1
|
Johnson B, Guo Q, Chaludiya K, Kim S. The Proimmunomodulatory and Anti-immunomodulatory Effects of Radiotherapy in Oncologic Care. Hematol Oncol Clin North Am 2025:S0889-8588(24)00154-0. [PMID: 39827043 DOI: 10.1016/j.hoc.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The abscopal effect in radiotherapy (RT) refers to the phenomenon where localized radiation treatment causes regression of distant, nonirradiated tumors. Although rare, recent research shows that combining radiation with immunotherapies, such as immune checkpoint inhibitors, can enhance this effect. The interaction between radiation-induced cell death, immune responses, and the tumor microenvironment manifests in competing biologic mechanisms resulting in complex immunologic outcomes. In order to maximize the therapeutic advantages of the immunogenic effect of RT in the future, further studies are needed to fully understand its biologic underpinnings.
Collapse
Affiliation(s)
- Bryan Johnson
- Department of Radiation Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Qianyu Guo
- Department of Radiation Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA; Department of Internal Medicine, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Keyur Chaludiya
- Department of Laboratory Medicine, Mayo Clinic Minnesota, 150 3rd Street SW, Rochester, MN 55902, USA
| | - Sungjune Kim
- Department of Radiation Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA.
| |
Collapse
|
2
|
Alhamawi RM, Aloufi N, Alamri AF, Altubayli FA, Alsairi RT, Alhamad RA, Alharbi SM, Ankhli ZA, Eid HMA, Almutawif YA. Prognostic impact of invariant natural killer T cells in solid and hematological tumors; systematic review and meta-analysis. Cancer Biomark 2024; 41:155-164. [PMID: 39302356 PMCID: PMC11492061 DOI: 10.3233/cbm-240069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/18/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Invariant natural killer T (iNKT) cells are an immune subset that purportedly link the adaptive and the innate arms of the immune system. Importantly, iNKT cells contribute to anti-cancer immunity in different types of hematological and solid malignancies by secreting pro-inflammatory cytokines. Therefore, using such cells in treating different type of tumors would be an ideal candidate for cancer immunotherapy. OBJECTIVE To assess the prognostic effect of iNKT cells across different types of solid and hematological tumors. METHODS In systematic review and meta-analysis, articles assessed the prognostic effect of iNKT cells were systemically searched using the scientific databases including Google Scholar, ScienceDirect, PubMed, Cochrane Central, and Scopus. RESULTS Strikingly, the analysis showed the positive impact of intratumoral or circulating iNKT cells on the survival rate in patients with all studied tumors with overall effect of a pooled hazard ratio of 0.89 (95% CI 0.81 to 0.98; p= 0.01). A highly statistical heterogeneity was noted between studied tumor with I2 = 87%; p= 0.00001. CONCLUSIONS Taken together, this study would present a new insight into the impact of iNKT cells correlate with caner patients' survival rate and how such cells would be used as a therapeutic target in these patients.
Collapse
Affiliation(s)
- Renad M. Alhamawi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Noof Aloufi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Abeer F. Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Fatima A. Altubayli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Raghad T. Alsairi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Reem A. Alhamad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Shouq M. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Zainab A. Ankhli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Hamza M. A. Eid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Yahya A. Almutawif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
3
|
Liu S, Wang W, Hu S, Jia B, Tuo B, Sun H, Wang Q, Liu Y, Sun Z. Radiotherapy remodels the tumor microenvironment for enhancing immunotherapeutic sensitivity. Cell Death Dis 2023; 14:679. [PMID: 37833255 PMCID: PMC10575861 DOI: 10.1038/s41419-023-06211-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Cancer immunotherapy has transformed traditional treatments, with immune checkpoint blockade being particularly prominent. However, immunotherapy has minimal benefit for patients in most types of cancer and is largely ineffective in some cancers (such as pancreatic cancer and glioma). A synergistic anti-tumor response may be produced through the combined application with traditional tumor treatment methods. Radiotherapy (RT) not only kills tumor cells but also triggers the pro-inflammatory molecules' release and immune cell infiltration, which remodel the tumor microenvironment (TME). Therefore, the combination of RT and immunotherapy is expected to achieve improved efficacy. In this review, we summarize the effects of RT on cellular components of the TME, including T cell receptor repertoires, different T cell subsets, metabolism, tumor-associated macrophages and other myeloid cells (dendritic cells, myeloid-derived suppressor cells, neutrophils and eosinophils). Meanwhile, non-cellular components such as lactate and extracellular vesicles are also elaborated. In addition, we discuss the impact of different RT modalities on tumor immunity and issues related to the clinical practice of combination therapy.
