1
|
Liu L, Xiao W, Zhang C, Fan P, Zeng J, Yi J. The Potential of FOXP3 in Predicting Survival and Treatment Response in Breast Cancer. Int J Gen Med 2024; 17:1233-1251. [PMID: 38562210 PMCID: PMC10984197 DOI: 10.2147/ijgm.s454421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Background Breast cancer (BC) continues to pose a substantial challenge to global health, necessitating an enhanced understanding of its fundamental mechanisms. Among its various pathological classifications, breast invasive carcinoma (BRCA) is the most prevalent. The role of the transcription factor forkhead box P3 (FOXP3), associated with regulatory T cells, in BRCA's diagnosis and prognosis remains insufficiently explored, despite its recognized importance. Methods We examined the mRNA expression profile of FOXP3 in BRCA patients, assessing its correlation with disease detection, patient survival, immune checkpoint alterations, and response to anticancer drugs. Results Our analysis revealed significantly elevated FOXP3 mRNA levels in BRCA patients, with a 95.7% accuracy for BRCA detection based on the area under the curve. High FOXP3 mRNA levels were positively correlated with overall survival and showed significant associations with CTLA4, CD274, PDCD1, TMB, and immune cell infiltration status. Furthermore, FOXP3 mRNA expression was linked to the efficacy of anticancer drugs and the tumor inflammation signature. Discussion These findings suggest that FOXP3 serves as a promising biomarker for BRCA, offering valuable insights into its diagnosis and prognosis. The correlation between FOXP3 expression and immune checkpoint alterations, along with its predictive value for treatment response, underscores its potential in guiding therapeutic strategies. Conclusion FOXP3 stands out as an influential factor in BRCA, highlighting its diagnostic accuracy and prognostic value. Its association with immune responses and treatment efficacy opens new avenues for research and clinical applications, positioning FOXP3 as a vital target for further investigation in BRCA management.
Collapse
Affiliation(s)
- Luyao Liu
- Department of Breast and Thyroid Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, People’s Republic of China
| | - Wang Xiao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Chaojie Zhang
- Department of Breast and Thyroid Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, People’s Republic of China
| | - Peizhi Fan
- Department of Breast and Thyroid Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, People’s Republic of China
| | - Jie Zeng
- Department of Breast and Thyroid Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, People’s Republic of China
| | - Jianing Yi
- Department of Breast and Thyroid Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, People’s Republic of China
| |
Collapse
|
2
|
Santoro J, Carrese B, Peluso MS, Coppola L, D’Aiuto M, Mossetti G, Salvatore M, Smaldone G. Influence of Breast Cancer Extracellular Vesicles on Immune Cell Activation: A Pilot Study. BIOLOGY 2023; 12:1531. [PMID: 38132355 PMCID: PMC10740516 DOI: 10.3390/biology12121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Breast cancer is the leading cause of cancer-related death in women worldwide. It is well known that breast cancer shows significant alterations in the tumor microenvironment (TME), which is composed of a variety of immune cells, including natural killer (NK) cells, that have a key role in tumor development or anti-tumor responses in breast cancer patients. Luminal B (BT474) and triple-negative breast cancer (HS578T) cell lines were cultured in 2D and 3D model systems. PMBCs from healthy donors were isolated and treated with extracellular vesicles (EVs) from monolayer and spheroids of BT474 and HS578T and analyzed using cytofluorimetric approaches. We observed that EVs can alter the activation and presence of CD335+/CD11b+ NK cells. EVs derived from BT474 and HS578T cells trigger the activation and, simultaneously, a reduction in the percentage of CD335+/CD11b+ NK cells. In addition, EVs derived from BT474 also significantly reduce CD39+ T-regulatory (T-reg) cells. Our preliminary data suggest that using EVs to treat tumors could potentially alter components of the immune system, which causes hyperactivation of specific cell types and can lead to aggressive growth. These data will guide the designing of new personalized diagnostic approaches based on in-depth study of the TME.
Collapse
Affiliation(s)
- Jessie Santoro
- IRCCS SYNLAB SDN, Via E. Gianturco, 80143 Naples, Italy; (J.S.); (M.S.P.); (M.S.); (G.S.)
| | - Barbara Carrese
- IRCCS SYNLAB SDN, Via E. Gianturco, 80143 Naples, Italy; (J.S.); (M.S.P.); (M.S.); (G.S.)
| | - Maria Sara Peluso
- IRCCS SYNLAB SDN, Via E. Gianturco, 80143 Naples, Italy; (J.S.); (M.S.P.); (M.S.); (G.S.)
| | - Luigi Coppola
- IRCCS SYNLAB SDN, Via E. Gianturco, 80143 Naples, Italy; (J.S.); (M.S.P.); (M.S.); (G.S.)
| | | | - Gennaro Mossetti
- Pathological Anatomy Service, Casa di Cura Maria Rosaria, Via Colle San Bartolomeo, 50, 80045 Pompei, Italy;
| | - Marco Salvatore
- IRCCS SYNLAB SDN, Via E. Gianturco, 80143 Naples, Italy; (J.S.); (M.S.P.); (M.S.); (G.S.)
| | - Giovanni Smaldone
- IRCCS SYNLAB SDN, Via E. Gianturco, 80143 Naples, Italy; (J.S.); (M.S.P.); (M.S.); (G.S.)
| |
Collapse
|
3
|
Gandhi S, Opyrchal M, Grimm MJ, Slomba RT, Kokolus KM, Witkiewicz A, Attwood K, Groman A, Williams L, Tarquini ML, Wallace PK, Soh KT, Minderman H, Maguire O, O'Connor TL, Early AP, Levine EG, Kalinski P. Systemic infusion of TLR3-ligand and IFN-α in patients with breast cancer reprograms local tumor microenvironments for selective CTL influx. J Immunother Cancer 2023; 11:e007381. [PMID: 37963636 PMCID: PMC10649898 DOI: 10.1136/jitc-2023-007381] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Presence of cytotoxic T lymphocytes (CTL) in the tumor microenvironment (TME) predicts the effectiveness of cancer immunotherapies. The ability of toll-like receptor 3 (TLR3) ligands, interferons (IFNs) and COX2 inhibitors to synergistically induce CTL-attracting chemokines (but not regulatory T cell (Treg)-attractants) in the TME, but not in healthy tissues, observed in our preclinical studies, suggested that their systemic application can reprogram local TMEs. METHODS Six evaluable patients (33-69 years) with metastatic triple-negative breast cancer received six doses of systemic chemokine-modulating (CKM) regimen composed of TLR3 ligand (rintatolimod; 200 mg; intravenous), IFN-α2b (20 MU/m2; intravenous) and COX2 inhibitor (celecoxib; 2×200 mg; oral) over 2 weeks. The predetermined primary endpoint was the intratumoral change in the expression of CTL marker, CD8α, in the post-CKM versus pre-CKM tumor biopsies. Patients received follow-up pembrolizumab (200 mg, intravenously, every 3 weeks), starting 3-8 days after completion of CKM. RESULTS Post-CKM biopsies showed selectively increased CTL markers CD8α (average 10.2-fold, median 5.5-fold, p=0.034) and granzyme B (GZMB; 6.1-fold, median 5.8-fold, p=0.02), but not FOXP3 (Treg marker) relative to HPRT1 expression, resulting in the increases in average CD8α/FOXP3 ratio and GZMB/FOXP3 ratio. CKM increased intratumoral CTL-attractants CCL5 and CXCL10, but not Treg-attractants CCL22 or CXCL12. In contrast, CD8+ T cells and their CXCR3+ subset showed transient decreases in blood. One clinical response (breast tumor autoamputation) and three stable diseases were observed. The patient with clinical response remains disease free, with a follow-up of 46 months as of data cut-off. CONCLUSIONS Short-term systemic CKM selectively increases CTL numbers and CTL/Treg ratios in the TME, while transiently decreasing CTL numbers in the blood. Transient effects of CKM suggest that its simultaneous application with checkpoint blockade and other forms of immunotherapy may be needed for optimal outcomes.
Collapse
Affiliation(s)
- Shipra Gandhi
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Mateusz Opyrchal
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Melissa J Grimm
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Ronald T Slomba
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Kathleen M Kokolus
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Agnieszka Witkiewicz
- Advanced Tissue Imaging Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Kristopher Attwood
- Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Adrienne Groman
- Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Lauren Williams
- Clinical Research Services, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mary Lynne Tarquini
- Clinical Research Services, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Paul K Wallace
- Flow & Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Kah Teong Soh
- Flow & Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Hans Minderman
- Flow & Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Orla Maguire
- Flow & Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Tracey L O'Connor
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Amy P Early
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Ellis G Levine
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Pawel Kalinski
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
4
|
Nicola Candia AJ, Garcia Fallit M, Peña Agudelo JA, Pérez Küper M, Gonzalez N, Moreno Ayala MA, De Simone E, Giampaoli C, Casares N, Seilicovich A, Lasarte JJ, Zanetti FA, Candolfi M. Targeting FOXP3 Tumor-Intrinsic Effects Using Adenoviral Vectors in Experimental Breast Cancer. Viruses 2023; 15:1813. [PMID: 37766222 PMCID: PMC10537292 DOI: 10.3390/v15091813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The regulatory T cell master transcription factor, Forkhead box P3 (Foxp3), has been detected in cancer cells; however, its role in breast tumor pathogenesis remains controversial. Here we assessed Foxp3 tumor intrinsic effects in experimental breast cancer using a Foxp3 binder peptide (P60) that impairs Foxp3 nuclear translocation. Cisplatin upregulated Foxp3 expression in HER2+ and triple-negative breast cancer (TNBC) cells. Foxp3 inhibition with P60 enhanced chemosensitivity and reduced cell survival and migration in human and murine breast tumor cells. We also developed an adenoviral vector encoding P60 (Ad.P60) that efficiently transduced breast tumor cells, reduced cell viability and migration, and improved the cytotoxic response to cisplatin. Conditioned medium from transduced breast tumor cells contained lower levels of IL-10 and improved the activation of splenic lymphocytes. Intratumoral administration of Ad.P60 in breast-tumor-bearing mice significantly reduced tumor infiltration of Tregs, delayed tumor growth, and inhibited the development of spontaneous lung metastases. Our results suggest that Foxp3 exerts protumoral intrinsic effects in breast cancer cells and that gene-therapy-mediated blockade of Foxp3 could constitute a therapeutic strategy to improve the response of these tumors to standard treatment.
Collapse
Affiliation(s)
- Alejandro J. Nicola Candia
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| | - Matías Garcia Fallit
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina
| | - Jorge A. Peña Agudelo
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| | - Melanie Pérez Küper
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| | - Mariela A. Moreno Ayala
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| | - Emilio De Simone
- Cátedra de Fisiología Animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1428BFA, Argentina
| | - Carla Giampaoli
- Cátedra de Fisiología Animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1428BFA, Argentina
| | - Noelia Casares
- Program Immunology and Immunotherapy, Centro de Investigación Médica Aplicada (CIMA, CUN), 31008 Pamplona, Spain; (N.C.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| | - Juan José Lasarte
- Program Immunology and Immunotherapy, Centro de Investigación Médica Aplicada (CIMA, CUN), 31008 Pamplona, Spain; (N.C.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain
| | - Flavia A. Zanetti
- Instituto de Ciencia y Tecnología “Dr. Cesar Milstein”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo C1440FFX, Buenos Aires, Argentina;
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| |
Collapse
|
5
|
Qian L, Liu YF, Lu SM, Yang JJ, Miao HJ, He X, Huang H, Zhang JG. Construction of a fatty acid metabolism-related gene signature for predicting prognosis and immune response in breast cancer. Front Genet 2023; 14:1002157. [PMID: 36936412 PMCID: PMC10014556 DOI: 10.3389/fgene.2023.1002157] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Background: Breast cancer has the highest incidence among malignant tumors in women, and its prevalence ranks first in global cancer morbidity. Aim: This study aimed to explore the feasibility of a prognostic model for patients with breast cancer based on the differential expression of genes related to fatty acid metabolism. Methods: The mRNA expression matrix of breast cancer and paracancer tissues was downloaded from The Cancer Genome Atlas database. The differentially expressed genes related to fatty acid metabolism were screened in R language. The TRRUST database was used to predict transcriptional regulators related to hub genes and construct an mRNA-transcription factor interaction network. A consensus clustering approach was used to identify different fatty acid regulatory patterns. In combination with patient survival data, Lasso and multivariate Cox proportional risk regression models were used to establish polygenic prognostic models based on fatty acid metabolism. The median risk score was used to categorize patients into high- and low-risk groups. Kaplan-Meier survival curves were used to analyze the survival differences between both groups. The Cox regression analysis included risk score and clinicopathological factors to determine whether risk score was an independent risk factor. Models based on genes associated with fatty acid metabolism were evaluated using receiver operating characteristic curves. A comparison was made between risk score levels and the fatty acid metabolism-associated genes in different subtypes of breast cancer. The differential gene sets of the Kyoto Encyclopedia of Genes and Genomes for screening high- and low-risk populations were compared using a gene set enrichment analysis. Furthermore, we utilized CIBERSORT to examine the abundance of immune cells in breast cancer in different clustering models. Results: High expression levels of ALDH1A1 and UBE2L6 prevented breast cancer, whereas high RDH16 expression levels increased its risk. Our comprehensive assessment of the association between prognostic risk scoring models and tumor microenvironment characteristics showed significant differences in the abundance of various immune cells between high- and low-risk breast cancer patients. Conclusions: By assessing fatty acid metabolism patterns, we gained a better understanding of the infiltration characteristics of the tumor microenvironment. Our findings are valuable for prognosis prediction and treatment of patients with breast cancer based on their clinicopathological characteristics.
