1
|
Abstract
Since the receptor activator of nuclear factor-kappa B ligand (RANKL), its cognate receptor activator of nuclear factor-kappa B (RANK), and the decoy receptor osteoprotegerin (OPG) were discovered, a number of studies have uncovered the crucial role of the RANKL-RANK-OPG pathway in controlling the key aspect of bone homeostasis, the immune system, inflammation, cancer, and other systems under pathophysiological condition. These findings have expanded the understanding of the multifunctional biology of the RANKL-RANK-OPG pathway and led to the development of therapeutic potential targeting this pathway. The successful development and application of anti-RANKL antibody in treating diseases causing bone loss validates the utility of therapeutic approaches based on the modulation of this pathway. Moreover, recent studies have demonstrated the involvement of the RANKL-RANK pathway in osteoblast differentiation and bone formation, shedding light on the RANKL-RANK dual signaling in coupling bone resorption and bone formation. In this review, we will summarize the current understanding of the RANKL-RANK-OPG system in the context of the bone and the immune system as well as the impact of this pathway in disease conditions, including cancer development and metastasis.
Collapse
Affiliation(s)
- Noriko Takegahara
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Hyunsoo Kim
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Yongwon Choi
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Khalyfa A, Carrillo AC, Chavis Y. An Unusual Presentation of Multiple Myeloma: A 71-Year-Old Female With a Single Lytic Lesion of Her Appendicular Skeleton. Cureus 2022; 14:e24725. [PMID: 35673306 PMCID: PMC9165616 DOI: 10.7759/cureus.24725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 11/05/2022] Open
Abstract
Multiple myeloma is a devastating illness with a hallmark of end-organ damage. The clinical presentation of multiple myeloma often includes the involvement of CRAB (hypercalcemia, renal failure, anemia, bone lesions) symptoms. We present a case of a patient who did not exhibit the typical presentation of multiple myeloma making her case unique and her diagnosis more difficult. In addition to the CRAB criteria, typical symptomatology includes constipation, pain, fatigue, and peripheral sensory issues. The purpose of this case report is to bring awareness to both multiple myeloma and this particular presentation. The patient is a 71-year-old female with a past medical history of hypertension, hypothyroidism, and rheumatoid arthritis who presented with a chief complaint of right shoulder pain. The patient’s initial labs were significant for a total protein of 9.3, albumin of 3.4, corrected calcium of 9.3, hemoglobin 10.6 (with baseline near 11-12), and creatinine of 1.0 (baseline of 1.0). The patient’s right upper extremity X-rays were significant for a right humeral fracture. The patient had a serum kappa/lambda ratio of 15.94. Bone marrow biopsy revealed 50% kappa-restricted cells, consistent with a diagnosis of multiple myeloma. The patient’s subsequent bone survey and CT scan were negative for any additional lesions. The patient had subsequent radiation therapy followed by maintenance therapy with bortezomib, lenalidomide, and dexamethasone with improvement in her symptoms. MM is a complex pathophysiological disease and equally as complex in diagnosis as the presentation is varied and sometimes obscure as noted in the case presented here. Although bone lytic lesions are part of the CRAB criteria, it is rare for them to present in patients with MM in an isolated manner with no corresponding lab abnormalities. With this case, we aim to shed light upon an atypical presentation of MM, notably one that solely involves a pathological fracture in a non-axial distribution.
Collapse
|
3
|
The Clinical Characteristics and Prognostic Nomogram for Head and Neck Cancer Patients with Bone Metastasis. JOURNAL OF ONCOLOGY 2021; 2021:5859757. [PMID: 34616453 PMCID: PMC8490031 DOI: 10.1155/2021/5859757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 01/18/2023]
Abstract
Background Head and neck cancer (HNC) is the sixth most common malignancy globally, and many demographics and clinicopathological factors influence its prognosis. This study aimed to construct and validate a prognostic nomogram to predict the prognosis of HNC patients with bone metastasis (BM). Methods A total of 326 patients with BM from HNC were collected from the SEER database as the subjects of this study. In a ratio of 7 to 3, patients were randomly divided into training and validation groups. Independent prognostic factors for HNC patients with BM were identified by univariate and multivariate Cox regression analysis. The nomogram for predicting the prognosis was constructed, and the model was evaluated by receiver operating characteristic curves, calibration curves, and decision curve analysis. Result The independent prognostic factors for HNC patients with BM included age, primary site, lung metastasis, and chemotherapy. The area under the curve predicting overall survival at 12, 24, and 36 months was 0.768, 0.747, and 0.723 in the training group and 0.729, 0.723, and 0.669 in the validation group, respectively. The calibration curves showed good agreement between the predicted and actual values for overall survival. In addition, the decision curve analysis showed that this prognostic nomogram model has a high clinical application. Conclusion This study developed and validated a nomogram to predict overall survival in HNC patients with BM. The prognostic nomogram has high accuracy and utility to inform survival estimation and individualized treatment decisions.
