance of an injectable hydrogel/microsphere based immunocyte delivery system for localised anti-tumour activity.
Biomaterials 2009;
30:6986-95. [PMID:
19783044 DOI:
10.1016/j.biomaterials.2009.09.006]
[Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Accepted: 09/04/2009] [Indexed: 02/04/2023]
Abstract
The current practice of cell immunotherapy against cancer has encountered a substantial challenge, that is, targeted delivery of therapeutic cells to tumour sites is not favourably managed. In this study, we aimed to provide an engineering solution to govern the cell targeting and actions, for which a biomaterial model is developed to mediate the conveyance and accommodation of activated immunocytes with anti-cancer potentials. We fabricated a dual-layered hydrogel/microsphere (GS) composite, which preserves all advantageous features of hydrogel such as injectability and favourable permeability, to achieve genuine localisation and physical immobilisation of the executing immunocytes-macrophages. According to our presented in vitro investigations, the GS immunoconstruct exhibited effective elimination of carcinoma cells as well as high safety free of gene alteration or cell leakage. Notably, unwanted long-term proliferation of the delivered cells was restrained by physical encapsulation in the bio-inert 3D hydrogel frameworks. By these efforts, we have provided an immunocyte delivery platform with which cell-based immunotherapy can be initiated at a desired location and implemented in a controlled manner.
Collapse