Collapse
Affiliation(s)
- Li Qian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yi-Fei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shu-Min Lu
- Department of Oncology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Juan-Juan Yang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hua-Jie Miao
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xin He
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Hua Huang, ; Jian-Guo Zhang,
| | - Jian-Guo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Hua Huang, ; Jian-Guo Zhang,
| |
Collapse
|
6
|
Mechanisms and Strategies to Overcome PD-1/PD-L1 Blockade Resistance in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 15:cancers15010104. [PMID: 36612100 PMCID: PMC9817764 DOI: 10.3390/cancers15010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by a high rate of systemic metastasis, insensitivity to conventional treatment and susceptibility to drug resistance, resulting in a poor patient prognosis. The immune checkpoint inhibitors (ICIs) represented by antibodies of programmed death receptor 1 (PD-1) and programmed death receptor ligand 1 (PD-L1) have provided new therapeutic options for TNBC. However, the efficacy of PD-1/PD-L1 blockade monotherapy is suboptimal immune response, which may be caused by reduced antigen presentation, immunosuppressive tumor microenvironment, interplay with other immune checkpoints and aberrant activation of oncological signaling in tumor cells. Therefore, to improve the sensitivity of TNBC to ICIs, suitable patients are selected based on reliable predictive markers and treated with a combination of ICIs with other therapies such as chemotherapy, radiotherapy, targeted therapy, oncologic virus and neoantigen-based therapies. This review discusses the current mechanisms underlying the resistance of TNBC to PD-1/PD-L1 inhibitors, the potential biomarkers for predicting the efficacy of anti-PD-1/PD-L1 immunotherapy and recent advances in the combination therapies to increase response rates, the depth of remission and the durability of the benefit of TNBC to ICIs.
Collapse
|
7
|
Shahverdi M, Masoumi J, Ghorbaninezhad F, Shajari N, Hajizadeh F, Hassanian H, Alizadeh N, Jafarlou M, Baradaran B. The modulatory role of dendritic cell-T cell cross-talk in breast cancer: Challenges and prospects. Adv Med Sci 2022; 67:353-363. [PMID: 36116207 DOI: 10.1016/j.advms.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/05/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022]
Abstract
Antigen recognition and presentation are highlighted as the first steps in developing specialized antigen responses. Dendritic cells (DCs) are outstanding professional antigen-presenting cells (APCs) responsible for priming cellular immunity in pathological states, including cancer. However, the diminished or repressed function of DCs is thought to be a substantial mechanism through which tumors escape from the immune system. In this regard, DCs obtained from breast cancer (BC) patients represent a notably weakened potency to encourage specific T-cell responses. Additionally, impaired DC-T-cell cross-talk in BC facilitates the immune evade of cancer cells and is connected with tumor advancement, immune tolerance, and adverse prognosis for patients. In this review we aim to highlight the available knowledge on DC-T-cell interactions in BC aggressiveness and show its therapeutic potential in BC treatment.
Collapse
Affiliation(s)
- Mahshid Shahverdi
- Department of Medical Biotechnology, Arak University of Medical Sciences, Arak, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Shajari
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnaz Hajizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Hassanian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Jafarlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Urueña C, Lasso P, Bernal-Estevez D, Rubio D, Salazar AJ, Olaya M, Barreto A, Tawil M, Torregrosa L, Fiorentino S. The breast cancer immune microenvironment is modified by neoadjuvant chemotherapy. Sci Rep 2022; 12:7981. [PMID: 35562400 PMCID: PMC9106657 DOI: 10.1038/s41598-022-12108-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/05/2022] [Indexed: 12/14/2022] Open
Abstract
Neoadjuvant chemotherapy (NAT) in breast cancer (BC) has been used to reduce tumor burden prior to surgery. However, the impact on prognosis depends on the establishment of Pathological Complete Response (pCR), which is influenced by tumor-infiltrating lymphocyte levels and the activation of the antitumor immune response. Nonetheless, NAT can affect immune infiltration and the quality of the response. Here, we showed that NAT induces dynamic changes in the tumor microenvironment (TME). After NAT, an increase of regulatory T cells and a decrease of CD8+ T cells was found in tumor, correlated with the presence of metastatic cells in lymph nodes. In addition, an increase of polymorphonuclear myeloid-derived suppressor like cells was found in luminal patients post-NAT. pCR patients showed a balance between the immune populations, while non-pCR patients presented an inverse relationship in the frequency of CD68+ versus CD3+, CD8+, and CD20+ cells. Moreover, activated T cells were found in peripheral blood, as well as an increase in T cell clonality with a lower diversity post-NAT. Overall, these results shown that NAT induces an activation of immune response, however, a balance in the TME seems to be related to a better antigenic presentation and therefore a better response to treatment.
Collapse
Affiliation(s)
- Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, C.P. 110211, Bogotá, Colombia.
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, C.P. 110211, Bogotá, Colombia
| | - David Bernal-Estevez
- Grupo de Investigación en Inmunología y Oncología Clínica, Fundación Salud de los Andes, Bogotá, Colombia
| | - Diego Rubio
- Departamento de Patología, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Ana Janeth Salazar
- Departamento de Patología, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Mercedes Olaya
- Departamento de Patología, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, C.P. 110211, Bogotá, Colombia
| | - Mauricio Tawil
- Departamento de Cirugía y Especialidades, Hospital Universitario San Ignacio, Centro Javeriano de Oncología, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Lilian Torregrosa
- Departamento de Cirugía y Especialidades, Hospital Universitario San Ignacio, Centro Javeriano de Oncología, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, C.P. 110211, Bogotá, Colombia.
| |
Collapse
|
9
|
Zhang C, Fang L, Wang X, Yuan S, Li W, Tian W, Chen J, Zhang Q, Zhang Y, Zhang Q, Zheng J. Oncolytic adenovirus-mediated expression of decorin facilitates CAIX-targeting CAR-T therapy against renal cell carcinoma. Mol Ther Oncolytics 2022; 24:14-25. [PMID: 34977339 PMCID: PMC8688951 DOI: 10.1016/j.omto.2021.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022] Open
Abstract
Although chimeric antigen receptor T cell (CAR-T) therapy has been successful for hematological malignancies, it is less effective for solid tumors. The primary reason is that the immune microenvironment restricts CAR-T cells from infiltrating and proliferating in tumors. Oncolytic virotherapy has emerged as a novel immunogenic therapy to augment antitumor immune response. Here we combined an oncolytic adenovirus carrying decorin with a CAR-T targeting carbonic anhydrase IX (CAIX) to perform the antitumor activity for renal cancer cells. We found that OAV-Decorin combined with CAIX-CAR-T exhibited significantly reduced tumor burden, altered the composition of extracellular matrix (ECM) by inhibiting the distribution of collagen fibers, decreased the expression of TGF-β in tumor cells, enhanced IFN-γ secretion, and obtained higher numbers of CAR-T cells. The combination treatment modality showed prolonged mice survival. The intratumoral injection of OAV-Decorin into tumor-bearing immunocompetent mice activated the inflammatory immune status and resulted in tumor regression. These data supported further investigation of the combination of OAV-Decorin and CAIX-CAR-T cells in solid tumors.
Collapse
Affiliation(s)
- Chen Zhang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Cancer Institute, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou 221002, Jiangsu, China.,Department of Oncology, The First People's Hospital of Yancheng, Yancheng 224001 Jiangsu, China
| | - Lin Fang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Cancer Institute, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou 221002, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Xueyan Wang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Cancer Institute, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou 221002, Jiangsu, China
| | - Sen Yuan
- Jiangsu Key Laboratory of Biological Cancer Therapy, Cancer Institute, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou 221002, Jiangsu, China
| | - Wanjing Li
- Jiangsu Key Laboratory of Biological Cancer Therapy, Cancer Institute, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou 221002, Jiangsu, China
| | - Weiping Tian
- Jiangsu Key Laboratory of Biological Cancer Therapy, Cancer Institute, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou 221002, Jiangsu, China
| | - Jing Chen
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Qi Zhang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Cancer Institute, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou 221002, Jiangsu, China
| | - Yuxin Zhang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Cancer Institute, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou 221002, Jiangsu, China
| | - Qing Zhang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Cancer Institute, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou 221002, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Junnian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Cancer Institute, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou 221002, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| |
Collapse
|
10
|
Lepucki A, Orlińska K, Mielczarek-Palacz A, Kabut J, Olczyk P, Komosińska-Vassev K. The Role of Extracellular Matrix Proteins in Breast Cancer. J Clin Med 2022; 11:jcm11051250. [PMID: 35268340 PMCID: PMC8911242 DOI: 10.3390/jcm11051250] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/16/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix is a structure composed of many molecules, including fibrillar (types I, II, III, V, XI, XXIV, XXVII) and non-fibrillar collagens (mainly basement membrane collagens: types IV, VIII, X), non-collagenous glycoproteins (elastin, laminin, fibronectin, thrombospondin, tenascin, osteopontin, osteonectin, entactin, periostin) embedded in a gel of negatively charged water-retaining glycosaminoglycans (GAGs) such as non-sulfated hyaluronic acid (HA) and sulfated GAGs which are linked to a core protein to form proteoglycans (PGs). This highly dynamic molecular network provides critical biochemical and biomechanical cues that mediate the cell–cell and cell–matrix interactions, influence cell growth, migration and differentiation and serve as a reservoir of cytokines and growth factors’ action. The breakdown of normal ECM and its replacement with tumor ECM modulate the tumor microenvironment (TME) composition and is an essential part of tumorigenesis and metastasis, acting as key driver for malignant progression. Abnormal ECM also deregulate behavior of stromal cells as well as facilitating tumor-associated angiogenesis and inflammation. Thus, the tumor matrix modulates each of the classically defined hallmarks of cancer promoting the growth, survival and invasion of the cancer. Moreover, various ECM-derived components modulate the immune response affecting T cells, tumor-associated macrophages (TAM), dendritic cells and cancer-associated fibroblasts (CAF). This review article considers the role that extracellular matrix play in breast cancer. Determining the detailed connections between the ECM and cellular processes has helped to identify novel disease markers and therapeutic targets.
