1
|
Leśniak M, Lipniarska J, Majka P, Kopyt W, Lejman M, Zawitkowska J. The Role of TRL7/8 Agonists in Cancer Therapy, with Special Emphasis on Hematologic Malignancies. Vaccines (Basel) 2023; 11:vaccines11020277. [PMID: 36851155 PMCID: PMC9967151 DOI: 10.3390/vaccines11020277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Toll-like receptors (TLR) belong to the pattern recognition receptors (PRR). TLR7 and the closely correlated TLR8 affiliate with toll-like receptors family, are located in endosomes. They recognize single-stranded ribonucleic acid (RNA) molecules and synthetic deoxyribonucleic acid (DNA)/RNA analogs-oligoribonucleotides. TLRs are primarily expressed in hematopoietic cells. There is compiling evidence implying that TLRs also direct the formation of blood cellular components and make a contribution to the pathogenesis of certain hematopoietic malignancies. The latest research shows a positive effect of therapy with TRL agonists on the course of hemato-oncological diseases. Ligands impact activation of antigen-presenting cells which results in production of cytokines, transfer of mentioned cells to the lymphoid tissue and co-stimulatory surface molecules expression required for T-cell activation. Toll-like receptor agonists have already been used in oncology especially in the treatment of dermatological neoplastic lesions. The usage of these substances in the treatment of solid tumors is being investigated. The present review discusses the direct and indirect influence that TLR7/8 agonists, such as imiquimod, imidazoquinolines and resiquimod have on neoplastic cells and their promising role as adjuvants in anticancer vaccines.
Collapse
Affiliation(s)
- Maria Leśniak
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Justyna Lipniarska
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Patrycja Majka
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Weronika Kopyt
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| |
Collapse
|
2
|
van Luijn MM, Chamuleau MED, Ossenkoppele GJ, van de Loosdrecht AA, Marieke van Ham S. Tumor immune escape in acute myeloid leukemia: Class II-associated invariant chain peptide expression as result of deficient antigen presentation. Oncoimmunology 2021; 1:211-213. [PMID: 22720245 PMCID: PMC3376995 DOI: 10.4161/onci.1.2.18100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this overview, we discuss the role of class II-associated invariant chain peptide (CLIP) in acute myeloid leukemia (AML), one of the few tumors expressing HLA class II. The clinical impact, function and regulation of CLIP expression on leukemic cells is addressed, indicating its potential as immunotherapeutic target in AML.
Collapse
Affiliation(s)
- Marvin M van Luijn
- Department of Hematology; Cancer Center Amsterdam; VU Institute for Cancer and Immunology; VU University Medical Center; Amsterdam, The Netherlands ; Department of Immunopathology; Sanquin Research and Landsteiner Laboratory; Academic Medical Center; University of Amsterdam; Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
3
|
Abstract
In spite of current influenza vaccines being immunogenic, evolution of the influenza virus can reduce efficacy and so influenza remains a major threat to public health. One approach to improve influenza vaccines is to include adjuvants; substances that boost the immune response. Adjuvants are particularly beneficial for influenza vaccines administered during a pandemic when a rapid response is required or for use in patients with impaired immune responses, such as infants and the elderly. This review outlines the current use of adjuvants in human influenza vaccines, including what they are, why they are used and what is known of their mechanism of action. To date, six adjuvants have been used in licensed human vaccines: Alum, MF59, AS03, AF03, virosomes and heat labile enterotoxin (LT). In general these adjuvants are safe and well tolerated, but there have been some rare adverse events when adjuvanted vaccines are used at a population level that may discourage the inclusion of adjuvants in influenza vaccines, for example the association of LT with Bell's Palsy. Improved understanding about the mechanisms of the immune response to vaccination and infection has led to advances in adjuvant technology and we describe the experimental adjuvants that have been tested in clinical trials for influenza but have not yet progressed to licensure. Adjuvants alone are not sufficient to improve influenza vaccine efficacy because they do not address the underlying problem of mismatches between circulating virus and the vaccine. However, they may contribute to improved efficacy of next-generation influenza vaccines and will most likely play a role in the development of effective universal influenza vaccines, though what that role will be remains to be seen.