Collapse
|
4
|
Dou A, Zhang Y, Wang Y, Liu X, Guo Y. Reelin depletion alleviates multiple myeloma bone disease by promoting osteogenesis and inhibiting osteolysis. Cell Death Discov 2021; 7:219. [PMID: 34433809 PMCID: PMC8387418 DOI: 10.1038/s41420-021-00608-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/26/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022] Open
Abstract
Extracellular matrix glycoprotein Reelin is associated with tumor metastasis and prognosis in various malignancies. However, its effects on multiple myeloma (MM) are not fully understood. Here, we investigated the regulatory effects of Reelin on MM and its underlying pathogenic mechanisms. Lentivirus plasmid containing short hairpin RNA targeting Reelin (LV3-Reln) was transfected into SP2/0 cells to knockdown Reelin expression. Flow cytometry assay analyzed cell cycle and apoptosis while Transwell assay evaluated invasiveness. BALB/c mice were inoculated with LV3-Reln-transfected SP2/0 cells to establish MM model. Primary myeloma cells and osteoblasts/osteoclast were isolated from tumor tissue and limb long bones respectively. ELISA examined serum biomarkers and immunohistochemistry detected immunoglobulin light chain expression. Morphological changes and osteoclast/osteoblast differentiation were observed by histological staining. mRNA and proteins expression were determined by qPCR and WB. In vitro studies showed that Reelin depletion regulated osteolysis and osteogenesis balance, cell cycle, invasiveness, and apoptosis in SP2/0 cells. In LV3-Reln mice, tumor growth and invasiveness were suppressed, meanwhile, reduced osteoclast activation and enhanced osteoblast activity were observed. Reelin knockdown alleviated extramedullary morbidity and inhibited spleen immune cell apoptosis by down-regulating CDK5, IL-10, and Cyto-C expression. Furthermore, reduced Reelin expression restrained osteoclast differentiation while promoted osteogenesis in the bone of LV3-Reln mice. This was further supported by down-regulation of osteolytic specific mRNAs and proteins (Trap, Mmp9, Ctsk, Clcn7) and up-regulation of osteogenic specific ones (COL-1, Runx2, β-Catenin). Reelin exerted important impacts on myeloma development through rebalancing osteolysis and osteogenesis, thus might be a potential therapeutic target for MM.
Collapse
Affiliation(s)
- Aixia Dou
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Ying Zhang
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yongjing Wang
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoli Liu
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanan Guo
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
5
|
Rosenberg D, Avni T, Tsvetov G, Gafter-Gvili A, Diker-Cohen T. Denosumab is not associated with risk of malignancy: systematic review and meta-analysis of randomized controlled trials. Osteoporos Int 2021; 32:413-424. [PMID: 33145606 DOI: 10.1007/s00198-020-05704-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/14/2020] [Indexed: 01/22/2023]
Abstract
The immunomodulatory effects of denosumab have raised concerns for risk of malignancy. This meta-analysis of 25 randomized controlled trials (21,523 patients) shows similar risk of malignancy between denosumab (60 mg every 6 months, up to 48 months) and any comparator. Post-marketing surveillance may detect rare or late-occurring drug effects. Possible increased risk of malignancy in patients treated with denosumab has been concerned due to inhibition of the immune modulator receptor activator of nuclear factor κ-Β ligand (RANKL). We aimed to assess the risk of malignancy associated with denosumab treatment. PubMed and Cochrane Central Register of Controlled Trials were searched up to May 27, 2019 to include all randomized controlled trials of denosumab (60 mg every 6 months) versus any comparator. Trials using higher drug doses for prevention of skeletal-related events were excluded. Data were independently extracted by two reviewers and analyzed using a fixed-effect model to pool risk ratios (RRs) with 95% confidence intervals (CI). Twenty-five trials (21,523 patients) were included. The risk of malignancy was similar between denosumab and other comparators (absolute risk difference 0%, RR 1.08 [95% CI, 0.93-1.24], I2 = 0%). Sensitivity analysis based on adequate allocation concealment showed similar results. The risk of malignancy did not differ between groups in any of the subgroup analyses, including stratification by race, individual comparators, indications for treatment, and longer drug exposure (≥ 24 months, 9 studies). The risk ratio of malignancy-related death was similar between groups. Early concerns about a potential increased risk of malignancy resulting from an immunomodulatory effect of denosumab are not supported by evidence from this meta-analysis of 25 RCTs with drug exposure of up to 48 months. Since RCTs with longer observation for safety outcomes are not expected, post-marketing surveillance will be the main means for detection of rare or late-occurring events.