Collapse
Affiliation(s)
- Arkadiusz Lepucki
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
| | - Kinga Orlińska
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.M.-P.); (J.K.)
| | - Jacek Kabut
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.M.-P.); (J.K.)
| | - Pawel Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
- Correspondence:
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland;
| |
Collapse
|
11
|
Lin HJ, Liu Y, Lofland D, Lin J. Breast Cancer Tumor Microenvironment and Molecular Aberrations Hijack Tumoricidal Immunity. Cancers (Basel) 2022; 14:cancers14020285. [PMID: 35053449 PMCID: PMC8774102 DOI: 10.3390/cancers14020285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Immune therapy is designed to stimulate tumoricidal effects in a variety of solid tumors including breast carcinomas. However, the emergence of resistant clones leads to treatment failure. Understanding the molecular, cellular, and microenvironmental aberrations is crucial to uncovering underlying mechanisms and developing advanced strategies for preventing or combating these resistant malignancies. This review will summarize research findings revealing various mechanisms employed to hijack innate and adaptive immune surveillance mechanisms, develop hypoxic and tumor promoting metabolism, and foster an immune tolerance microenvironment. In addition, it will highlight potential targets for therapeutic approaches. Abstract Breast cancer is the most common malignancy among females in western countries, where women have an overall lifetime risk of >10% for developing invasive breast carcinomas. It is not a single disease but is composed of distinct subtypes associated with different clinical outcomes and is highly heterogeneous in both the molecular and clinical aspects. Although tumor initiation is largely driven by acquired genetic alterations, recent data suggest microenvironment-mediated immune evasion may play an important role in neoplastic progression. Beyond surgical resection, radiation, and chemotherapy, additional therapeutic options include hormonal deactivation, targeted-signaling pathway treatment, DNA repair inhibition, and aberrant epigenetic reversion. Yet, the fatality rate of metastatic breast cancer remains unacceptably high, largely due to treatment resistance and metastases to brain, lung, or bone marrow where tumor bed penetration of therapeutic agents is limited. Recent studies indicate the development of immune-oncological therapy could potentially eradicate this devastating malignancy. Evidence suggests tumors express immunogenic neoantigens but the immunity towards these antigens is frequently muted. Established tumors exhibit immunological tolerance. This tolerance reflects a process of immune suppression elicited by the tumor, and it represents a critical obstacle towards successful antitumor immunotherapy. In general, immune evasive mechanisms adapted by breast cancer encompasses down-regulation of antigen presentations or recognition, lack of immune effector cells, obstruction of anti-tumor immune cell maturation, accumulation of immunosuppressive cells, production of inhibitory cytokines, chemokines or ligands/receptors, and up-regulation of immune checkpoint modulators. Together with altered metabolism and hypoxic conditions, they constitute a permissive tumor microenvironment. This article intends to discern representative incidents and to provide potential innovative therapeutic regimens to reinstate tumoricidal immunity.
Collapse
Affiliation(s)
- Huey-Jen Lin
- Department of Medical & Molecular Sciences, University of Delaware, Willard Hall Education Building, 16 West Main Street, Newark, DE 19716, USA
- Correspondence: ; Tel.: +1-302-831-7576; Fax: +1-302-831-4180
| | - Yingguang Liu
- Department of Molecular and Cellular Sciences, College of Osteopathic Medicine, Liberty University, 306 Liberty View Lane, Lynchburg, VA 24502, USA;
| | - Denene Lofland
- Department of Microbiology and Immunology, Tower Campus, Drexel University College of Medicine, 50 Innovation Way, Wyomissing, PA 19610, USA;
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, Molecular Medicine Graduate Program, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, 108 N. Greene Street, Baltimore, MD 21201, USA;
| |
Collapse
|
12
|
The Immune Landscape of Breast Cancer: Strategies for Overcoming Immunotherapy Resistance. Cancers (Basel) 2021; 13:cancers13236012. [PMID: 34885122 PMCID: PMC8657247 DOI: 10.3390/cancers13236012] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Immunotherapy is a rapidly advancing field in breast cancer treatment, however, it encounters many obstacles that leave open gateways for breast cancer cells to resist novel immunotherapies. It is believed that the tumor microenvironment consisting of cancer, stromal, and immune cells as well as a plethora of tumor-promoting soluble factors, is responsible for the failure of therapeutic strategies in cancer, including breast tumors. Therefore, an in-depth understanding of key barriers to effective immunotherapy, focusing the research efforts on harnessing the power of the immune system, and thus, developing new strategies to overcome the resistance may contribute significantly to increase breast cancer patient survival. In this review, we discuss the latest reports regarding the strategies rendering the immunosuppressive tumor microenvironment more sensitive to immunotherapy in breast cancers, HER2-positive and triple-negative types of breast cancer, which are attractive from an immunotherapeutic point of view. Abstract Breast cancer (BC) has traditionally been considered to be not inherently immunogenic and insufficiently represented by immune cell infiltrates. Therefore, for a long time, it was thought that the immunotherapies targeting this type of cancer and its microenvironment were not justified and would not bring benefits for breast cancer patients. Nevertheless, to date, a considerable number of reports have indicated tumor-infiltrating lymphocytes (TILs) as a prognostic and clinically relevant biomarker in breast cancer. A high TILs expression has been demonstrated in primary tumors, of both, HER2-positive BC and triple-negative (TNBC), of patients before treatment, as well as after treatment with adjuvant and neoadjuvant chemotherapy. Another milestone was reached in advanced TNBC immunotherapy with the help of the immune checkpoint inhibitors directed against the PD-L1 molecule. Although those findings, together with the recent developments in chimeric antigen receptor T cell therapies, show immense promise for significant advancements in breast cancer treatments, there are still various obstacles to the optimal activity of immunotherapeutics in BC treatment. Of these, the immunosuppressive tumor microenvironment constitutes a key barrier that greatly hinders the success of immunotherapies in the most aggressive types of breast cancer, HER2-positive and TNBC. Therefore, the improvement of the current and the demand for the development of new immunotherapeutic strategies is strongly warranted.
Collapse
|
13
|
Abd-Allah MYY, Abdel-Salam RA, Refat S. Immunohistochemical expression of FOXP3 in gastric carcinoma; its relation to Ki-67 proliferation marker, HER2/neu expression, and other clinicopathological parameters. J Immunoassay Immunochem 2021; 43:1959341. [PMID: 34806545 DOI: 10.1080/15321819.2021.1959341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Gastric cancer is common cancer in the world. Contradictory results regarding FOXP3 expression in gastric carcinoma were detected and the role of Ki-67 in prognosis is not completely understood. Furthermore, due to increasing use of anti-HER2 drug trastuzumab for gastric cancer, assessment of HER2 expression becomes important. This study tried to assess the FOXP3 expression in gastric carcinoma and to study the relation between its expression and Ki-67 and HER2/neu expression and relation between their expression and other clinicopathological variables. This retrospective study was carried out on 60 gastric adenocarcinoma cases. Tissue microarrays and immunohistochemical staining for FOXP3, Ki-67 and HER2/neu were done and then assessed and scored. HER2/neu expression showed significant relation to Lauren histological type and lymph node status. High Ki-67 index was related significantly to patients' age, lympho-vascular tumor emboli, peri-neural invasion, tumor grade, lymph node status, and cancer stage. There was significant relation between high FOXP3 expression and patients' age, lympho-vascular tumor emboli, peri-neural invasion, tumor grade, lymph node status, and cancer stage. Direct positive significant relationships between HER2/neu, Ki-67, and FOXP3 expression were noticed. Finally, high FOXP3 expression, positive HER2/neu, and high Ki-67 nuclear proliferation index may be an indication of the aggressiveness of gastric carcinoma.
Collapse
Affiliation(s)
- Mona Y Y Abd-Allah
- Associate Professor of Pathology, Faculty of Medicine, Mansoura University, Al Mansurah Egypt.,Assistant Lecturer of Pathology, Faculty of Medicine, Mansoura University, Al Mansurah Egypt.,Lecturer of Pathology, Faculty of Medicine, Mansoura University, Al Mansurah Egypt
| | - Ramy Ahmed Abdel-Salam
- Associate Professor of Pathology, Faculty of Medicine, Mansoura University, Al Mansurah Egypt.,Assistant Lecturer of Pathology, Faculty of Medicine, Mansoura University, Al Mansurah Egypt.,Lecturer of Pathology, Faculty of Medicine, Mansoura University, Al Mansurah Egypt
| | - Sherine Refat
- Associate Professor of Pathology, Faculty of Medicine, Mansoura University, Al Mansurah Egypt.,Assistant Lecturer of Pathology, Faculty of Medicine, Mansoura University, Al Mansurah Egypt.,Lecturer of Pathology, Faculty of Medicine, Mansoura University, Al Mansurah Egypt
| |
Collapse
|
14
|
Berger Fridman I, Kostas J, Gregus M, Ray S, Sullivan MR, Ivanov AR, Cohen S, Konry T. High-throughput microfluidic 3D biomimetic model enabling quantitative description of the human breast tumor microenvironment. Acta Biomater 2021; 132:473-488. [PMID: 34153511 PMCID: PMC8434998 DOI: 10.1016/j.actbio.2021.06.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/31/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022]
Abstract
Cancer is driven by both genetic aberrations in the tumor cells and fundamental changes in the tumor microenvironment (TME). These changes offer potential targets for novel therapeutics, yet lack of in vitro 3D models recapitulating this complex microenvironment impedes such progress. Here, we generated several tumor-stroma scaffolds reflecting the dynamic in vivo breast TME, using a high throughput microfluidic system. Alginate (Alg) or alginate-alginate sulfate (Alg/Alg-S) hydrogels were used as ECM-mimics, enabling the encapsulation and culture of tumor cells, fibroblasts and immune cells (macrophages and T cells, of the innate and adaptive immune systems, respectively). Specifically, Alg/Alg-S was shown capable of capturing and presenting growth factors and cytokines with binding affinity that is comparable to heparin. Viability and cytotoxicity were shown to strongly correlate with the dynamics of cellular milieu, as well as hydrogel type. Using on-chip immunofluorescence, production of reactive oxygen species and apoptosis were imaged and quantitatively analyzed. We then show how macrophages in our microfluidic system were shifted from a proinflammatory to an immunosuppressive phenotype when encapsulated in Alg/Alg-S, reflecting in vivo TME dynamics. LC-MS proteomic profiling of tumor cells sorted from the TME scaffolds revealed upregulation of proteins involved in cell-cell interactions and immunomodulation in Alg/Alg-S scaffolds, correlating with in vivo findings and demonstrating the appropriateness of Alg/Alg-S as an ECM biomimetic. Finally, we show the formation of large tumor-derived vesicles, formed exclusively in Alg/Alg-S scaffolds. Altogether, our system offers a robust platform for quantitative description of the breast TME that successfully recapitulates in vivo patterns. STATEMENT OF SIGNIFICANCE: Cancer progression is driven by profound changes in both tumor cells and surrounding stroma. Here, we present a high throughput microfluidic system for the generation and analysis of dynamic tumor-stroma scaffolds, that mimic the complex in vivo TME cell proportions and compositions, constructing robust in vitro models for the study of the TME. Utilizing Alg/Alg-S as a bioinspired ECM, mimicking heparin's in vivo capabilities of capturing and presenting signaling molecules, we show how Alg/Alg-S induces complex in vivo-like responses in our models. Alg/Alg-S is shown here to promote dynamic protein expression patterns, that can serve as potential therapeutic targets for breast cancer treatment. Formation of large tumor-derived vesicles, observed exclusively in the Alg/Alg-S scaffolds suggests a mechanism for tumor survival.
Collapse
Affiliation(s)
- Ilana Berger Fridman
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA; Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and Regenerative Medicine and Stem Cell Center, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel.
| | - James Kostas
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Michal Gregus
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Somak Ray
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Matthew R Sullivan
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Alexander R Ivanov
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Smadar Cohen
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and Regenerative Medicine and Stem Cell Center, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel.
| | - Tania Konry
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Braile M, Fiorelli A, Sorriento D, Di Crescenzo RM, Galdiero MR, Marone G, Santini M, Varricchi G, Loffredo S. Human Lung-Resident Macrophages Express and Are Targets of Thymic Stromal Lymphopoietin in the Tumor Microenvironment. Cells 2021; 10:cells10082012. [PMID: 34440780 PMCID: PMC8392295 DOI: 10.3390/cells10082012] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine highly expressed by epithelial cells and several innate and adaptive immune cells. TSLP exerts its biological effects by binding to a heterodimeric complex composed of TSLP receptor (TSLPR) and IL-7Rα. In humans, there are two TSLP isoforms: the short form (sfTSLP), constitutively expressed, and the long form (lfTSLP), which is upregulated in inflammation. TSLP has been implicated in the induction and progression of several experimental and human cancers. Primary human lung macrophages (HLMs), monocyte-derived macrophages (MDMs), and peripheral blood monocytes consitutively expressed sfTSLP mRNA. Incubation of HLMs, MDMs, and monocytes with lipopolysaccharide (LPS) or IL-4, but not with IL-13, induced TSLP release from HLMs. LPS, but not IL-4 or IL-13, induced CXCL8 release from HLMs. LPS, IL-4 alone or in combination with IL-13, induced the expression of lfTSLP, but not of sfTSLP from HLMs. Preincubation of HLMs with IL-4, alone or in combination with IL-13, but not IL-13 alone, synergistically enhanced TSLP release from LPS-activated macrophages. By contrast, IL-4, alone or in combination with IL-13, inhibited LPS-induced CXCL8 release from HLMs. Immunoreactive TSLP was detected in lysates of HLMs, MDMs, and monocytes. Incubation of HLMs with TSLP induced the release of proinflammatory (TNF-α), angiogenic (VEGF-A, angiopoietin 2), and lymphangiogenic (VEGF-C) factors. TSLP, TSLPR, and IL-7Rα were expressed in intratumoral and peritumoral areas of human lung cancer. sfTSLP and lfTSLP mRNAs were differentially expressed in peritumoral and intratumoral lung cancer tissues. The TSLP system, expressed in HLMs, MDMs, and monocytes, could play a role in chronic inflammatory disorders including lung cancer.