Collapse
Affiliation(s)
- John S Tregoning
- a Mucosal Infection and Immunity group, Section of Virology, Department of Medicine , St Mary's Campus, Imperial College London , UK
| | - Ryan F Russell
- a Mucosal Infection and Immunity group, Section of Virology, Department of Medicine , St Mary's Campus, Imperial College London , UK
| | - Ekaterina Kinnear
- a Mucosal Infection and Immunity group, Section of Virology, Department of Medicine , St Mary's Campus, Imperial College London , UK
| |
Collapse
|
4
|
Anguille S, Smits EL, Bryant C, Van Acker HH, Goossens H, Lion E, Fromm PD, Hart DN, Van Tendeloo VF, Berneman ZN. Dendritic Cells as Pharmacological Tools for Cancer Immunotherapy. Pharmacol Rev 2015; 67:731-53. [DOI: 10.1124/pr.114.009456] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
5
|
Ruben JM, Bontkes HJ, Westers TM, Hooijberg E, Ossenkoppele GJ, van de Loosdrecht AA, de Gruijl TD. In situ loading of skin dendritic cells with apoptotic bleb-derived antigens for the induction of tumor-directed immunity. Oncoimmunology 2014; 3:e946360. [PMID: 25610730 DOI: 10.4161/21624011.2014.946360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/05/2014] [Indexed: 11/19/2022] Open
Abstract
The generation and loading of dendritic cells (DC) ex-vivo for tumor vaccination purposes is laborious and costly. Direct intradermal (i.d.) administration of tumor-associated antigens could be an attractive alternative approach, provided that efficient uptake and cross-presentation by appropriately activated skin DCs can be achieved. Here, we compare the efficiency of i.d. delivery of relatively small apoptotic blebs (diameter ∼0.1-1 μm) derived from MART-1 transduced acute myeloid leukemia (AML) HL60 cells, to that of larger apoptotic cell remnants (ACR; 2-10 μm) in a physiologically highly relevant human skin explant model. Injection of either fluorescently-labelled ACRs or blebs alone did not affect the number or distribution of migrated DC subsets from skin biopsies after 48 hours, but resulted in a general up-regulation of the co-stimulatory molecules CD83 and CD86 on skin DCs that had ingested apoptotic material. We have previously shown that i.d. administration of GM-CSF and IL-4 resulted in preferential migration of a mature and highly T cell-stimulatory CD11hiCD1a+CD14- dermal DC subset. Here, we found that co-injection of GM-CSF and IL-4 together with either ACRs or blebs resulted in uptake efficiencies within this dermal DC subset of 7.6% (±6.1%) and 19.1% (±15.9%), respectively, thus revealing a significantly higher uptake frequency of blebs (P < 0.02). Intradermal delivery of tumor-derived blebs did not affect the T-cell priming and TH-skewing abilities of migratory skin DC. Nevertheless, in contrast to i.d. administration of ACR, the injection of blebs lead to effective cross-presentation of MART-1 to specific CD8+ effector T cells. We conclude that apoptotic bleb-based vaccines delivered through the skin may offer an attractive, and broadly applicable, cancer immunotherapy.