Collapse
Affiliation(s)
- D Rosenberg
- Medicine A, Rabin Medical Center - Beilinson Hospital, 39 Jabotinski St., 4941492, Petach Tikva, Israel.
| | - T Avni
- Medicine A, Rabin Medical Center - Beilinson Hospital, 39 Jabotinski St., 4941492, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - G Tsvetov
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Endocrinology, Diabetes and Metabolism, Rabin Medical Center - Beilinson Hospital, Petah Tikva, Israel
| | - A Gafter-Gvili
- Medicine A, Rabin Medical Center - Beilinson Hospital, 39 Jabotinski St., 4941492, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - T Diker-Cohen
- Medicine A, Rabin Medical Center - Beilinson Hospital, 39 Jabotinski St., 4941492, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Endocrinology, Diabetes and Metabolism, Rabin Medical Center - Beilinson Hospital, Petah Tikva, Israel
| |
Collapse
|
6
|
Zhang W, Gao L, Ren W, Li S, Zheng J, Li S, Jiang C, Yang S, Zhi K. The Role of the Immune Response in the Development of Medication-Related Osteonecrosis of the Jaw. Front Immunol 2021; 12:606043. [PMID: 33717086 PMCID: PMC7947359 DOI: 10.3389/fimmu.2021.606043] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/03/2021] [Indexed: 12/22/2022] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a rare but serious adverse drug effect. There are multiple hypotheses to explain the development of MRONJ. Reduced bone remodeling and infection or inflammation are considered central to the pathogenesis of MRONJ. In recent years, increasing evidence has shown that bisphosphonates (BPs)-mediated immunity dysfunction is associated with the pathophysiology of MRONJ. In a healthy state, mucosal immunity provides the first line of protection against pathogens and oral mucosal immune cells defense against potentially invading pathogens by mediating the generation of protective immunoinflammatory responses. In addition, the immune system takes part in the process of bone remodeling and tissue repair. However, the treatment of BPs disturbs the mucosal and osteo immune homeostasis and thus impairs the body's ability to resist infection and repair from injury, thereby adding to the development of MRONJ. Here, we present the current knowledge about immunity dysfunction to shed light on the role of local immune disorder in the development of MRONJ.
Collapse
Affiliation(s)
- Weidong Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China
| | - Ling Gao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Key Laboratory of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingjing Zheng
- Key Laboratory of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Endodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shasha Li
- Department of Stomatology, Binzhou People'Hospital, Binzhou, China
| | - Chunmiao Jiang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuying Yang
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Keqian Zhi
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Key Laboratory of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Moser-Katz T, Joseph NS, Dhodapkar MV, Lee KP, Boise LH. Game of Bones: How Myeloma Manipulates Its Microenvironment. Front Oncol 2021; 10:625199. [PMID: 33634031 PMCID: PMC7900622 DOI: 10.3389/fonc.2020.625199] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma is a clonal disease of long-lived plasma cells and is the second most common hematological cancer behind Non-Hodgkin's Lymphoma. Malignant transformation of plasma cells imparts the ability to proliferate, causing harmful lesions in patients. In advanced stages myeloma cells become independent of their bone marrow microenvironment and form extramedullary disease. Plasma cells depend on a rich array of signals from neighboring cells within the bone marrow for survival which myeloma cells exploit for growth and proliferation. Recent evidence suggests, however, that both the myeloma cells and the microenvironment have undergone alterations as early as during precursor stages of the disease. There are no current therapies routinely used for treating myeloma in early stages, and while recent therapeutic efforts have improved patients' median survival, most will eventually relapse. This is due to mutations in myeloma cells that not only allow them to utilize its bone marrow niche but also facilitate autocrine pro-survival signaling loops for further progression. This review will discuss the stages of myeloma cell progression and how myeloma cells progress within and outside of the bone marrow microenvironment.