Collapse
Affiliation(s)
- Mariantonia Braile
- Center for Basic and Clinical Immunology Research (CISI), Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (M.B.); (M.R.G.); (G.M.)
- WAO Center of Excellence, 80131 Naples, Italy
| | - Alfonso Fiorelli
- Department of Translational Medical and Surgical Science, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.F.); (R.M.D.C.); (M.S.)
| | - Daniela Sorriento
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Rosa Maria Di Crescenzo
- Department of Translational Medical and Surgical Science, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.F.); (R.M.D.C.); (M.S.)
| | - Maria Rosaria Galdiero
- Center for Basic and Clinical Immunology Research (CISI), Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (M.B.); (M.R.G.); (G.M.)
- WAO Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Gianni Marone
- Center for Basic and Clinical Immunology Research (CISI), Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (M.B.); (M.R.G.); (G.M.)
- WAO Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Mario Santini
- Department of Translational Medical and Surgical Science, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.F.); (R.M.D.C.); (M.S.)
| | - Gilda Varricchi
- Center for Basic and Clinical Immunology Research (CISI), Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (M.B.); (M.R.G.); (G.M.)
- WAO Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
- Correspondence: (G.V.); (S.L.)
| | - Stefania Loffredo
- Center for Basic and Clinical Immunology Research (CISI), Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (M.B.); (M.R.G.); (G.M.)
- WAO Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
- Correspondence: (G.V.); (S.L.)
| |
Collapse
|
16
|
Chang CM, Lam HYP, Hsu HJ, Jiang SJ. Interleukin-10: A double-edged sword in breast cancer. Tzu Chi Med J 2021; 33:203-211. [PMID: 34386356 PMCID: PMC8323643 DOI: 10.4103/tcmj.tcmj_162_20] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/01/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is a frequently diagnosed cancer among women worldwide. Currently, BC can be divided into different subgroups according to the presence of the following hormone receptors: estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Each of these subgroups has different treatment strategies. However, the presence of new metastatic lesions and patient deterioration suggest resistance to a given treatment. Various lines of evidence had shown that cytokines are one of the important mediators of tumor growth, invasion, metastasis, and treatment resistance. Interleukin-10 (IL-10) is an immunoregulatory cytokine, and acts as a poor prognostic marker in many cancers. The anti-inflammatory IL-10 blocks certain effects of inflammatory cytokines. It also antagonizes the co-stimulatory molecules on the antigen-presenting cells. Here, we review the current knowledge on the function and molecular mechanism of IL-10, and recent findings on how IL-10 contributes to the progression of BC.
Collapse
Affiliation(s)
- Chun-Ming Chang
- Department of General Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Ho Yin Pekkle Lam
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hao-Jen Hsu
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Life Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shinn-Jong Jiang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
17
|
Pereira M, Matuszewska K, Jamieson C, Petrik J. Characterizing Endocrine Status, Tumor Hypoxia and Immunogenicity for Therapy Success in Epithelial Ovarian Cancer. Front Endocrinol (Lausanne) 2021; 12:772349. [PMID: 34867818 PMCID: PMC8635771 DOI: 10.3389/fendo.2021.772349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer is predominantly diagnosed at advanced stages which creates significant therapeutic challenges. As a result, the 5-year survival rate is low. Within ovarian cancer, significant tumor heterogeneity exists, and the tumor microenvironment is diverse. Tumor heterogeneity leads to diversity in therapy response within the tumor, which can lead to resistance or recurrence. Advancements in therapy development and tumor profiling have initiated a shift from a "one-size-fits-all" approach towards precision patient-based therapies. Here, we review aspects of ovarian tumor heterogeneity that facilitate tumorigenesis and contribute to treatment failure. These tumor characteristics should be considered when designing novel therapies or characterizing mechanisms of treatment resistance. Individual patients vary considerably in terms of age, fertility and contraceptive use which innately affects the endocrine milieu in the ovary. Similarly, individual tumors differ significantly in their immune profile, which can impact the efficacy of immunotherapies. Tumor size, presence of malignant ascites and vascular density further alters the tumor microenvironment, creating areas of significant hypoxia that is notorious for increasing tumorigenesis, resistance to standard of care therapies and promoting stemness and metastases. We further expand on strategies aimed at improving oxygenation status in tumors to dampen downstream effects of hypoxia and set the stage for better response to therapy.
Collapse
|
18
|
Dai S, Lv Y, Xu W, Yang Y, Liu C, Dong X, Zhang H, Prabhakar BS, Maker AV, Seth P, Wang H. Oncolytic adenovirus encoding LIGHT (TNFSF14) inhibits tumor growth via activating anti-tumor immune responses in 4T1 mouse mammary tumor model in immune competent syngeneic mice. Cancer Gene Ther 2020; 27:923-933. [PMID: 32307442 DOI: 10.1038/s41417-020-0173-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/17/2020] [Accepted: 03/26/2020] [Indexed: 12/24/2022]
Abstract
LIGHT, also known as tumor-necrosis factor (TNF) superfamily member 14 (TNFSF14), is predominantly expressed on activated immune cells and some tumor cells. LIGHT is a pivotal regulator both for recruiting and activating immune cells in the tumor lesions. In this study, we armed human telomerase reverse transcriptase (TERT) promoter controlled oncolytic adenovirus with LIGHT to generate rAd.Light. rAd.Light effectively transduced both human and mouse breast tumor cell lines in vitro, and expressed LIGHT protein on the surface of tumor cells. Both rAd.Null, and rAd.Light could replicate in human breast cancer cells, and produced cytotoxicity to human and mouse mammary tumor cells. rAd.Light induced apoptosis resulting in tumor cell death. Using a subcutaneous model of 4T1 cells in BALB/c mice, rAd.Light was delivered intratumorally to evaluate the anti-tumor responses. Both rAd.Light and rAd.Null significantly inhibited the tumor growth, but rAd.Light produced much stronger anti-tumor effects. Histopathological analysis showed the infiltration of T lymphocytes in the tumor tissues. rAd.Light also induced stronger cellular apoptosis than rAd.Null in the tumors. Interestingly, on day 15, compared to rAd.Null, there was a significant reduction of Tregs following rAd.Light treatment. rAd.Light significantly increased Th1 cytokine interleukin (IL)-2 expression, and reduced Th2 cytokines expression, such as transforming growth factor β (TGF-β) and IL-10 in the tumors. These results suggest rAd.Light induced activation of anti-tumor immune responses. In conclusion, rAd.Light produced anti-tumor effect in a subcutaneous model of breast cancer via inducing tumor apoptosis and evoking strong anti-tumor immune responses. Therefore, rAd.Light has great promise to be developed as an effective therapeutic approach for the treatment of breast cancer.
Collapse
Affiliation(s)
- Shiyun Dai
- Anhui Medical University, Hefei, 230032, Anhui, PR China
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Yun Lv
- Anhui Medical University, Hefei, 230032, Anhui, PR China
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Weidong Xu
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, IL, USA
| | - Yuefeng Yang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, IL, USA
- Department of Experimental Medical Science & Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang, PR China
| | - Chao Liu
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
- Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Xiwen Dong
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Huan Zhang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, PR China
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Ajay V Maker
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Surgery, Division of Surgical Oncology, University of Illinois, Chicago, IL, USA
| | - Prem Seth
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, IL, USA.
| | - Hua Wang
- Anhui Medical University, Hefei, 230032, Anhui, PR China.
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China.
| |
Collapse
|
19
|
Analysis of the Heterogeneity of CD4 +CD25 + T Cell TCR β CDR3 Repertoires in Breast Tumor Tissues, Lung Metastatic Tissues, and Spleens from 4T1 Tumor-Bearing BALB/c Mice. J Immunol Res 2020; 2020:3184190. [PMID: 33029539 PMCID: PMC7532420 DOI: 10.1155/2020/3184190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/15/2020] [Accepted: 08/24/2020] [Indexed: 02/05/2023] Open
Abstract
To study the homogeneity and heterogeneity of CD4+CD25+ T cells receptor β-chain complementarity determining region 3 (TCR β CDR3) repertoires in breast tumor tissues, lung metastatic tissues, and spleens from 4T1 tumor-bearing BALB/c mice. We used high-throughput sequencing to analyze the characteristics and changes of CD4+CD25+ TCR β CDR3 repertoires among tumor tissues, lung metastatic tissues, and spleens. The diversity of the CD4+CD25+ TCR β CDR3 repertoires in breast tumor tissue was similar to that of lung metastatic tissues and less pronounced than that of spleen tissues. Breast tumor tissues and lung metastatic tissues had a greater number of high-frequency CDR3 sequences and intermediate-frequency CDR3 sequences than those of spleens. The proportion of unique productive CDR3 sequences in breast tumor tissues and lung metastatic tissues was significantly greater than that in the spleens. The diversity and frequency of the CDR3 repertoires remained homogeneous in breast tumors and lung metastatic tissues and showed great heterogeneity in the spleens, which suggested that the breast tissues and lung metastatic tissues have characteristics of CD4+CD25+ T cells that relate to the tumor microenvironment. However, the number and characteristics of overlapping CDR3 sequences suggested that there were some different CD4+CD25+ T cells in tumors and in the circulatory immune system. The study may be used to further explore the characteristics of the CDR3 repertoires and determine the source of the CD4+CD25+ T cells in the breast cancer microenvironment.
Collapse
|
20
|
Terranova-Barberio M, Pawlowska N, Dhawan M, Moasser M, Chien AJ, Melisko ME, Rugo H, Rahimi R, Deal T, Daud A, Rosenblum MD, Thomas S, Munster PN. Exhausted T cell signature predicts immunotherapy response in ER-positive breast cancer. Nat Commun 2020; 11:3584. [PMID: 32681091 PMCID: PMC7367885 DOI: 10.1038/s41467-020-17414-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/24/2020] [Indexed: 01/05/2023] Open
Abstract
Responses to immunotherapy are uncommon in estrogen receptor (ER)-positive breast cancer and to date, lack predictive markers. This randomized phase II study defines safety and response rate of epigenetic priming in ER-positive breast cancer patients treated with checkpoint inhibitors as primary endpoints. Secondary and exploratory endpoints included PD-L1 modulation and T-cell immune-signatures. 34 patients received vorinostat, tamoxifen and pembrolizumab with no excessive toxicity after progression on a median of five prior metastatic regimens. Objective response was 4% and clinical benefit rate (CR + PR + SD > 6 m) was 19%. T-cell exhaustion (CD8+ PD-1+/CTLA-4+) and treatment-induced depletion of regulatory T-cells (CD4+ Foxp3+/CTLA-4+) was seen in tumor or blood in 5/5 patients with clinical benefit, but only in one non-responder. Tumor lymphocyte infiltration was 0.17%. Only two non-responders had PD-L1 expression >1%. This data defines a novel immune signature in PD-L1-negative ER-positive breast cancer patients who are more likely to benefit from immune-checkpoint and histone deacetylase inhibition (NCT02395627).