Collapse
Affiliation(s)
- Senbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Wenkang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Bin Jia
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Baojing Tuo
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450001, Zhengzhou, China.
| | - Yang Liu
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450001, Zhengzhou, China.
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Hadiloo K, Tahmasebi S, Esmaeilzadeh A. CAR-NKT cell therapy: a new promising paradigm of cancer immunotherapy. Cancer Cell Int 2023; 23:86. [PMID: 37158883 PMCID: PMC10165596 DOI: 10.1186/s12935-023-02923-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Today, cancer treatment is one of the fundamental problems facing clinicians and researchers worldwide. Efforts to find an excellent way to treat this illness continue, and new therapeutic strategies are developed quickly. Adoptive cell therapy (ACT) is a practical approach that has been emerged to improve clinical outcomes in cancer patients. In the ACT, one of the best ways to arm the immune cells against tumors is by employing chimeric antigen receptors (CARs) via genetic engineering. CAR equips cells to target specific antigens on tumor cells and selectively eradicate them. Researchers have achieved promising preclinical and clinical outcomes with different cells by using CARs. One of the potent immune cells that seems to be a good candidate for CAR-immune cell therapy is the Natural Killer-T (NKT) cell. NKT cells have multiple features that make them potent cells against tumors and would be a powerful replacement for T cells and natural killer (NK) cells. NKT cells are cytotoxic immune cells with various capabilities and no notable side effects on normal cells. The current study aimed to comprehensively provide the latest advances in CAR-NKT cell therapy for cancers.
Collapse
Affiliation(s)
- Kaveh Hadiloo
- Student Research Committee, Department of immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of immunology, School of Medicine, Shahid beheshti University of Medical Sciences, Tehran, Iran.
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
5
|
Niu M, Combs SE, Linge A, Krause M, Baumann M, Lohaus F, Ebert N, Tinhofer I, Budach V, von der Grün J, Rödel F, Grosu AL, Multhoff G. Comparison of the composition of lymphocyte subpopulations in non-relapse and relapse patients with squamous cell carcinoma of the head and neck before, during radiochemotherapy and in the follow-up period: a multicenter prospective study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG). Radiat Oncol 2021; 16:141. [PMID: 34332614 PMCID: PMC8325802 DOI: 10.1186/s13014-021-01868-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/19/2021] [Indexed: 11/25/2022] Open
Abstract
Background Radiochemotherapy (RCT) has been shown to induce changes in immune cell homeostasis which might affect antitumor immune responses. In the present study, we aimed to compare the composition and kinetics of major lymphocyte subsets in the periphery of patients with non-locoregional recurrent (n = 23) and locoregional recurrent (n = 9) squamous cell carcinoma of the head and neck (SCCHN) upon primary RCT.
Methods EDTA-blood of non-locoregional recurrent SCCHN patients was collected before (t0), after application of 20–30 Gy (t1), in the follow-up period 3 (t2) and 6 months (t3) after RCT. In patients with locoregional recurrence blood samples were taken at t0, t1, t2 and at the time of recurrence (t5). EDTA-blood of age-related, healthy volunteers (n = 22) served as a control (Ctrl). Major lymphocyte subpopulations were phenotyped by multiparameter flow cytometry.