Collapse
Affiliation(s)
- Tyler Moser-Katz
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Nisha S. Joseph
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Madhav V. Dhodapkar
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Kelvin P. Lee
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Lawrence H. Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| |
Collapse
|
8
|
Ming J, Cronin SJF, Penninger JM. Targeting the RANKL/RANK/OPG Axis for Cancer Therapy. Front Oncol 2020; 10:1283. [PMID: 32850393 PMCID: PMC7426519 DOI: 10.3389/fonc.2020.01283] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
RANKL and RANK are expressed in different cell types and tissues throughout the body. They were originally described for their essential roles in bone remodeling and the immune system but have subsequently been shown to provide essential signals from regulating mammary gland homeostasis during pregnancy to modulating tumorigenesis. The success of RANKL/RANK research serves as a paragon for translational research from the laboratory to the bedside. The case in point has been the development of Denosumab, a RANKL-blocking monoclonal antibody which has already helped millions of patients suffering from post-menopausal osteoporosis and skeletal related events in cancer. Here we will provide an overview of the pathway from its origins to its clinical relevance in disease, with a special focus on emerging evidence demonstrating the therapeutic value of targeting the RANKL/RANK/OPG axis not only in breast cancer but also as an addition to the cancer immunotherapy arsenal.
Collapse
Affiliation(s)
- Jie Ming
- Department of Breast and Thyroid Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shane J F Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter, Vienna, Austria.,Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Immune system and bone microenvironment: rationale for targeted cancer therapies. Oncotarget 2020; 11:480-487. [PMID: 32064051 PMCID: PMC6996902 DOI: 10.18632/oncotarget.27439] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/31/2019] [Indexed: 12/20/2022] Open
Abstract
Osteoimmunology was coined about twenty years ago to identify a strict cross talk between bone niche and immune system both in physiological and pathological activities, including cancer. Several molecules are involved in the complex interaction between bone niche, immune and cancer cells. The Receptor Activator of NF-kB (RANK)/RANK Ligand (RANKL/Osteoprotegerin (OPG) pathway plays a crucial role in bone cells/cancer interactions with subsequently immune system control failure, bone destruction, inhibition of effect and metastasis outcome. The bidirectional cross talk between bone and immune system could became a potential target for anticancer drugs. Several studies evidenced a direct anticancer role with improved survival of bone-targeted therapies such as bisphosphonates and RANKL antagonist Denosumab. Conversely, initial data evidenced a possible anti-bone resorption effect of systemic anticancer drugs through and immunomodulation activity, i.e. new generation antiandrogens (Abiraterone) in prostate cancer. All data could open a future rationale of combined bone, immunologic and targeted therapies in cancer treatment.