Collapse
Affiliation(s)
| | - Nela Pawlowska
- Division of Hematology and Oncology, University of California, San Francisco, CA, USA
| | - Mallika Dhawan
- Division of Hematology and Oncology, University of California, San Francisco, CA, USA
| | - Mark Moasser
- Division of Hematology and Oncology, University of California, San Francisco, CA, USA
| | - Amy J Chien
- Division of Hematology and Oncology, University of California, San Francisco, CA, USA
| | - Michelle E Melisko
- Division of Hematology and Oncology, University of California, San Francisco, CA, USA
| | - Hope Rugo
- Division of Hematology and Oncology, University of California, San Francisco, CA, USA
| | - Roshun Rahimi
- Division of Hematology and Oncology, University of California, San Francisco, CA, USA
| | - Travis Deal
- Division of Hematology and Oncology, University of California, San Francisco, CA, USA
| | - Adil Daud
- Division of Hematology and Oncology, University of California, San Francisco, CA, USA
| | | | - Scott Thomas
- Division of Hematology and Oncology, University of California, San Francisco, CA, USA
| | - Pamela N Munster
- Division of Hematology and Oncology, University of California, San Francisco, CA, USA.
| |
Collapse
|
21
|
Kim G, Pastoriza JM, Condeelis JS, Sparano JA, Filippou PS, Karagiannis GS, Oktay MH. The Contribution of Race to Breast Tumor Microenvironment Composition and Disease Progression. Front Oncol 2020; 10:1022. [PMID: 32714862 PMCID: PMC7344193 DOI: 10.3389/fonc.2020.01022] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the second most commonly diagnosed cancer in American women following skin cancer. Despite overall decrease in breast cancer mortality due to advances in treatment and earlier screening, black patients continue to have 40% higher risk of breast cancer related death compared to white patients. This disparity in outcome persists even when controlled for access to care and stage at presentation and has been attributed to differences in tumor subtypes or gene expression profiles. There is emerging evidence that the tumor microenvironment (TME) may contribute to the racial disparities in outcome as well. Here, we provide a comprehensive review of current literature available regarding race-dependent differences in the TME. Notably, black patients tend to have a higher density of pro-tumorigenic immune cells (e.g., M2 macrophages, regulatory T cells) and microvasculature. Although immune cells are classically thought to be anti-tumorigenic, increase in M2 macrophages and angiogenesis may lead to a paradoxical increase in metastasis by forming doorways of tumor cell intravasation called tumor microenvironment of metastasis (TMEM). Furthermore, black patients also have higher serum levels of inflammatory cytokines, which provide a positive feedback loop in creating a pro-metastatic TME. Lastly, we propose that the higher density of immune cells and angiogenesis observed in the TME of black patients may be a result of evolutionary selection for a more robust immune response in patients of African geographic ancestry. Better understanding of race-dependent differences in the TME will aid in overcoming the racial disparity in breast cancer mortality.
Collapse
Affiliation(s)
- Gina Kim
- Department of Anatomy and Structural Biology, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Integrated Imaging Program, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Department of Surgery, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States
| | - Jessica M Pastoriza
- Department of Surgery, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Integrated Imaging Program, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Department of Surgery, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Gruss-Lipper Biophotonics Center, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States
| | - Joseph A Sparano
- Integrated Imaging Program, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Department of Medicine (Oncology), Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States
| | - Panagiota S Filippou
- School of Health & Life Sciences, Teesside University, Middlesbrough, United Kingdom.,National Horizons Centre, Teesside University, Darlington, United Kingdom
| | - George S Karagiannis
- Department of Anatomy and Structural Biology, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Integrated Imaging Program, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Gruss-Lipper Biophotonics Center, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Integrated Imaging Program, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Gruss-Lipper Biophotonics Center, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Department of Pathology, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
22
|
Baxevanis CN, Fortis SP, Perez SA. The balance between breast cancer and the immune system: Challenges for prognosis and clinical benefit from immunotherapies. Semin Cancer Biol 2019; 72:76-89. [PMID: 31881337 DOI: 10.1016/j.semcancer.2019.12.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Cancer evolution is a complex process influenced by genetic factors and extracellular stimuli that trigger signaling pathways to coordinate the continuous and dynamic interaction between tumor cells and the elements of the immune system. For over 20 years now, the immune mechanisms controlling cancer progression have been the focus of intensive research. It is well established that the immune system conveys protective antitumor immunity by destroying immunogenic tumor variants, but also facilitates tumor progression by shaping tumor immunogenicity in a process called "immunoediting". It is also clear that immune-guided tumor editing is associated with tumor evasion from immune surveillance and therefore reinforcing the endogenous antitumor immunity is a desired goal in the context of cancer therapies. The tumor microenvironment (TME) is a complex network which consists of various cell types and factors having important roles regarding tumor development and progression. Tumor infiltrating lymphocytes (TILs) and other tumor infiltrating immune cells (TIICs) are key to our understanding of tumor immune surveillance based on tumor immunogenicity, whereby the densities and location of TILs and TIICs in the tumor regions, as well as their functional programs (comprising the "immunoscore") have a prominent role for prognosis and prediction for several cancers. The presence of tertiary lymphoid structures (TLS) in the TME or in peritumoral areas has an influence on the locally produced antitumor immune response, and therefore also has a significant prognostic impact. The cross-talk between elements of the immune system with tumor cells in the TME is greatly influenced by hypoxia, the gut and/or the local microbiota, and several metabolic elements, which, in a dynamic interplay, have a crucial role for tumor cell heterogeneity and reprogramming of immune cells along their activation and differentiation pathways. Taking into consideration the recent clinical success with the application immunotherapies for the treatment of several cancer types, increasing endeavors have been made to gain better insights into the mechanisms underlying phenotypic and metabolic profiles in the context of tumor progression and immunotherapy. In this review we will address (i) the role of TILs, TIICs and TLS in breast cancer (BCa); (ii) the different metabolic-based pathways used by immune and breast cancer cells; and (iii) implications for immunotherapy-based strategies in BCa.
Collapse
Affiliation(s)
- Constantin N Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Ave., 11522, Athens, Greece.
| | - Sotirios P Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Ave., 11522, Athens, Greece
| | - Sonia A Perez
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Ave., 11522, Athens, Greece
| |
Collapse
|
23
|
Liao Z, Tan ZW, Zhu P, Tan NS. Cancer-associated fibroblasts in tumor microenvironment – Accomplices in tumor malignancy. Cell Immunol 2019; 343:103729. [DOI: https:/doi.org/10.1016/j.cellimm.2017.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
24
|
Hill BS, Sarnella A, D'Avino G, Zannetti A. Recruitment of stromal cells into tumour microenvironment promote the metastatic spread of breast cancer. Semin Cancer Biol 2019; 60:202-213. [PMID: 31377307 DOI: 10.1016/j.semcancer.2019.07.028] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Abstract
Currently, metastasis remains the primary cause of death of patients with breast cancer despite the important advances in the treatment of this disease. In the complex tumour microenvironment network, several malignant and non-malignant cell types as well as components of extracellular matrix cooperate in promoting the metastatic spread of breast carcinoma. Many components of the stromal compartment are recruited from distant sites to the tumour including mesenchymal stem cells, endothelial cells, macrophages and other immune cells whereas other cells such as fibroblasts are already present in both primary and secondary lesions. When these cells come into contact with cancer cells they are "educated" and acquire a pro-tumoural phenotype, which support all the steps of the metastatic cascade. In this Review, we highlight the role played by each stromal component in guiding cancer cells in their venture towards colonizing metastatic sites.
Collapse
|
25
|
The association of FOXP3 gene polymorphisms with cancer susceptibility: a comprehensive systemic review and meta-analysis. Biosci Rep 2019; 39:BSR20181809. [PMID: 30782783 PMCID: PMC6422890 DOI: 10.1042/bsr20181809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
The role of forkhead box P3 (FOXP3) protein in tumorigenesis has long been controversial and existing data on the association between FOXP3 gene polymorphisms and cancer susceptibility were inconsistent. Here, we conducted a meta-analysis to better clarify the relationship. A comprehensive search of studies published from July 2008 to June 2018 was conducted. The statistical analyses of the pooled odds ratios (ORs) and the corresponding 95% confidence intervals (95% CIs) were performed using the Revman 5.2 software. A total of 12 articles with 19 case–control studies and 10389 participants were included. Three FOXP3 polymorphisms and six cancer types were evaluated. While no significant results were observed in overall and breast cancer groups for rs3761548 (A/C) polymorphisms, the pooled data showed an elevated risk of cancer in variant AA genotypes and A allele for Chinese population (AA vs. AC+CC: OR = 1.61, 95% CI = 1.09, 2.39; AA vs. CC: OR = 1.74, 95% CI = 1.05, 2.89; A vs. C: OR = 1.34, 95% CI = 1.00, 1.78). Neither the overall group analyses nor the subgroup analyses stratified by cancer type and ethnicity proposed any significant association of rs2280883 (C/T) and rs3761549 (T/C) polymorphisms with cancer susceptibility. This meta-analysis suggested that FOXP3 rs3761548 (A/C) polymorphisms were associated with increased cancer risk in Chinese population while rs2280883 (C/T) and rs3761549 (T/C) polymorphisms were not. More large-sample researches with diverse ethnicities and cancer types are needed to draw a concrete conclusion.
Collapse
|
26
|
IL-27 confers a protumorigenic activity of regulatory T cells via CD39. Proc Natl Acad Sci U S A 2019; 116:3106-3111. [PMID: 30718407 DOI: 10.1073/pnas.1810254116] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expression of ectonucleotidase CD39 contributes to the suppressive activity of Foxp3+ regulatory T cells (Tregs) by hydrolyzing immunogenic ATP into AMP. The molecular mechanism that drives CD39 expression on Tregs remains elusive. We found that tumor-infiltrating Tregs (Ti-Tregs) failed to up-regulate CD39 in mice lacking EBI3 subunit of IL-27 or IL-27Ra. Mixed bone marrow chimera and in vitro studies showed that IL-27 signaling in Tregs directly drives CD39 expression on Ti-Tregs in a STAT1-dependent, but STAT3- and T-bet-independent, manner. Tregs stimulated with IL-27 showed enhanced suppressive activities against CD8+ T cell responses in vitro. Moreover, IL-27Ra-deficient Tregs and STAT1-deficient Tregs were less efficient than WT Tregs in suppressing antitumor immunity in vivo. CD39 inhibition significantly abolished IL-27-induced suppressive activities of Tregs. Thus, IL-27 signaling in Tregs critically contributes to protumorigenic properties of Tregs via up-regulation of CD39.
Collapse
|
27
|
Sánchez-Margalet V, Barco-Sánchez A, Vilariño-García T, Jiménez-Cortegana C, Pérez-Pérez A, Henao-Carrasco F, Virizuela-Echaburu JA, Nogales-Fernández E, Álamo-de la Gala MC, Lobo-Acosta MA, Palazón-Carrión N, Nieto A, de la Cruz-Merino L. Circulating regulatory T cells from breast cancer patients in response to neoadjuvant chemotherapy. Transl Cancer Res 2019; 8:59-65. [PMID: 35116734 PMCID: PMC8798280 DOI: 10.21037/tcr.2018.12.30] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/07/2018] [Indexed: 12/21/2022]
Abstract
Background Immune escape of tumor cells is a new hallmark of cancer in general, and breast cancer, in particular. Previous studies have demonstrated that the immunological profile in peripheral blood may be a prognostic and/or predictive biomarker in breast cancer. Thus, higher number of regulatory T cells (Tregs) in blood from patients with breast cancer has been reported in relation to normal donors. In the present study, we planned to evaluate the changes in different cell populations in peripheral blood: neutrophils, monocytes and lymphocytes, as well as lymphocyte subpopulations [natural killer (NK), B lymphocytes, T lymphocytes, both CD4+ and CD8+, and Tregs] from patients with local breast cancer (both Her2+ and Her2−), before, during and after neoadjuvant chemotherapy. Methods We have employed flow cytometry for the cell analysis of fresh samples obtained before and whilst the neoadjuvant treatment was accomplished. We have studied 50 successive patients from the Breast Cancer Unit of the Virgen Macarena University Hospital during 2 years. Results Neoadjuvant chemotherapy induced a significant reduction in B cells, especially in Her2− patients, and a reduction in NK cells. CD4+ T cells decreased, whereas CD8+ cells only decreased in Her2− patients. Tregs were also diminished, especially in Her2+ patients, in response to treatment. Thus, higher CD8/Treg ratio was observed in Her2+ patients. A higher percentage of Her2+ patients (66.6%) achieved complete response than Her2− patients (27.5%). Monocytes and neutrophils were not changed in peripheral blood. Conclusions Even though the decrease in B cells and NK cells in response to chemotherapy may be deleterious in the neoadjuvant treatment of breast cancer, the decrease in Tregs and CD4 T cells, but not CD8 T cells, increasing the CD8/Treg ratio, especially in Her2+ patients, may reveal a new tool to monitor the immune response in breast cancer treated with chemotherapy in the neoadjuvant setting.