Collapse
Key Words
- 4/GM, IL-4 and GM-CSF
- ACR, apoptotic cell remnant
- AML, acute myeloid leukemia
- CFSE, carboxyfluorescein succinimidyl ester
- DC, dendritic cell
- DDC, dermal DC
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HLA, human leukocyte antigen
- HSCT, hematopoietic stem cell transplantation
- IFN, interferon
- IL, interleukin
- Ig, immune globulin
- LC, Langerhans cell
- LN, lymph node
- MART-1/melan-A, melanoma antigen recognized by T cell 1
- MLR, mixed leukocyte reaction
- MoDC, monocyte-derived dendritic cell
- TAA, tumor-associated antigen
- TH, T Helper
- TLR, Toll-like receptor
- TNFα, tumor necrosis factor α
- apoptotic cells
- blebs
- cross-presentation
- dendritic cells
- dermis
- i.d., intradermal
- phagocytosis
- skin
Collapse
Affiliation(s)
- Jurjen M Ruben
- Department of Hematology; VU University Medical Center; Cancer Center Amsterdam ; Amsterdam, The Netherlands
| | - Hetty J Bontkes
- Department of Hematology; VU University Medical Center; Cancer Center Amsterdam ; Amsterdam, The Netherlands ; Department of Pathology; VU University Medical Center; Cancer Center Amsterdam ; Amsterdam, The Netherlands
| | - Theresia M Westers
- Department of Hematology; VU University Medical Center; Cancer Center Amsterdam ; Amsterdam, The Netherlands
| | - Erik Hooijberg
- Department of Pathology; VU University Medical Center; Cancer Center Amsterdam ; Amsterdam, The Netherlands
| | - Gert J Ossenkoppele
- Department of Hematology; VU University Medical Center; Cancer Center Amsterdam ; Amsterdam, The Netherlands
| | - Arjan A van de Loosdrecht
- Department of Hematology; VU University Medical Center; Cancer Center Amsterdam ; Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology; VU University Medical Center; Cancer Center Amsterdam ; Amsterdam, The Netherlands
| |
Collapse
|
6
|
Ruben JM, van den Ancker W, Bontkes HJ, Westers TM, Hooijberg E, Ossenkoppele GJ, de Gruijl TD, van de Loosdrecht AA. Apoptotic blebs from leukemic cells as a preferred source of tumor-associated antigen for dendritic cell-based vaccines. Cancer Immunol Immunother 2014; 63:335-45. [PMID: 24384837 PMCID: PMC11028911 DOI: 10.1007/s00262-013-1515-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/18/2013] [Indexed: 12/24/2022]
Abstract
Since few leukemia-associated antigens (LAA) are characterized for acute myeloid leukemia (AML), apoptotic tumor cells constitute an attractive LAA source for DC-based vaccines, as they contain both characterized and unknown LAA. However, loading DC with apoptotic tumor cells may interfere with DC function. Previously, it was shown in mice that apoptotic blebs induce DC maturation, whereas apoptotic cell remnants (ACR) do not. Here, we analyzed human monocyte-derived DC (MoDC) functionality in vitro, after ingesting either allogeneic AML-derived ACR or blebs. We show that MoDC ingest blebs to a higher extent and are superior in migrating toward CCL19, as compared to ACR-loaded MoDC. Although MoDC cytokine production was unaffected, co-culturing bleb-loaded MoDC with T cells led to an increased T cell proliferation and IFNγ production. Moreover, antigen-specific CD8(+) T cells frequencies increased to 0.63 % by priming with bleb-loaded MoDC, compared to 0.16 % when primed with ACR-loaded MoDC. Importantly, CD8(+) T cells primed by bleb-loaded MoDC recognized their specific epitope at one to two orders of magnitude lower concentrations compared to ACR-loaded MoDC. In conclusion, superior ingestion efficiency and migration, combined with favorable T cell cytokine release and CD8(+) T cell priming ability and avidity, point to blebs as the preferred component of apoptotic leukemic cells for LAA loading of DC for the immunotherapy of AML.