Collapse
|
10
|
Zhang C, Wiemels JL, Hansen HM, Gonzalez-Maya J, Endicott AA, de Smith AJ, Smirnov IV, Witte JS, Morimoto LM, Metayer C, Walsh KM. Two HLA Class II Gene Variants Are Independently Associated with Pediatric Osteosarcoma Risk. Cancer Epidemiol Biomarkers Prev 2018; 27:1151-1158. [PMID: 30038050 DOI: 10.1158/1055-9965.epi-18-0306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/29/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Background: The genetic etiology of osteosarcoma remains poorly understood despite the publication of a genome-wide association study. Association between HLA genetic variants and risk of several cancers has been observed, but HLA variation is not well captured by standard SNP arrays.Methods: We genotyped 207 Californian pediatric osteosarcoma cases and 696 controls of European ancestry using a custom genome-wide array supplemented with approximately 6,000 additional probes across the MHC region. We subsequently imputed 4-digit classical HLA alleles using a reference panel of 5,225 individuals who underwent high-resolution HLA typing via next-generation sequencing. Case-control comparisons were adjusted for ancestry-informative principal components, and top associations from the discovery analysis underwent replication in an independent dataset of 657 cases and 1,183 controls.Results: Three highly correlated HLA class II variants (r 2 = 0.33-0.98) were associated with osteosarcoma risk in discovery analyses, including HLA-DRB1*0301 (OR = 0.52; P = 3.2 × 10-3), HLA-DQA1*0501 (OR = 0.74; P = 0.031), and HLA-DQB1*0201 (OR = 0.51; P = 2.7 × 10-3). Similar associations were observed in the replication data (P range = 0.011-0.037). Meta-analysis of the two datasets identified HLA-DRB1*0301 as the most significantly associated variant (ORmeta = 0.62; P meta = 1.5 × 10-4), reaching Bonferroni-corrected statistical significance. The meta-analysis also revealed a second significant independent signal at HLA-DQA1*01:01 (ORmeta = 1.33, P meta = 1.2 × 10-3), and a third suggestive association at HLA-DQB1*0302 (ORmeta = 0.73, P meta = 6.4 × 10-3).Conclusions: Multiple independent HLA class II alleles may influence osteosarcoma risk.Impact: Additional work is needed to extend our observations to other patient populations and to clarify the potential causal mechanisms underlying these associations. Understanding immunologic contributions to the etiology of osteosarcoma may inform rational therapeutic targets. Cancer Epidemiol Biomarkers Prev; 27(10); 1151-8. ©2018 AACR.
Collapse
Affiliation(s)
- Chenan Zhang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California.,Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Joseph L Wiemels
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California.,Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Helen M Hansen
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Julio Gonzalez-Maya
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Alyson A Endicott
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Adam J de Smith
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Ivan V Smirnov
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - John S Witte
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Libby M Morimoto
- School of Public Health, University of California, Berkeley, Berkeley, California
| | - Catherine Metayer
- School of Public Health, University of California, Berkeley, Berkeley, California
| | - Kyle M Walsh
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California. .,Division of Neuro-epidemiology, Department of Neurosurgery, Duke University, Durham, North Carolina.,Children's Health and Discovery Institute, Duke University, Durham, North Carolina
| |
Collapse
|
11
|
Terpos E, Ntanasis-Stathopoulos I, Gavriatopoulou M, Dimopoulos MA. Pathogenesis of bone disease in multiple myeloma: from bench to bedside. Blood Cancer J 2018; 8:7. [PMID: 29330358 PMCID: PMC5802524 DOI: 10.1038/s41408-017-0037-4] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/13/2017] [Accepted: 10/23/2017] [Indexed: 12/29/2022] Open
Abstract
Osteolytic bone disease is the hallmark of multiple myeloma, which deteriorates the quality of life of myeloma patients, and it affects dramatically their morbidity and mortality. The basis of the pathogenesis of myeloma-related bone disease is the uncoupling of the bone-remodeling process. The interaction between myeloma cells and the bone microenvironment ultimately leads to the activation of osteoclasts and suppression of osteoblasts, resulting in bone loss. Several intracellular and intercellular signaling cascades, including RANK/RANKL/OPG, Notch, Wnt, and numerous chemokines and interleukins are implicated in this complex process. During the last years, osteocytes have emerged as key regulators of bone loss in myeloma through direct interactions with the myeloma cells. The myeloma-induced crosstalk among the molecular pathways establishes a positive feedback that sustains myeloma cell survival and continuous bone destruction, even when a plateau phase of the disease has been achieved. Targeted therapies, based on the better knowledge of the biology, constitute a promising approach in the management of myeloma-related bone disease and several novel agents are currently under investigation. Herein, we provide an insight into the underlying pathogenesis of bone disease and discuss possible directions for future studies.