Collapse
Affiliation(s)
- Víctor Sánchez-Margalet
- Department of Clinical Biochemistry, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Antonio Barco-Sánchez
- Department of Clinical Biochemistry, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Teresa Vilariño-García
- Department of Clinical Biochemistry, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Carlos Jiménez-Cortegana
- Department of Clinical Biochemistry, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Antonio Pérez-Pérez
- Department of Clinical Biochemistry, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | | | | | | | | | - María A Lobo-Acosta
- Department of Clinical Oncology, Virgen Macarena University Hospital, Seville, Spain
| | | | - Adoración Nieto
- Department of Preventive Medicine and Public Health, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Luis de la Cruz-Merino
- Department of Clinical Oncology, Virgen Macarena University Hospital, Seville, Spain.,Medicine Department, University of Seville, Seville, Spain
| |
Collapse
|
28
|
Qin H, Liu L, Sun S, Zhang D, Sheng J, Li B, Yang W. The impact of PI3K inhibitors on breast cancer cell and its tumor microenvironment. PeerJ 2018; 6:e5092. [PMID: 29942710 PMCID: PMC6014315 DOI: 10.7717/peerj.5092] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/05/2018] [Indexed: 12/13/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3K) pathway shows frequent aberrant alterations and pathological activation in breast cancer cells. While PI3K inhibitors have not achieved expectant therapeutic efficacy in clinical trials, and several studies provide promising combination strategies to substantially maximize therapeutic outcomes. Besides its direct impact on regulating cancer cells survival, PI3K inhibitors are also demonstrated to have an immunomodulatory impact based on the tumor microenvironment. Inhibition of the leukocyte-enriched PI3K isoforms may break immune tolerance and restore cytotoxic T cell activity by reprogramming the tumor microenvironment. In addition, PI3K inhibitors have pleiotropic effects on tumor angiogenesis and even induce tumor vascular normalization. In this review, we discuss the mechanism of PI3K inhibitor suppression of breast cancer cells and modulation of the tumor microenvironment in order to provide further thoughts for breast cancer treatment.
Collapse
Affiliation(s)
- Hanjiao Qin
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Linlin Liu
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shu Sun
- Affiliated Hospital of Changchun University Of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Dan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
29
|
Basile D, Pelizzari G, Vitale MG, Lisanti C, Cinausero M, Iacono D, Puglisi F. Atezolizumab for the treatment of breast cancer. Expert Opin Biol Ther 2018; 18:595-603. [DOI: 10.1080/14712598.2018.1469619] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Debora Basile
- School of Medical Oncology, Department of Medicine, University of Udine, Udine, Italy
| | - Giacomo Pelizzari
- School of Medical Oncology, Department of Medicine, University of Udine, Udine, Italy
| | - Maria Grazia Vitale
- School of Medical Oncology, Department of Medicine, University of Udine, Udine, Italy
| | - Camilla Lisanti
- School of Medical Oncology, Department of Medicine, University of Udine, Udine, Italy
| | - Marika Cinausero
- School of Medical Oncology, Department of Medicine, University of Udine, Udine, Italy
| | - Donatella Iacono
- Department of Oncology, University Hospital of Udine, Udine, Italy
| | - Fabio Puglisi
- School of Medical Oncology, Department of Medicine, University of Udine, Udine, Italy
- Department of Clinical Oncology, IRCCS CRO Aviano National Cancer Institute, Aviano (PN), Italy
| |
Collapse
|
30
|
Li XY, Su L, Jiang YM, Gao WB, Xu CW, Zeng CQ, Song J, Xu Y, Weng WC, Liang WB. The Antitumor Effect of Xihuang Pill on Treg Cells Decreased in Tumor Microenvironment of 4T1 Breast Tumor-Bearing Mice by PI3K/AKT~AP-1 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:6714829. [PMID: 29849718 PMCID: PMC5937580 DOI: 10.1155/2018/6714829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/19/2018] [Accepted: 03/07/2018] [Indexed: 12/20/2022]
Abstract
To study the antitumor effect of Xihuang pill (XHP) on the number of Treg cells in the tumor microenvironment of 4T1 breast tumor-bearing mice by PI3K/AKT/AP-1 pathway, a mouse model was established. Flow cytometry (FCM) and immunohistochemistry (IHC) were used to detect the number of Treg cells in the tumor microenvironment; terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to detect the apoptosis of Treg cells in tumor microenvironment. Quantitative real-time PCR (RT-qPCR) was used to detect the mRNA expression of PI3K, AKT, and AP-1 in Treg cells in tumor microenvironment; immunofluorescence (IF) and Western Blot (WB) were used to detect the protein expression of PI3K, AKT, and AP-1 in Treg cells in tumor microenvironment. Compared with the naive control group, the tumor weight in XHP groups decreased significantly (P < 0.05); FCM and IHC results showed that the number of Treg cells in the tumor microenvironment decreased with the dose of XHP groups (P < 0.05); TUNEL staining showed that the number of Treg cells in tumor microenvironment increased with the dose of XHP groups (P < 0.05); RT-qPCR results showed that the mRNA expression of PI3K and AKT in Treg cells decreased with the dose of XHP groups, while RNA expression of AP-1 increased with the dose of XHP groups (P < 0.05); IF and WB results showed that the protein expression of PI3K and AKT in Treg cells decreased with the dose of XHP groups and the protein expression of AP-1 increased with the dose of XHP groups (P < 0.05). The results suggested that XHP decreased the number of Treg cells via inhibiting PI3K and AKT expression and upregulating AP-1 expression in Treg cells and then promoting the apoptosis of Treg cells. Thus, XHP could improve the immunosuppressive state of tumor microenvironment and reverse the immune escape to inhibit tumor growth.
Collapse
Affiliation(s)
- Xin-ye Li
- Medical College of Dalian University, Dalian 116622, China
| | - Liang Su
- Xin Hua Affiliated Hospital of Dalian University, Dalian 116000, China
| | - Yi-ming Jiang
- Xin Hua Affiliated Hospital of Dalian University, Dalian 116000, China
| | - Wen-bin Gao
- Department of Medical Oncology, The 3rd Affiliated Hospital of Shenzhen University, Shenzhen 518001, China
| | - Chun-wei Xu
- Department of Pathology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, China
| | | | - Jie Song
- Medical College of Dalian University, Dalian 116622, China
| | - Yu Xu
- Medical College of Dalian University, Dalian 116622, China
| | - Wen-cai Weng
- Xin Hua Affiliated Hospital of Dalian University, Dalian 116000, China
| | - Wen-bo Liang
- Medical College of Dalian University, Dalian 116622, China
| |
Collapse
|
31
|
Su L, Jiang Y, Xu Y, Li X, Gao W, Xu C, Zeng C, Song J, Weng W, Liang W. Xihuang pill promotes apoptosis of Treg cells in the tumor microenvironment in 4T1 mouse breast cancer by upregulating MEKK1/SEK1/JNK1/AP-1 pathway. Biomed Pharmacother 2018; 102:1111-1119. [PMID: 29710529 DOI: 10.1016/j.biopha.2018.03.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/09/2018] [Accepted: 03/11/2018] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE To determine the role of the MEKK1/SEK1/JNK1/AP-1 pathway in the action of Xihuang pill (XHP) in reducing regulatory T (Treg) cell numbers in the tumor microenvironment in a 4T1 mouse breast cancer model, and to clarify the anti-tumor mechanism of XHP in breast cancer. METHODS We established a mouse 4T1 breast cancer model. Model mice were administered XHP for 2 weeks, and tumor tissues were then removed, weighed, sliced, and homogenized. Treg cells in the tumor microenvironment were isolated by magnetic cell sorting and analyzed by immunohistochemistry and flow cytometry. Treg cell apoptosis was detected by TdT-mediated dUTP nick end labeling. mRNA expression levels of MEKK1, SEK1, JNK1, and AP-1 in Treg cells in the tumor microenvironment were detected by quantitative real-time PCR and their protein expression levels were detected by immunofluorescence staining and western blot. RESULTS Tumor weights were significantly lower in the XHP groups compared with the untreated control group. The overall number of Treg cells in the tumor microenvironment decreased while the number of apoptotic Treg cells increased with increasing doses of XHP. mRNA and protein expression levels of MEKK1, SEK1, JNK1, and AP-1 in Treg cells in the tumor microenvironment increased with increasing doses of XHP. CONCLUSION XHP might promote Treg cell apoptosis in the tumor microenvironment and further inhibit the tumor growth of 4T1 mouse breast cancer. The mechanism of XHP may be related to upregulation of gene and protein expression of MEKK1, SEK1, JNK1, and AP-1 in Treg cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Liang Su
- Xin Hua Affiliated Hospital of Dalian University, Dalian 116000, China
| | - Yiming Jiang
- Xin Hua Affiliated Hospital of Dalian University, Dalian 116000, China
| | - Yu Xu
- Medical College of Dalian University, Dalian 116622, China
| | - Xinye Li
- Medical College of Dalian University, Dalian 116622, China
| | - Wenbin Gao
- Department of Medical Oncology, The 3rd Affiliated Hospital of Shenzhen University, Shenzhen 518001, China
| | - Chunwei Xu
- Department of Pathology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, China
| | - Changqian Zeng
- Medical College of Dalian University, Dalian 116622, China
| | - Jie Song
- Medical College of Dalian University, Dalian 116622, China
| | - Wencai Weng
- Xin Hua Affiliated Hospital of Dalian University, Dalian 116000, China
| | - Wenbo Liang
- Medical College of Dalian University, Dalian 116622, China.
| |
Collapse
|
32
|
T lymphocytes facilitate brain metastasis of breast cancer by inducing Guanylate-Binding Protein 1 expression. Acta Neuropathol 2018; 135:581-599. [PMID: 29350274 PMCID: PMC5978929 DOI: 10.1007/s00401-018-1806-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 02/01/2023]
Abstract
The discovery of genes and molecular pathways involved in the formation of brain metastasis would direct the development of therapeutic strategies to prevent this deadly complication of cancer. By comparing gene expression profiles of Estrogen Receptor negative (ER-) primary breast tumors between patients who developed metastasis to brain and to organs other than brain, we found that T lymphocytes promote the formation of brain metastases. To functionally test the ability of T cells to promote brain metastasis, we used an in vitro blood–brain barrier (BBB) model. By co-culturing T lymphocytes with breast cancer cells, we confirmed that T cells increase the ability of breast cancer cells to cross the BBB. Proteomics analysis of the tumor cells revealed Guanylate-Binding Protein 1 (GBP1) as a key T lymphocyte-induced protein that enables breast cancer cells to cross the BBB. The GBP1 gene appeared to be up-regulated in breast cancer of patients who developed brain metastasis. Silencing of GBP1 reduced the ability of breast cancer cells to cross the in vitro BBB model. In addition, the findings were confirmed in vivo in an immunocompetent syngeneic mouse model. Co-culturing of ErbB2 tumor cells with activated T cells induced a significant increase in Gbp1 expression by the cancer cells. Intracardial inoculation of the co-cultured tumor cells resulted in preferential seeding to brain. Moreover, intracerebral outgrowth of the tumor cells was demonstrated. The findings point to a role of T cells in the formation of brain metastases in ER- breast cancers, and provide potential targets for intervention to prevent the development of cerebral metastases.
Collapse
|
33
|
Enhanced Suppressive Activity of Regulatory T Cells in the Microenvironment of Malignant Pleural Effusions. J Immunol Res 2018; 2018:9876014. [PMID: 29785404 PMCID: PMC5896249 DOI: 10.1155/2018/9876014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/20/2017] [Accepted: 01/11/2018] [Indexed: 12/02/2022] Open
Abstract
Cancer metastatic spread to serous cavity causes malignant pleural effusions (MPEs), indicating dismal prognosis. Tumor microenvironment can implement suppressive activity on host immune responses. Thus, we investigated the prevalence of Tregs and the relationship between them and TGF-β and IL-10 concentrations and measured expression of FOXP3, CTLA-4, CD28, and GITR genes, as well as protein expression of selected genes in benign effusions and MPEs. The percentage of Tregs was determined by means of multicolor flow cytometry system. TGF-β and IL-10 concentrations were measured using human TGF-β1 and IL-10 ELISA kit. Relative mRNA expression of studied genes was analyzed by real-time PCR. The frequency of Tregs was significantly higher in MPEs compared to benign effusions; however, the level of TGF-β and IL-10 in analyzed groups was comparable, and no correlation between concentrations of TGF-β and IL-10 and percentage of Tregs was observed. Relative mRNA expression of all the genes was higher in CD4+CD25+ compared to CD4+CD25− cells. In CD4+CD25+ cells from MPEs, relative mRNA expression of FOXP3, CTLA-4, and CD28 genes was significantly higher than in benign effusions; however, the level of CD4+CD25+CTLA-4+ cells in analyzed groups showed no significant differences. We found numerous genes correlations in an entire CD4+CD25+ cell subset and CD4+CD25+ cells from MPEs. Enhanced suppressive activity of Tregs is observed in the microenvironment of MPEs. Understanding of relations between cellular and cytokine immunosuppressive factors in tumor microenvironment may determine success of anticancer response.