Results Patients with non-recurrent SCCHN had significantly lower proportions of CD19+ B cells compared to healthy individuals before start of any therapy (t0) that dropped further until 3 months after RCT (t2), but reached initial levels 6 months after RCT (t3). The proportion of CD3+ T and CD3+/CD4+ T helper cells continuously decreased between t0 and t3, whereas that of CD8+ cytotoxic T cells and CD3+/CD56+ NK-like T cells (NKT) gradually increased in the same period of time in non-recurrent patients. The percentage of CD4+/CD25+/FoxP3+ regulatory T cells (Tregs) decreased directly after RCT, but increased above initial levels in the follow-up period 3 (t2) and 6 (t3) months after RCT. Patients with locoregional recurrence showed similar trends with respect to B, T cells and Tregs between t0 and t5. CD4+ T helper cells remained stably low between t0 and t5 in patients with locoregional recurrence compared to Ctrl. NKT/NK cell subsets (CD56+/CD69+, CD3−/CD56+, CD3−/CD94+, CD3−/NKG2D+, CD3−/NKp30+, CD3−/NKp46+) increased continuously up to 6 months after RCT (t0-t3) in patients without locoregional recurrence, whereas in patients with locoregional recurrence, these subsets remained stably low until time of recurrence (t5). Conclusion Monitoring the kinetics of lymphocyte subpopulations especially activatory NK cells before and after RCT might provide a clue with respect to the development of an early locoregional recurrence in patients with SCCHN. However, studies with larger patient cohorts are needed. Trial registration Observational Study on Biomarkers in Head and Neck Cancer (HNprädBio), NCT02059668. Registered on 11 February 2014, https://clinicaltrials.gov/ct2/show/NCT02059668. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-021-01868-5.
Collapse
Affiliation(s)
- Minli Niu
- Center for Translational Cancer Research (TranslaTUM), Radiation Immuno-Oncology Group, Klinikum rechts der isar, TU München (TUM), Einsteinstr. 25, 81675, Munich, Germany. .,Department of Radiation Oncology, Klinikum rechts der isar, TUM, Munich, Germany.
| | - Stephanie E Combs
- Department of Radiation Oncology, Klinikum rechts der isar, TUM, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Annett Linge
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany.,OncoRay - National Centre for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden, Rossendorf, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany.,Faculty of Medicine and University Hospital, Partner Site Dresden, Germany.,Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Mechthild Krause
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany.,OncoRay - National Centre for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden, Rossendorf, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany.,Faculty of Medicine and University Hospital, Partner Site Dresden, Germany.,Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,OncoRay, Dresden, Germany
| | | | - Fabian Lohaus
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany.,OncoRay - National Centre for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden, Rossendorf, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany.,Faculty of Medicine and University Hospital, Partner Site Dresden, Germany.,Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Nadja Ebert
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany.,OncoRay - National Centre for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden, Rossendorf, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany.,Faculty of Medicine and University Hospital, Partner Site Dresden, Germany.,Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Ingeborg Tinhofer
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiooncology and Radiotherapy, Charité University Hospital Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, Germany
| | - Volker Budach
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiooncology and Radiotherapy, Charité University Hospital Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, Germany
| | - Jens von der Grün
- Department of Radiotherapy and Oncology, Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany
| | - Anca-Ligia Grosu
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Medical Centre University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Gabriele Multhoff
- Center for Translational Cancer Research (TranslaTUM), Radiation Immuno-Oncology Group, Klinikum rechts der isar, TU München (TUM), Einsteinstr. 25, 81675, Munich, Germany.,Department of Radiation Oncology, Klinikum rechts der isar, TUM, Munich, Germany
| |
Collapse
|
6
|
Ingram Z, Madan S, Merchant J, Carter Z, Gordon Z, Carey G, Webb TJ. Targeting Natural Killer T Cells in Solid Malignancies. Cells 2021; 10:1329. [PMID: 34072042 PMCID: PMC8227159 DOI: 10.3390/cells10061329] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer T (NKT) cells are a unique subset of lymphocytes that recognize lipid antigens in the context of the non-classical class I MHC molecule, CD1d, and serve as a link between the innate and adaptive immune system through their expeditious release of cytokines. Whereas NKT have well-established roles in mitigating a number of human diseases, herein, we focus on their role in cancer. NKT cells have been shown to directly and indirectly mediate anti-tumor immunity and manipulating their effector functions can have therapeutic significances in treatment of cancer. In this review, we highlight several therapeutic strategies that have been used to harness the effector functions of NKT cells to target different types of solid tumors. We also discuss several barriers to the successful utilization of NKT cells and summarize effective strategies being developed to harness the unique strengths of this potent population of T cells. Collectively, studies investigating the therapeutic potential of NKT cells serve not only to advance our understanding of this powerful immune cell subset, but also pave the way for future treatments focused on the modulation of NKT cell responses to enhance cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tonya J. Webb
- Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Z.I.); (S.M.); (J.M.); (Z.C.); (Z.G.); (G.C.)