Collapse
Affiliation(s)
- Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
12
|
Criscitiello C, Viale G, Gelao L, Esposito A, De Laurentiis M, De Placido S, Santangelo M, Goldhirsch A, Curigliano G. Crosstalk between bone niche and immune system: osteoimmunology signaling as a potential target for cancer treatment. Cancer Treat Rev 2014; 41:61-8. [PMID: 25499997 DOI: 10.1016/j.ctrv.2014.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 01/08/2023]
Abstract
There is a well recognized link between the bone and the immune system and in recent years there has been a major effort to elucidate the multiple functions of the molecules expressed in both bone and immune cells. Several molecules that were initially identified and studied in the immune system have been shown to have essential functions also in the bone. An interdisciplinary field embracing immune and bone biology has been brought together and called "osteoimmunology". The co-regulation of the skeletal and immune systems strikingly exemplifies the extreme complexity of such an interaction. Their interdependency must be considered in designing therapeutic approaches for either of the two systems. In other words, it is necessary to think of the osteoimmune system as a complex physiological unit. Denosumab was originally introduced to specifically target bone resorption, but it is now under evaluation for its effect on the long term immune response. Similarly, our current and still growing knowledge of the intimate link between the immune system and bone will be beneficial for the safety of drugs targeting either of these integrated systems. Given the large number of molecules exerting functions on both the skeletal and immune systems, osteoimmunological understanding is becoming increasingly important. Both bone and immune systems are frequently disrupted in cancer; and they may be crucial in regulating tumor growth and progression. Some therapies - such as bisphosphonates and receptor activator of NF-κB ligand (RANKL) targeted drugs - that aim at reducing pathologic osteolysis in cancer may interact with the immune system, thus providing potential favorable effects on survival.
Collapse
Affiliation(s)
- Carmen Criscitiello
- Division of Experimental Therapeutics, Breast Cancer Program, Istituto Europeo di Oncologia, Via Ripamonti 435, 20133 Milano, Italy.
| | - Giulia Viale
- Division of Experimental Therapeutics, Breast Cancer Program, Istituto Europeo di Oncologia, Via Ripamonti 435, 20133 Milano, Italy
| | - Lucia Gelao
- Division of Experimental Therapeutics, Breast Cancer Program, Istituto Europeo di Oncologia, Via Ripamonti 435, 20133 Milano, Italy
| | - Angela Esposito
- Division of Experimental Therapeutics, Breast Cancer Program, Istituto Europeo di Oncologia, Via Ripamonti 435, 20133 Milano, Italy
| | - Michele De Laurentiis
- Department of Breast Oncology, National Cancer Institute "Fondazione Pascale", Naples, Italy
| | - Sabino De Placido
- Department of Endocrinology and Molecular and Clinical Oncology, University of Naples Federico II, Napoli, Italy
| | - Michele Santangelo
- Department of Advanced Medical Sciences, Operative Unit of General Surgery and Transplants, University of Naples Federico II, Napoli, Italy
| | - Aron Goldhirsch
- Division of Experimental Therapeutics, Breast Cancer Program, Istituto Europeo di Oncologia, Via Ripamonti 435, 20133 Milano, Italy
| | - Giuseppe Curigliano
- Division of Experimental Therapeutics, Breast Cancer Program, Istituto Europeo di Oncologia, Via Ripamonti 435, 20133 Milano, Italy
| |
Collapse
|
13
|
Kurata S, Tateishi U, Shizukuishi K, Yoneyama T, Hino A, Kaida H, Fujimoto K, Ishibashi M, Inoue T. Assessment of atherosclerosis in oncologic patients using ¹⁸F-fluoride PET/CT. Ann Nucl Med 2013; 27:481-6. [PMID: 23443956 DOI: 10.1007/s12149-013-0706-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 02/13/2013] [Indexed: 01/22/2023]
Abstract
OBJECTIVES The purpose of this study was to evaluate the prevalence, distribution, and relationship of (18)F-fluoride uptake and arterial calcification in oncologic patients using (18)F-fluoride PET/CT. METHODS Image data obtained from 29 oncologic patients undergoing whole-body (18)F-fluoride PET/CT were evaluated retrospectively. Arterial wall (18)F-fluoride uptake and calcification were analyzed both quantitatively and semiquantitatively in 8 patients with arterial (18)F-fluoride uptake. RESULTS Arterial (18)F-fluoride uptake was observed at 35 lesions in 8 (28 %) of the 29 patients, and calcification was observed at 345 lesions in the same patients. Five of the 8 patients had prostate cancer, and the remaining patients had hepatocellular carcinoma or malignant melanoma. In these 8 patients, the prevalence of both (18)F-fluoride uptake and calcification was highest in the abdominal aorta, followed by the descending thoracic aorta and the aortic arch. Colocalization of radiotracer accumulation and calcification could be observed in the 32 lesions (91 %) with arterial (18)F-fluoride uptake, and only the 3 lesions (9 %) with arterial (18)F-fluoride uptake were not colocalized with arterial calcification. The presence of both arterial radiotracer uptake and calcification was significantly associated with advancing age (P < 0.01). CONCLUSION Our results suggest that (18)F-fluoride PET/CT might be a useful modality for detecting active mineral deposition sites of atherosclerosis in oncologic patients.