Collapse
|
34
|
Mittal S, Brown NJ, Holen I. The breast tumor microenvironment: role in cancer development, progression and response to therapy. Expert Rev Mol Diagn 2018; 18:227-243. [DOI: 10.1080/14737159.2018.1439382] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Suruchi Mittal
- Department of Oncology and Metabolism, University of Sheffield, UK
| | - Nicola J. Brown
- Department of Oncology and Metabolism, University of Sheffield, UK
| | - Ingunn Holen
- Department of Oncology and Metabolism, University of Sheffield, UK
| |
Collapse
|
35
|
Cancer-associated fibroblasts in tumor microenvironment - Accomplices in tumor malignancy. Cell Immunol 2018; 343:103729. [PMID: 29397066 DOI: 10.1016/j.cellimm.2017.12.003] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/15/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022]
Abstract
There is much cellular heterogeneity in the tumor microenvironment. The tumor epithelia and stromal cells co-evolve, and this reciprocal relationship dictates almost every step of cancer development and progression. Despite this, many anticancer therapies are designed around druggable features of tumor epithelia, ignoring the supportive role of stromal cells. Cancer-associated fibroblasts (CAFs) are the dominant cell type within the reactive stroma of many tumor types. Numerous previous studies have highlighted a pro-tumorigenic role for CAFs via secretion of various growth factors, cytokines, chemokines, and the degradation of extracellular matrix. Recent works showed that CAFs secrete H2O2 to effect stromal-mediated field cancerization, transform primary epithelial cells, and aggravate cancer cell aggressiveness, in addition to inflammatory and mitogenic factors. Molecular characterization of CAFs also underscores the importance of Notch and specific nuclear receptor signaling in the activation of CAFs. This review consolidates recent findings of CAFs and highlights areas for future investigations.
Collapse
|
36
|
Terranova-Barberio M, Thomas S, Ali N, Pawlowska N, Park J, Krings G, Rosenblum MD, Budillon A, Munster PN. HDAC inhibition potentiates immunotherapy in triple negative breast cancer. Oncotarget 2017; 8:114156-114172. [PMID: 29371976 PMCID: PMC5768393 DOI: 10.18632/oncotarget.23169] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/26/2017] [Indexed: 12/29/2022] Open
Abstract
Triple-negative breast cancer (TNBC) represents a more aggressive and difficult subtype of breast cancer where responses to chemotherapy occur, but toxicity is significant and resistance often follows. Immunotherapy has shown promising results in various types of cancer, including breast cancer. Here, we investigated a new combination strategy where histone deacetylase inhibitors (HDACi) are applied with immune checkpoint inhibitors to improve immunotherapy responses in TNBC. Testing different epigenetic modifiers, we focused on the mechanisms underlying HDACi as priming modulators of immunotherapy. Tumor cells were co-cultured with human peripheral blood mononuclear cells (PBMCs) and flow cytometric immunophenotyping was performed to define the role of epigenetic priming in promoting tumor antigen presentation and immune cell activation. We found that HDACi up-regulate PD-L1 mRNA and protein expression in a time-dependent manner in TNBC cells, but not in hormone responsive cells. Focusing on TNBC, HDACi up-regulated PD-L1 and HLA-DR on tumor cells when co-cultured with PBMCs and down-regulated CD4+ Foxp3+ Treg in vitro. HDACi significantly enhanced the in vivo response to PD-1/CTLA-4 blockade in the triple-negative 4T1 breast cancer mouse model, the only currently available experimental system with functional resemblance to human TNBC. This resulted in a significant decrease in tumor growth and increased survival, associated with increased T cell tumor infiltration and a reduction in CD4+ Foxp3+ T cells in the tumor microenvironment. Overall, our results suggest a novel role for HDAC inhibition in combination with immune checkpoint inhibitors and identify a promising therapeutic strategy, supporting its further clinical evaluation for TNBC treatment.
Collapse
Affiliation(s)
| | - Scott Thomas
- Division of Hematology and Oncology, University of California, San Francisco, California, USA
| | - Niwa Ali
- Department of Dermatology, University of California, San Francisco, California, USA
| | - Nela Pawlowska
- Division of Hematology and Oncology, University of California, San Francisco, California, USA
| | - Jeenah Park
- Division of Hematology and Oncology, University of California, San Francisco, California, USA
| | - Gregor Krings
- Division of Pathology, University of California, San Francisco, California, USA
| | - Michael D Rosenblum
- Department of Dermatology, University of California, San Francisco, California, USA
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Pamela N Munster
- Division of Hematology and Oncology, University of California, San Francisco, California, USA
| |
Collapse
|
37
|
Plitas G, Konopacki C, Wu K, Bos PD, Morrow M, Putintseva EV, Chudakov DM, Rudensky AY. Regulatory T Cells Exhibit Distinct Features in Human Breast Cancer. Immunity 2017; 45:1122-1134. [PMID: 27851913 DOI: 10.1016/j.immuni.2016.10.032] [Citation(s) in RCA: 466] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/07/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022]
Abstract
Regulatory T (Treg) cells reside in lymphoid organs and barrier tissues where they control different types of inflammatory responses. Treg cells are also found in human cancers, and studies in animal models suggest that they contribute to cancer progression. However, properties of human intratumoral Treg cells and those present in corresponding normal tissue remain largely unknown. Here, we analyzed features of Treg cells in untreated human breast carcinomas, normal mammary gland, and peripheral blood. Tumor-resident Treg cells were potently suppressive and their gene-expression pattern resembled that of normal breast tissue, but not of activated peripheral blood Treg cells. Nevertheless, a number of cytokine and chemokine receptor genes, most notably CCR8, were upregulated in tumor-resident Treg cells in comparison to normal tissue-resident ones. Our studies suggest that targeting CCR8 for the depletion of tumor-resident Treg cells might represent a promising immunotherapeutic approach for the treatment of breast cancer.
Collapse
Affiliation(s)
- George Plitas
- Howard Hughes Medical Institute, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology Program, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Ludwig Center at Memorial Sloan Kettering Cancer Center, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Catherine Konopacki
- Howard Hughes Medical Institute, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology Program, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kenmin Wu
- Howard Hughes Medical Institute, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology Program, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Ludwig Center at Memorial Sloan Kettering Cancer Center, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paula D Bos
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Monica Morrow
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ekaterina V Putintseva
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation Barcelona 08003, Spain; Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Dmitriy M Chudakov
- Central European Institute of Technology, Brno 60177, Czech Republic; Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology Program, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Ludwig Center at Memorial Sloan Kettering Cancer Center, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
38
|
FOXP3 Allelic Variants and Haplotype Structures Are Associated with Aggressive Breast Cancer Subtypes. DISEASE MARKERS 2017; 2017:6359603. [PMID: 28713192 PMCID: PMC5497645 DOI: 10.1155/2017/6359603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/24/2017] [Indexed: 01/18/2023]
Abstract
FOXP3 genetic polymorphisms have been associated with cancer development and prognosis. In this context, the present study aimed to evaluate the g.10403A>G (rs2232365) polymorphisms and g.8048A>C (rs3761548), in aggressive breast cancer (BC) subtypes, including, Luminal B HER2+ (LB), HER2-enriched (HER2+), and triple-negative (TN). Polymerase chain reaction followed by enzymatic restriction was performed to genotyping 117 BC samples and 300 controls. A significant association of AA genotype (g.10403A>G) in relation to BC susceptibility (OR = 1.93; 95% CI = 1.01–3.66; p = 0.046) was observed. The GG (g.10403A>G) genotype was correlated with higher proliferation index (Ki-67) in HER2+ subtype (τ = 0.47; p = 0.019) and advanced TNM staging in TN (τ = 0.23; p = 0.032). A correlation of AA genotype (g.8048A>C) with higher Ki-67 (τ = −0.47; p = 0.018) and lower histological grade (τ = 0.39; p = 0.026) in HER2+ was also found. GA haplotype was correlated with lower histological grade (τ = −0.15; p = 0.009) and higher Ki-67 (τ = 0.43; p = 0.036) in HER2+ and advanced staging in TN (τ = 0.29; p = 0.044). On the other hand, AC haplotype was correlated with lower Ki-67 (τ = −0.54; p = 0.005) and staging (τ = −0.29; p = 0.027) in HER2+ and TN respectively. Results showed that FOXP3 influence regarding clinical outcome depends greatly on the BC subtype and indicated this transcription factor as a promising marker in aggressive BC subtypes.
Collapse
|
39
|
Preferential accumulation of regulatory T cells with highly immunosuppressive characteristics in breast tumor microenvironment. Oncotarget 2017; 8:33159-33171. [PMID: 28388539 PMCID: PMC5464858 DOI: 10.18632/oncotarget.16565] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/16/2017] [Indexed: 02/05/2023] Open
Abstract
Immunosuppressive cells such as regulatory T cells (Tregs) have an ambiguous role in breast cancer prognosis, with studies reporting both positive and negative correlations between Treg infiltration and prognosis. This discrepancy could be due to the different immunosuppressive molecules present in these cells. In the present study, we phenotypically characterize different Treg subsets infiltrating the tumor microenvironment (TME), compared to adjacent normal tissue and peripheral blood of primary breast cancer (PBC) patients. We report that the majority of tumor-infiltrating CD4+ and CD8+ T cells have terminally exhaustive phenotype as assessed by CD39 and PD-1 expressions. We also show that Tregs are accumulated in breast TME compared to normal tissue. Further characterization of Tregs showed that these are mainly FoxP3+Helios+ and express high levels of CTLA-4 and PD-1. This preferential accumulation of FoxP3+Helios+ Treg subset with co-expression of different immune inhibitory molecules might have a negative effect on breast cancer prognosis. Taken together, our results suggest that breast tumor cells might utilize Tregs, and different suppressive pathways involving CD39, PD-1 and CTLA-4 molecules in creating an immune-subversive environment for them to survive, and a dual blockade of these immunosuppressive molecules might be considered as an effective method in breast cancer treatment.
Collapse
|
40
|
Nitti M, Piras S, Marinari UM, Moretta L, Pronzato MA, Furfaro AL. HO-1 Induction in Cancer Progression: A Matter of Cell Adaptation. Antioxidants (Basel) 2017; 6:antiox6020029. [PMID: 28475131 PMCID: PMC5488009 DOI: 10.3390/antiox6020029] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/26/2017] [Accepted: 04/29/2017] [Indexed: 02/07/2023] Open
Abstract
The upregulation of heme oxygenase-1 (HO-1) is one of the most important mechanisms of cell adaptation to stress. Indeed, the redox sensitive transcription factor Nrf2 is the pivotal regulator of HO-1 induction. Through the antioxidant, antiapoptotic, and antinflammatory properties of its metabolic products, HO-1 plays a key role in healthy cells in maintaining redox homeostasis and in preventing carcinogenesis. Nevertheless, several lines of evidence have highlighted the role of HO-1 in cancer progression and its expression correlates with tumor growth, aggressiveness, metastatic and angiogenetic potential, resistance to therapy, tumor escape, and poor prognosis, even though a tumor- and tissue-specific activity has been observed. In this review, we summarize the current literature regarding the pro-tumorigenic role of HO-1 dependent tumor progression as a promising target in anticancer strategy.
Collapse
Affiliation(s)
- Mariapaola Nitti
- Department of Experimental Medicine, University of Genoa, Via L. B. Alberti 2, Genoa 16132, Italy.
| | - Sabrina Piras
- Department of Experimental Medicine, University of Genoa, Via L. B. Alberti 2, Genoa 16132, Italy.
| | - Umberto M Marinari
- Department of Experimental Medicine, University of Genoa, Via L. B. Alberti 2, Genoa 16132, Italy.
| | - Lorenzo Moretta
- Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, Rome 00165, Italy.
| | - Maria A Pronzato
- Department of Experimental Medicine, University of Genoa, Via L. B. Alberti 2, Genoa 16132, Italy.
| | - Anna Lisa Furfaro
- Giannina Gaslini Institute, IRCCS, Via Gerolamo Gaslini 5, Genoa 16147, Italy.
| |
Collapse
|
41
|
Zhang H, Zhang S. The expression of Foxp3 and TLR4 in cervical cancer: association with immune escape and clinical pathology. Arch Gynecol Obstet 2016; 295:705-712. [PMID: 28013346 DOI: 10.1007/s00404-016-4277-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/16/2016] [Indexed: 02/07/2023]
Abstract
PURPOSE To explore the expression of forkhead/winged helix transcription factor p3(Foxp3) and toll-like receptor 4(TLR4) in cervical cancer and evaluate their clinical significance. METHODS Foxp3 and TLR4 protein expression was detected in 105 cervical tissue specimens including cervical cancer, cervical intraepithelial neoplasia (CIN), and healthy control samples using immunohistochemistry. Their relationship with clinicopathologic parameters was also determined. RESULTS Foxp3 and TLR4 had high levels of expression in cervical cancer cells (91.43 and 82.86%, respectively). Foxp3 levels were significantly associated with FIGO stage (P < 0.001) and tumor size (P = 0.034), while TLR4 levels were associated with clinical FIGO stage (P = 0.033) and lymph node metastasis (P = 0.031). Their expression levels were not correlated with age, histologic type, or differentiation (all P > 0.05). These findings suggest that Foxp3 and TLR4 may be useful prognostic indicators of cervical carcinoma. In addition, there were significant positive relationships between Foxp3 and TLR4 expression (r = 0.703, P < 0.001), which shows a possible link and synergistic role of Foxp3 and TLR4 in promoting the immune escape of cervical cancer. CONCLUSIONS Foxp3 and TLR4 may be useful biomarkers for patient prognosis and cervical cancer prediction and treatment.