Collapse
Affiliation(s)
- Jurjen M. Ruben
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Willemijn van den Ancker
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Hetty J. Bontkes
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Theresia M. Westers
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Erik Hooijberg
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Gert J. Ossenkoppele
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Tanja D. de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Arjan A. van de Loosdrecht
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
7
|
Lichtenegger FS, Schnorfeil FM, Hiddemann W, Subklewe M. Current strategies in immunotherapy for acute myeloid leukemia. Immunotherapy 2013; 5:63-78. [PMID: 23256799 DOI: 10.2217/imt.12.145] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The prognosis of acute myeloid leukemia, particularly when associated with adverse chromosomal or molecular aberrations, is poor due to a high relapse rate after induction chemotherapy. Postremission therapy for elimination of minimal residual disease remains a major challenge. Allogeneic hematopoietic stem cell transplantation has proven to provide a potent antileukemic effect. Novel strategies are needed for patients ineligible for this treatment. Here current immunotherapeutic concepts in acute myeloid leukemia in a nonallogeneic hematopoietic stem cell transplantation setting are reviewed. Data gathered with different monoclonal antibodies are discussed. Adoptive transfer of NK and T cells is reviewed, including evolving data on T-cell engineering. Results of systemic cytokine administration and of therapeutic vaccinations with peptides, modified leukemic cells and dendritic cells are presented. One particular focus of this review is the integration of currently running clinical trials. Recent immunotherapeutic studies have been encouraging and further interesting results are to be expected.
Collapse
Affiliation(s)
- Felix S Lichtenegger
- Department of Internal Medicine III, Klinikum der Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | | | | | | |
Collapse
|
8
|
Nourizadeh M, Masoumi F, Memarian A, Alimoghaddam K, Moazzeni SM, Hadjati J. Synergistic effect of Toll-like receptor 4 and 7/8 agonists is necessary to generate potent blast-derived dendritic cells in Acute Myeloid Leukemia. Leuk Res 2012; 36:1193-9. [PMID: 22579107 DOI: 10.1016/j.leukres.2012.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 04/13/2012] [Accepted: 04/13/2012] [Indexed: 01/07/2023]
Abstract
Leukemic cells from AML patients can be differentiated to dendritic cells (DCs). Such DCs have potential for immunotherapy of patients. Blasts from 15 AML patients were differentiated into DCs and matured by different TLR agonists. We could generate AML-DCs from 73% of patients mostly with M4 or M5 subtypes. The DC recoveries ranged from 28% to 50%. The results showed that concomitant use of TLR4 and TLR7/8 agonists induced proficient DCs. Therefore, a combination of TLR4 and 7/8 agonists can be considered as an appropriate maturation cocktail for AML-DC production in order to use in the immunotherapy of AML patients.
Collapse
Affiliation(s)
- Maryam Nourizadeh
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
9
|
Dendritic cells the tumor microenvironment and the challenges for an effective antitumor vaccination. J Biomed Biotechnol 2012; 2012:425476. [PMID: 22505809 PMCID: PMC3312387 DOI: 10.1155/2012/425476] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/28/2011] [Accepted: 11/11/2011] [Indexed: 12/23/2022] Open
Abstract
Many clinical trials have been carried out or are in progress to assess the therapeutic potential of dendritic-cell- (DC-) based vaccines on cancer patients, and recently the first DC-based vaccine for human cancer was approved by the FDA. Herewith, we describe the general characteristics of DCs and different strategies to generate effective antitumor DC vaccines. In recent years, the relevance of the tumor microenvironment in the progression of cancer has been highlighted. It has been shown that the tumor microenvironment is capable of inactivating various components of the immune system responsible for tumor clearance. In particular, the effect of the tumor microenvironment on antigen-presenting cells, such as DCs, does not only render these immune cells unable to induce specific immune responses, but also turns them into promoters of tumor growth. We also describe strategies likely to increase the efficacy of DC vaccines by reprogramming the immunosuppressive nature of the tumor microenvironment.