| |
Collapse
|
7
|
Melo AM, Maher SG, O'Leary SM, Doherty DG, Lysaght J. Selective effects of radiotherapy on viability and function of invariant natural killer T cells in vitro. Radiother Oncol 2020; 145:128-136. [PMID: 31962255 DOI: 10.1016/j.radonc.2019.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/09/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE Immunotherapies involving the adoptive transfer of ex vivo expanded autologous invariant natural killer (iNKT) cells are a potential option for cancer patients and are under investigation in clinical trials. Most cancer patients receive radiotherapy at some point during their treatment. We investigated the effects of therapeutic doses of radiation on the viability and function of human primary cultures of iNKT cells in vitro. MATERIALS AND METHODS iNKT cell lines generated from 6 healthy donors were subjected to therapeutically-relevant doses of radiation. Cell cycle arrest and cell death were assessed by flow cytometry. Double strand DNA breaks were analysed by measuring phosphorylated histone H2AX expression by fluorescence microscopy. Cytolytic degranulation, cytokine production and cytotoxicity by antigen-stimulated iNKT cells were assessed by flow cytometry. RESULTS Radiation inhibited viability of iNKT cells in a dose-dependent manner. Radiation caused double strand DNA breaks, which were rapidly repaired, and affected the cell cycle at high doses. Moderate doses of radiation did not inhibit degranulation or cytotoxicity by iNKT cells, but induced perforin expression and inhibited proliferation and interferon-γ production by surviving iNKT cells. DISCUSSION Exposure of iNKT cell to radiation can negatively affect their viability and function.
Collapse
Affiliation(s)
- Ashanty M Melo
- Department of Immunology, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland; Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Stephen G Maher
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Seónadh M O'Leary
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Derek G Doherty
- Department of Immunology, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland.
| | - Joanne Lysaght
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| |
Collapse
|
8
|
Takami M, Ihara F, Motohashi S. Clinical Application of iNKT Cell-mediated Anti-tumor Activity Against Lung Cancer and Head and Neck Cancer. Front Immunol 2018; 9:2021. [PMID: 30245690 PMCID: PMC6137091 DOI: 10.3389/fimmu.2018.02021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/16/2018] [Indexed: 01/09/2023] Open
Abstract
Invariant natural killer T (iNKT) cells produce copious amounts of cytokines in response to T-cell receptor (TCR) stimulation by recognizing antigens such as α-galactosylceramide (α-GalCer) presented on CD1d; thus, orchestrating other immune cells to fight against pathogen infection and tumors. Because of their ability to induce strong anti-tumor responses and the convenience of their invariant TCR activated by a synthetic ligand, α-GalCer, iNKT cells have been intensively studied for application in immunotherapeutic approaches to treat cancer patients in the clinic. Here, we summarize the clinical trials of iNKT cell based immunotherapy for non-small cell lung cancer, and head and neck cancer. Although solid tumors are thought to be refractory to immunotherapeutic approaches, our clinical trials showed that the intravenous injection of α-GalCer-pulsed antigen presenting cells (APCs) activated endogenous iNKT cells and iNKT cell dependent responses. Moreover, an increase in the number of IFN-γ producing cells in PBMCs was associated with prolonged survival. The marked infiltration of iNKT cells and the accumulation of conventional T cells in the tumor microenvironment were also observed after the administration of α-GalCer-pulsed APCs and/or ex vivo activated iNKT cells. In cases of advanced head and neck squamous cell carcinoma, the increased accumulation of iNKT cells in the tumor microenvironment was correlated with objective clinical responses. We will also discuss potential combination therapies of iNKT cell based immunotherapy to achieve enhanced anti-tumor activity and provide better treatment options for these patients.
Collapse
Affiliation(s)
- Mariko Takami
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Fumie Ihara
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
9
|
King LA, Lameris R, de Gruijl TD, van der Vliet HJ. CD1d-Invariant Natural Killer T Cell-Based Cancer Immunotherapy: α-Galactosylceramide and Beyond. Front Immunol 2018; 9:1519. [PMID: 30013569 PMCID: PMC6036112 DOI: 10.3389/fimmu.2018.01519] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/19/2018] [Indexed: 12/27/2022] Open
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells are considered an attractive target for cancer immunotherapy. Upon their activation by glycolipid antigen and/or cytokines, iNKT cells can induce direct lysis of tumor cells but can also induce an antitumor immune response via their rapid production of proinflammatory cytokines that trigger the cytotoxic machinery of other components of the innate and adaptive immune system. Here, we provide an overview of various therapeutic approaches that have been evaluated or that are currently being developed and/or explored. These include administration of α-GalCer or alternative (glyco) lipid antigens, glycolipid-loaded antigen-presenting cells and liposomes, strategies that enhance CD1d expression levels or are based on ligation of CD1d, adoptive transfer of iNKT cells or chimeric antigen receptor iNKT cells, and tumor targeting of iNKT cells.