Collapse
Affiliation(s)
- Huijie Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao St, Heping District, Shenyang, 110004, Liaoning, China
| | - Shulan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao St, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
42
|
de la Cruz-Merino L, Chiesa M, Caballero R, Rojo F, Palazón N, Carrasco FH, Sánchez-Margalet V. Breast Cancer Immunology and Immunotherapy: Current Status and Future Perspectives. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 331:1-53. [PMID: 28325210 DOI: 10.1016/bs.ircmb.2016.09.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer immunology has gained renewed interest in the past few years due to emerging findings on mechanisms involved in tumoral immune evasion. Indisputably, immune edition is currently considered a critical hallmark of cancer. Basic research has revealed new targets which can be modulated in the clinical setting with new compounds and strategies. As recent evidence confirms, breast cancer (BC) is a complex and heterogeneous disease in which host immune responses play a substantial role. T-infiltrating lymphocytes measurement is suggested as a powerful new tool necessary to predict early BC evolution, especially in HER2-positive and triple negative subtypes. However, T-infiltrating lymphocytes, genomic platforms, and many other biomarkers in tissue and peripheral blood (e.g., regulatory T cells and myeloid-derived suppressor cells) are not the only factors being evaluated regarding their potential role as prognostic and/or predictive factors. Many ongoing clinical trials are exploring the activity of immune checkpoint modulators in BC treatment, both in the advanced and neoadjuvant setting. Although this field is expanding with exciting new discoveries and promising clinical results-and creating great expectations-there remain many uncertainties yet to be addressed satisfactorily before this long awaited therapeutic promise can come to fruition.
Collapse
Affiliation(s)
| | - M Chiesa
- GEICAM (Spanish Breast Cancer Research Group), Madrid, Spain
| | - R Caballero
- GEICAM (Spanish Breast Cancer Research Group), Madrid, Spain
| | - F Rojo
- Fundación Jiménez Díaz, Madrid, Spain
| | - N Palazón
- GEICAM (Spanish Breast Cancer Research Group), Madrid, Spain
| | - F H Carrasco
- GEICAM (Spanish Breast Cancer Research Group), Madrid, Spain
| | | |
Collapse
|
43
|
|
44
|
Soysal SD, Tzankov A, Muenst SE. Role of the Tumor Microenvironment in Breast Cancer. Pathobiology 2015; 82:142-52. [DOI: 10.1159/000430499] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
45
|
Lin SC, Gan ZH, Yao Y, Min DL. The Prognostic Value of Forkhead Box P3 Expression in Operable Breast Cancer: A Large-Scale Meta-Analysis. PLoS One 2015; 10:e0136374. [PMID: 26305693 PMCID: PMC4549287 DOI: 10.1371/journal.pone.0136374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 08/03/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Recent studies have shown that the forkhead box P3 (FOXP3) protein has a prognostic role in breast cancer. However, these results are controversial. Therefore, the aim of this meta-analysis was to clarify the prognostic role of FOXP3 expression in operable breast cancer cases. METHODS Eligible studies describing the use of FOXP3 as a prognostic factor for operable breast cancer cases were identified. Clinicopathological features, disease-free survival (DFS), and overall survival (OS) data were collected from these studies and were analyzed using Stata software. RESULTS A total of 16 articles containing data from 13,217 breast cancer patients met the inclusion criteria established for this study. The subsequent meta-analysis that was performed showed that high levels of FOXP3 are not significantly associated with DFS and OS with significant heterogeneity. An additional subgroup analysis demonstrated that intratumoral FOXP3+ regulatory T cells (Tregs) were positively correlated with adverse clinicopathological parameters, yet they did not show an association with DFS or OS. For tumor cells, the pooled results revealed that FOXP3 is significantly associated with DFS (HR: 2.55, 95% CI: 1.23-5.30) but is not associated with clinicopathological parameters or OS. We also observed a significant correlation between FOXP3 expression and survival in the estrogen receptor-positive (ER)+ subgroup (HR: 1.83, 95% CI: 1.36-2.47 for DFS, HR: 1.87, 95% CI 1.28-2.73 for OS), in the Asian region (HR: 1.98, 95% CI: 1.56-2.50 for DFS, HR: 1.93, 95% CI: 1.12-3.35 for OS) and using the median as the FOXP3-positive cut-off value (HR: 1.94, 95% CI: 1.57-2.39 for DFS, HR: 2.06; 95% CI: 1.36-3.11 for OS). CONCLUSION This meta-analysis indicates that a prognostic role for FOXP3 expression in operable breast cancer cases depends on the FOXP3-positive region, ER status, geographic region and the FOXP3-positive cut-off value.
Collapse
Affiliation(s)
- Shu Chen Lin
- Department of Oncology, Shanghai Sixth People’s Hospital East Campus, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Zhi Hua Gan
- Department of Oncology, Shanghai Sixth People’s Hospital East Campus, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yang Yao
- Department of Oncology, The Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Da Liu Min
- Department of Oncology, Shanghai Sixth People’s Hospital East Campus, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- * E-mail:
| |
Collapse
|
46
|
Ying G, Zhang Y, Tang G, Chen S. Functions of thymic stromal lymphopoietin in non-allergic diseases. Cell Immunol 2015; 295:144-9. [DOI: 10.1016/j.cellimm.2015.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/13/2015] [Accepted: 03/17/2015] [Indexed: 12/26/2022]
|
47
|
Wu J, Cui H, Zhu Z, Wang L, Li H, Wang D. Effect of HIF1α on Foxp3 expression in CD4+ CD25- T lymphocytes. Microbiol Immunol 2015; 58:409-15. [PMID: 24931519 DOI: 10.1111/1348-0421.12168] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/16/2014] [Accepted: 05/27/2014] [Indexed: 02/02/2023]
Abstract
The aim of the present study was to investigate the effect of HIF1α on Foxp3 expression in CD4(+) CD25(-) T lymphocytes. CD4(+) CD25(-) T lymphocytes were sorted from PBMC using a CD4(+) CD25(+) regulatory T cell isolation kit. Lentivirus containing lentiviral vector that overexpressed HIF1α (HIF-lenti) and those containing empty expression vector (control-lenti) were produced. Meanwhile, lentivirus that contained lentiviral vector that suppressed HIF1α expression (siHIF-lenti) and those containing control vector (sicontrol-lenti) were also generated. The sorted CD4(+) CD25(-) T lymphocytes were infected with HIF-lenti, control-lenti, siHIF-lenti, and sicontrol-lenti, respectively. Approximately 72 hr after transduction, real-time PCR and Western blot were carried out to analyze the RNA and protein expression level of HIF1α and Foxp3. CD4(+) CD25(-) T lymphocytes cultured under 21% O2 , 5% CO2 (normoxia) and 1% O2 , 5% CO2 (hypoxia) were used as control. Our results showed that overexpression of HIF1α increased both mRNA and protein expression of Foxp3 and, meanwhile, suppression of HIF1α expression by RNAi could reverse high Foxp3 expression in CD4(+) CD25(-) T lymphocytes caused by hypoxic culture. These results suggested that hypoxia could stimulate Foxp3 expression by increasing HIF1α expression in CD4(+) T lymphocytes which may promote CD4(+) T lymphocytes to convert to Treg.
Collapse
Affiliation(s)
- Jianguo Wu
- The Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Standard treatment options for breast cancer include surgery, chemotherapy, radiation, and targeted therapies, such as adjuvant hormonal therapy and monoclonal antibodies. Recently, the recognition that chronic inflammation in the tumor microenvironment promotes tumor growth and survival during different stages of breast cancer development has led to the development of novel immunotherapies. Several immunotherapeutic strategies have been studied both preclinically and clinically and already have been shown to enhance the efficacy of conventional treatment modalities. Therefore, therapies targeting the immune system may represent a promising next-generation approach for the treatment of breast cancers. This review will discuss recent findings that elucidate the roles of suppressive immune cells and proinflammatory cytokines and chemokines in the tumor-promoting microenvironment, and the most current immunotherapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Xinguo Jiang
- Department of Medicine, VA Palo Alto Health Care System/Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
49
|
Fornetti J, Martinson HA, Betts CB, Lyons TR, Jindal S, Guo Q, Coussens LM, Borges VF, Schedin P. Mammary gland involution as an immunotherapeutic target for postpartum breast cancer. J Mammary Gland Biol Neoplasia 2014; 19:213-28. [PMID: 24952477 PMCID: PMC4363120 DOI: 10.1007/s10911-014-9322-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/09/2014] [Indexed: 12/24/2022] Open
Abstract
Postpartum mammary gland involution has been identified as tumor-promotional and is proposed to contribute to the increased rates of metastasis and poor survival observed in postpartum breast cancer patients. In rodent models, the involuting mammary gland microenvironment is sufficient to induce enhanced tumor cell growth, local invasion, and metastasis. Postpartum involution shares many attributes with wound healing, including upregulation of genes involved in immune responsiveness and infiltration of tissue by immune cells. In rodent models, treatment with non-steroidal anti-inflammatory drugs (NSAIDs) ameliorates the tumor-promotional effects of involution, consistent with the immune milieu of the involuting gland contributing to tumor promotion. Currently, immunotherapy is being investigated as a means of breast cancer treatment with the purpose of identifying ways to enhance anti-tumor immune responses. Here we review evidence for postpartum mammary gland involution being a uniquely defined 'hot-spot' of pro-tumorigenic immune cell infiltration, and propose that immunotherapy should be explored for prevention and treatment of breast cancers that arise in this environment.
Collapse
Affiliation(s)
- Jaime Fornetti
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
- Program in Reproductive Sciences, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Holly A. Martinson
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, Aurora, CO 80045, USA
| | - Courtney B. Betts
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
- Cell Biology, Stem cells, and Development, 12801 E 17th Ave, Aurora, CO 80045, USA
| | - Traci R. Lyons
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
| | - Sonali Jindal
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
| | - Qiuchen Guo
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, Aurora, CO 80045, USA
| | - Lisa M. Coussens
- Department of Cell & Developmental Biology, Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Virginia F. Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
| | - Pepper Schedin
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
- Program in Reproductive Sciences, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, Aurora, CO 80045, USA
- Cell Biology, Stem cells, and Development, 12801 E 17th Ave, Aurora, CO 80045, USA
- Department of Cell & Developmental Biology, Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
50
|
Jiang X, Shapiro DJ. The immune system and inflammation in breast cancer. Mol Cell Endocrinol 2014; 382:673-682. [PMID: 23791814 PMCID: PMC4919022 DOI: 10.1016/j.mce.2013.06.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 02/07/2023]
Abstract
During different stages of tumor development the immune system can either identify and destroy tumors, or promote their growth. Therapies targeting the immune system have emerged as a promising treatment modality for breast cancer, and immunotherapeutic strategies are being examined in preclinical and clinical models. However, our understanding of the complex interplay between cells of the immune system and breast cancer cells is incomplete. In this article, we review recent findings showing how the immune system plays dual host-protective and tumor-promoting roles in breast cancer initiation and progression. We then discuss estrogen receptor α (ERα)-dependent and ERα-independent mechanisms that shield breast cancers from immunosurveillance and enable breast cancer cells to evade immune cell induced apoptosis and produce an immunosuppressive tumor microenvironment. Finally, we discuss protumorigenic inflammation that is induced during tumor progression and therapy, and how inflammation promotes more aggressive phenotypes in ERα positive breast cancers.
Collapse
Affiliation(s)
- Xinguo Jiang
- Department of Medicine, VA Palo Alto Health Care System/Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - David J Shapiro
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|