Collapse
|
10
|
Westers TM, van den Ancker W, Bontkes HJ, Janssen JJWM, van de Loosdrecht AA, Ossenkoppele GJ. Chronic myeloid leukemia lysate-loaded dendritic cells induce T-cell responses towards leukemia progenitor cells. Immunotherapy 2011; 3:569-76. [DOI: 10.2217/imt.11.3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Treatment of chronic myeloid leukemia with tyrosine kinase inhibitors, such as imatinib mesylate, dasatinib and nilotinib, results in high rates of cytogenetic and molecular responses. However, in many patients, minimal residual disease is detected by molecular techniques. Since chronic myeloid leukemia cells are particularly good targets for immune surveillance mechanisms, we explored active specific immunotherapy using leukemia lysate-loaded dendritic cells in vitro. Our data show the potency of dendritic cell-based vaccination strategies for the induction of T cell-mediated responses to eradicate minimal residual disease.
Collapse
Affiliation(s)
| | - Willemijn van den Ancker
- Department of Hematology, Cancer Center Amsterdam/VUmc Institute for Cancer & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Hetty J Bontkes
- Department of Hematology, Cancer Center Amsterdam/VUmc Institute for Cancer & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jeroen JWM Janssen
- Department of Hematology, Cancer Center Amsterdam/VUmc Institute for Cancer & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Arjan A van de Loosdrecht
- Department of Hematology, Cancer Center Amsterdam/VUmc Institute for Cancer & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gert J Ossenkoppele
- Department of Hematology, Cancer Center Amsterdam/VUmc Institute for Cancer & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Gulliver R, Baltic S, Misso NL, Bertram CM, Thompson PJ, Fogel-Petrovic M. Lys-des[Arg9]-bradykinin alters migration and production of interleukin-12 in monocyte-derived dendritic cells. Am J Respir Cell Mol Biol 2010; 45:542-9. [PMID: 21177981 DOI: 10.1165/rcmb.2010-0238oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study tested the hypothesis that proinflammatory kinin peptides are involved in modulating human dendritic cell (DC) function. Inflammation is accompanied by an increased maturation of DCs and the generation of kinins, particularly Lys-des[Arg(9)]-bradykinin (Lda-BK). We assessed the role of Lda-BK in the activation and migration of human monocyte-derived DCs (hMo-DCs) matured through the use of LPS, TNF-α + IL-1β, or CD40 ligand. Kinin B(1) and B(2) receptor mRNA and protein expression were assessed by confocal microscopy, flow cytometry, and RT-PCR. The effects of Lda-BK on the migration of mature hMo-DCs were assessed in Transwell chambers, whereas the expression of costimulatory molecules and the secretion of IL-12 were assessed by flow cytometry and ELISA, respectively. The expression of the kinin B(1) receptor (B(1)R) was down-regulated during the maturation of hMo-DCs, whereas the expression of B(2)R was unchanged. The B(1)R agonist Lda-BK was not chemotactic for hMo-DCs matured using LPS, TNF-α + IL-1β, or CD40 ligand, but Lda-BK enhanced the secretion of IL-12p70 and inhibited the secretion of IL-12p40 by mature hMo-DCs. However, the exposure of hMo-DCs matured with TNF-α + IL-1β to Lda-BK for 6 hours decreased subsequent migration in response to Lda-BK, the chemokine CCL19, or Lda-BK combined with CCL19. The expression of B(1)R was increased in hMo-DCs from subjects with asthma compared with subjects without asthma, in keeping with a tendency toward increased in vitro migration of asthmatic hMo-DCs in response to Lda-BK. The increased formation of Lda-BK and the enhanced expression of B(1)R as a consequence of inflammation may alter the migration of mature, antigen-laden DCs to regional lymph nodes in response to CCL19, may modulate the secretion of cytokines by these DCs, and may contribute to the accumulation of mature DCs in the lungs of patients with asthma.
Collapse
Affiliation(s)
- Rosalind Gulliver
- Centre for Asthma, Allergy and Respiratory Research, The University of Western Australia, and Lung Institute of Western Australia, Perth, Western Australia, Australia
| | | | | | | | | | | |
Collapse
|