Collapse
Affiliation(s)
- Lisa A King
- Department of Medical Oncology, VU University Medical Center and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Roeland Lameris
- Department of Medical Oncology, VU University Medical Center and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, VU University Medical Center and Cancer Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
10
|
Nakano R, Ohira M, Yano T, Imaoka Y, Tanaka Y, Ohdan H. Hepatic irradiation persistently eliminates liver resident NK cells. PLoS One 2018; 13:e0198904. [PMID: 29897952 PMCID: PMC5999234 DOI: 10.1371/journal.pone.0198904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatic irradiation for the treatment of hepatobiliary malignancies often indirectly damages liver tissue and promotes the development of liver fibrosis. However, little is known concerning the effects of hepatic irradiation on the liver immune system, including natural killer (NK) cells. The aim of this study was therefore to investigate how hepatic irradiation influences the functions and characteristics of liver resident NK cells. An established murine hepatic irradiation model was used to examine the specific effects of hepatic irradiation on immune cell populations and metastasis. This analysis demonstrated that hepatic irradiation decreased the number of liver resident NK cells (DX5–TRAIL+), but did not affect the total NK number or proportions of NK cells in the liver or spleen. This effect was correlated with the hepatic irradiation dose. Surprisingly, the liver resident NK population had not recovered by two months after hepatic irradiation. We also found that hepatic irradiation limited the cytotoxic effects of liver-derived lymphocytes against a mouse hepatoma cell line and promoted hepatic metastases in an in vivo model, although adoptive transfer of activated NK cells could alleviate metastatic growth. Finally, we demonstrated that hepatic irradiation disrupted the development of liver-resident NK cells, even after the adoptive transfer of precursor cells from the bone marrow, liver, and spleen, suggesting that irradiation had altered the developmental environment of the liver. In summary, our data demonstrated that hepatic irradiation abolished the DX5–TRAIL+ liver-resident NK cell population and dampened antitumor activities in the liver for at least two months. Additionally, hepatic irradiation prevented differentiation of precursor cells into liver-resident NK cells.
Collapse
Affiliation(s)
- Ryosuke Nakano
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Ohira
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
- * E-mail:
| | - Takuya Yano
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Imaoka
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
11
|
Baglaenko Y, Cruz Tleugabulova M, Gracey E, Talaei N, Manion KP, Chang NH, Ferri DM, Mallevaey T, Wither JE. Invariant NKT Cell Activation Is Potentiated by Homotypic trans-Ly108 Interactions. THE JOURNAL OF IMMUNOLOGY 2017; 198:3949-3962. [PMID: 28373584 DOI: 10.4049/jimmunol.1601369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/07/2017] [Indexed: 01/27/2023]
Abstract
Invariant NKT (iNKT) cells are innate lymphocytes that respond to glycolipids presented by the MHC class Ib molecule CD1d and are rapidly activated to produce large quantities of cytokines and chemokines. iNKT cell development uniquely depends on interactions between double-positive thymocytes that provide key homotypic interactions between signaling lymphocyte activation molecule (SLAM) family members. However, the role of SLAM receptors in the differentiation of iNKT cell effector subsets and activation has not been explored. In this article, we show that C57BL/6 mice containing the New Zealand Black Slam locus have profound alterations in Ly108, CD150, and Ly9 expression that is associated with iNKT cell hyporesponsiveness. This loss of function was only apparent when dendritic cells and iNKT cells had a loss of SLAM receptor expression. Using small interfering RNA knockdowns and peptide-blocking strategies, we demonstrated that trans-Ly108 interactions between dendritic cells and iNKT cells are critical for robust activation. LY108 costimulation similarly increased human iNKT cell activation. Thus, in addition to its established role in iNKT cell ontogeny, Ly108 regulates iNKT cell function in mice and humans.