Collapse
Affiliation(s)
- Seiji Kurata
- Department of Radiology, Kurume University School of Medicine, 67 Asahi-Machi, Kurume 830-0011, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bone marrow microenvironment in cancer patients: immunological aspects and clinical implications. Cancer Metastasis Rev 2012; 32:163-78. [DOI: 10.1007/s10555-012-9397-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Peddi P, Lopez-Olivo MA, Pratt GF, Suarez-Almazor ME. Denosumab in patients with cancer and skeletal metastases: a systematic review and meta-analysis. Cancer Treat Rev 2012; 39:97-104. [PMID: 22898302 DOI: 10.1016/j.ctrv.2012.07.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/29/2012] [Accepted: 07/08/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND We conducted a systematic review of the literature to determine the efficacy and safety of denosumab in reducing skeletal-related events (SRE) in patients with bone metastases. METHODS A literature search using MEDLINE, EMBASE, Web of Science and The Cochrane Collaboration Library identified relevant controlled clinical trials up-to-March 14, 2012. Two independent reviewers assessed studies for inclusion, according to predetermined criteria, and extracted relevant data. The primary outcomes of interest were SRE, time to first on-study SRE, and overall survival. Secondary outcomes included pain, quality of life, bone turnover markers (BTM), and adverse events. RESULTS Six controlled trials including 6142 patients were analyzed. Compared to zoledronic acid, denosumab had lower incidence of SRE with a risk ratio (RR) of 0.84 (95% confidence intervals (CI) 0.80-0.88), delayed the onset of first on-study SRE (RR 0.83; 95% CI 0.75-0.90) and time to worsening of pain (RR 0.84; 95% CI 0.77-0.91). No difference was observed in overall survival with pooled hazard ratio of 0.98 (95% CI 0.90-1.0). For total adverse events, denosumab was similar to zoledronic acid (RR 0.97; 95% CI 0.89-1.0). No significant differences were observed in the frequency of osteonecrosis of the jaw (RR 1.4; 95% CI 0.92-2.1). Patients on denosumab had a greater risk of developing hypocalcemia (RR 1.9; 95% CI 1.6-2.3). CONCLUSIONS Denosumab was more effective than zoledronic acid in reducing the incidence of SRE, and delayed the time to SRE. No differences were found between denosumab and zoledronic acid in reducing overall mortality, or in the frequency of overall adverse events.
Collapse
Affiliation(s)
- Prashanth Peddi
- Division of General Internal Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
16
|
Gkotzamanidou M, Dimopoulos MA, Kastritis E, Christoulas D, Moulopoulos LA, Terpos E. Sclerostin: a possible target for the management of cancer-induced bone disease. Expert Opin Ther Targets 2012; 16:761-9. [DOI: 10.1517/14728222.2012.697154] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
HÖNICKE ANNESOPHIE, ENDER STEPHANALBRECHT, RADONS JÜRGEN. Combined administration of EGCG and IL-1 receptor antagonist efficiently downregulates IL-1-induced tumorigenic factors in U-2 OS human osteosarcoma cells. Int J Oncol 2012; 41:753-8. [DOI: 10.3892/ijo.2012.1498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/10/2012] [Indexed: 11/05/2022] Open
|
18
|
Chung YE, Lee SH, Lee SY, Kim SY, Kim HH, Mirza FS, Lee SK, Lorenzo JA, Kim GS, Koh JM. Long-term treatment with raloxifene, but not bisphosphonates, reduces circulating sclerostin levels in postmenopausal women. Osteoporos Int 2012; 23:1235-43. [PMID: 21660558 DOI: 10.1007/s00198-011-1675-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 05/04/2011] [Indexed: 01/22/2023]
Abstract
UNLABELLED We determined whether suppression of sclerostin levels by estrogen treatment was mediated by anti-resorptive effect. Raloxifene, but not bisphosphonates, suppressed circulating sclerostin concentration, suggesting that sclerostin may mediate the action of estrogen on bone metabolism, independently of their anti-resorptive effects. INTRODUCTION Circulating sclerostin concentrations are higher in postmenopausal than in premenopausal women, and estrogen treatment suppresses sclerostin levels in both men and women. We determined whether anti-resorptives may suppress the circulating sclerostin levels. METHODS We conducted a retrospective observational study. Eighty postmenopausal women were treated with raloxifene for 19.4 ± 7.7 months (n = 16), bisphosphonates for 19.2 ± 6.7 months (n = 32), or were untreated (n = 32) for 17.1 ± 4.6 months. Plasma sclerostin concentrations were measured before and after treatment. RESULTS Plasma sclerostin levels after treatment were significantly lower in the raloxifene than in the control group (55.8 ± 23.4 pmol/l vs. 92.1 ± 50.4 pmol/l, p = 0.046), but were similar between the bisphosphonate and control groups. Relative to baseline, raloxifene treatment markedly reduced plasma sclerostin concentration (-40.7 ± 22.8%, p < 0.001), with respect to both control (-7.5 ± 29.1%) and bisphosphonate (-3.1 ± 35.2%) groups. Changes in bone-specific alkaline phosphatase and osteocalcin levels showed reverse associations with sclerostin concentration changes in the raloxifene (γ = -0.505, p = 0.017) and control (γ = -0.410, p = 0.020) groups. CONCLUSIONS Raloxifene, but not bisphosphonates, significantly suppressed circulating sclerostin concentration, suggesting that sclerostin may mediate the action of estrogen on bone metabolism, independently of their anti-resorptive effects.
Collapse
Affiliation(s)
- Y E Chung
- Department of Internal Medicine, Seoul Veterans Hospital, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Görgün G, Anderson KC. Intrinsic modulation of lymphocyte function by stromal cell network: advance in therapeutic targeting of cancer. Immunotherapy 2012; 3:1253-64. [PMID: 21995575 DOI: 10.2217/imt.11.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Advances in tumor biology have demonstrated a point of critical importance: tumor are established as an intersection of malignant clone cells and surrounding stromal cells. The stroma is composed of nonhematopoietic cells, including connective tissue cells, blood vessels, nerves, fat and smooth muscle cells, in the extracellular matrix niche. Recent studies have demonstrated that stromal cells regulate immune responses by: coordinating lymphocyte homing, differentiation, activation and antigen responses; inducing tolerance; and maintaining immunologic memory. Hence, elucidation of the interaction between stromal cells and lymphocytes is essential for generating effective immunotherapies. In this article, we summarize what is currently known about the interactions between stromal cells and lymphocytes in the tumor microenvironment, as well as potential immunotherapeutic approaches targeting stroma-lymphocyte interactions; both in the context of our work on multiple myeloma, and of recent literature in both solid tumors and hematologic malignancies.
Collapse
Affiliation(s)
- Güllü Görgün
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
20
|
Gnant M, Dubsky P, Hadji P. Bisphosphonates: prevention of bone metastases in breast cancer. Recent Results Cancer Res 2012; 192:65-91. [PMID: 22307370 DOI: 10.1007/978-3-642-21892-7_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Disease recurrence and distant metastases remain challenging for patients with breast cancer despite advances in early diagnosis, surgical expertise, and adjuvant therapy. Bone is the most common site for breast cancer metastasis, and the bone microenvironment plays a crucial role in harboring disseminated tumor cells (DTCs), a putative source of late relapse in and outside bone. Therefore, agents that affect bone metabolism might not only prevent the development of bone lesions but also provide meaningful reductions in the risk of relapse both in bone and beyond. Bisphosphonates bind to mineralized bone surfaces and are ingested by osteoclasts, wherein they inhibit osteolysis, thereby preventing the release of growth factors from the bone matrix. Therefore, the bone microenvironment becomes less conducive to survival and growth of DTCs and bone lesion formation. Recent trials of zoledronic acid in the adjuvant setting in breast cancer have demonstrated reduced disease recurrence in bone and other sites in premenopausal and postmenopausal women with early breast cancer. Based on the proven effect of bone protection during adjuvant endocrine therapy, new treatment guidelines recommend the routine use of bisphosphonates to prevent bone loss during adjuvant therapy, which may likely become the standard practice.
Collapse
Affiliation(s)
- Michael Gnant
- Department of Surgery, Medical University of Vienna, Wien, Austria.
| | | | | |
Collapse
|