Collapse
Affiliation(s)
- Yuriy Baglaenko
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | | | - Eric Gracey
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Nafiseh Talaei
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Kieran Patricia Manion
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Nan-Hua Chang
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada
| | - Dario Michael Ferri
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Joan E Wither
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and.,Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
12
|
Chargari C, Magne N, Guy JB, Rancoule C, Levy A, Goodman KA, Deutsch E. Optimize and refine therapeutic index in radiation therapy: Overview of a century. Cancer Treat Rev 2016; 45:58-67. [DOI: 10.1016/j.ctrv.2016.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 12/20/2022]
|
13
|
Berzins SP, Ritchie DS. Natural killer T cells: drivers or passengers in preventing human disease? Nat Rev Immunol 2014; 14:640-6. [PMID: 25103356 DOI: 10.1038/nri3725] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural killer T (NKT) cells are credited with regulatory roles in immunity against cancers, autoimmune diseases, allergies, and bacterial and viral infections. Studies in mice and observational research in patient groups have suggested that NKT cell-based therapies could be used to prevent or treat these diseases, yet the translation into clinical settings has been disappointing. We support the view that NKT cells have regulatory characteristics that could be exploited in clinical settings, but there are doubts about the natural roles of NKT cells in vivo and whether NKT cell defects are fundamental drivers of disease in humans. In this Opinion article, we discuss the uncertainties and opportunities regarding NKT cells in humans, and the potential for NKT cells to be manipulated to prevent or treat disease.
Collapse
Affiliation(s)
- Stuart P Berzins
- School of Health Sciences, Federation University, Ballarat, Victoria 3350, Australia, the Fiona Elsey Cancer Research Institute, Ballarat, Victoria 3350, Australia, and the Department of Microbiology and Immunology, the Peter Doherty Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - David S Ritchie
- Department of Clinical Hematology and Bone Marrow Transplant Service, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
14
|
Berzins SP, Smyth MJ, Baxter AG. Presumed guilty: natural killer T cell defects and human disease. Nat Rev Immunol 2011; 11:131-42. [PMID: 21267014 DOI: 10.1038/nri2904] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural killer T (NKT) cells are important regulatory lymphocytes that have been shown in mouse studies, to have a crucial role in promoting immunity to tumours, bacteria and viruses, and in suppressing cell-mediated autoimmunity. Many clinical studies have indicated that NKT cell deficiencies and functional defects might also contribute to similar human diseases, although there is no real consensus about the nature of the NKT cell defects or whether NKT cells could be important for the diagnosis and/or treatment of these conditions. In this Review, we describe the approaches that have been used to analyse the NKT cell populations of various patient groups, suggest new strategies to determine how (or indeed, if) NKT cell defects contribute to human disease, and discuss the prospects for using NKT cells for therapeutic benefit.
Collapse
Affiliation(s)
- Stuart P Berzins
- Department of Microbiology & Immunology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | |
Collapse
|
15
|
Motohashi S, Okamoto Y, Yoshino I, Nakayama T. Anti-tumor immune responses induced by iNKT cell-based immunotherapy for lung cancer and head and neck cancer. Clin Immunol 2011; 140:167-76. [PMID: 21349771 DOI: 10.1016/j.clim.2011.01.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/12/2011] [Accepted: 01/19/2011] [Indexed: 12/30/2022]
Abstract
Invariant NKT (iNKT) cells constitute a distinct lymphocyte subset, and upon activation, iNKT cells modulate the function of a wide variety of other immune cells including anti-tumor effector cells in both a direct and indirect manner. Decreased numbers and a reduced function of iNKT cells have been observed in patients with various malignant diseases, thus correlating with a poor clinical outcome. Therefore, therapeutic intervention strategies aimed at the recovery of functional iNKT cells would be an appropriate rationale for the treatment of cancer. Early clinical trials of iNKT cell-based immunotherapy demonstrated that the infusion of ligand-pulsed antigen presenting cells and/or in vitro activated iNKT cells was safe and well tolerated. This review summarizes the results of a series of clinical trials for lung cancer and head and neck cancer patients in Chiba University Hospital, Japan, and discusses iNKT cell-induced immune responses particularly those in the tumor microenvironment.
Collapse
|