1
|
Go SI, Yang JW, Jeong EJ, Lee WJ, Park S, Song DH, Lee GW. Redefining YAP1 in small cell lung cancer: shifting from a dominant subtype marker to a favorable prognostic indicator. Transl Lung Cancer Res 2024; 13:1768-1779. [PMID: 39263025 PMCID: PMC11384494 DOI: 10.21037/tlcr-24-317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/27/2024] [Indexed: 09/13/2024]
Abstract
Background Molecular and transcription factor subtyping were recently introduced to identify patients with unique clinical features in small cell lung cancer (SCLC). However, its prognostic relevance is yet to be established. This study aims to investigate the clinical implications and prognostic significance of transcription factor subtyping in SCLC using immunohistochemistry. Methods One hundred and ninety consecutive SCLC patients treated with platinum-based chemotherapy at a single institution were retrospectively reviewed. Expression of ASCL1, NeuroD1, POU2F3, and YAP1 was assessed by immunohistochemical staining and applied to determine the transcription factor subtype of each case. Results The association among transcription factors was not entirely mutually exclusive. YAP1 expression was the most significant prognostic indicator compared with other transcription factors or their related subtypes. Among patients with limited-stage disease (LD), complete response (CR) rates were 46.2% and 22.4% in the YAP1-positive and YAP1-negative groups, respectively. The median duration of response among patients who achieved CR was 64.8 and 36.4 months in the YAP1-positive and YAP1-negative groups, respectively (P=0.06). Median overall survival (OS) in LD was 35.6 and 16.9 months in the YAP1-positive and YAP1-negative groups, respectively (P=0.03). In extensive-stage disease (ED), the median OS was 11.3 months for the YAP1-positive group and 11 months for the YAP1-negative group (P=0.03). Conclusions Positive expression of YAP1 can be associated with durable CR and favorable survival outcomes in patients with SCLC, especially in LD.
Collapse
Affiliation(s)
- Se-Il Go
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Institute of Medical Science, Gyeongsang National University College of Medicine, Changwon, Korea
| | - Jung Wook Yang
- Department of Pathology, Gyeongsang National University Hospital, Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Eun Jeong Jeong
- Division of Hematology and Oncology, Department of Internal Medicine, Gyeongsang National University Hospital, Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Woo Je Lee
- Division of Hematology and Oncology, Department of Internal Medicine, Gyeongsang National University Hospital, Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Sungwoo Park
- Division of Hematology and Oncology, Department of Internal Medicine, Gyeongsang National University Hospital, Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Dae Hyun Song
- Department of Pathology, Gyeongsang National University Changwon Hospital, Institute of Medical Science, Gyeongsang National University College of Medicine, Changwon, Korea
| | - Gyeong-Won Lee
- Division of Hematology and Oncology, Department of Internal Medicine, Gyeongsang National University Hospital, Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju, Korea
| |
Collapse
|
2
|
Yu YK, Meng FY, Wei XF, Chen XK, Li HM, Liu Q, Li CJ, Xie HN, Xu L, Zhang RX, Xing W, Li Y. Neoadjuvant chemotherapy combined with immunotherapy versus neoadjuvant chemoradiotherapy in patients with locally advanced esophageal squamous cell carcinoma. J Thorac Cardiovasc Surg 2024; 168:417-428.e3. [PMID: 38246339 DOI: 10.1016/j.jtcvs.2023.12.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 12/12/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND To date, few studies have compared effectiveness and survival rates of neoadjuvant chemotherapy combined with immunotherapy (NACI) and conventional neoadjuvant chemoradiotherapy (NCRT) in patients with locally advanced esophageal squamous cell carcinoma (ESCC). The present study was conducted to compare therapeutic response and survival between NACI and NCRT. METHODS The study cohort comprised patients with locally advanced ESCC treated with either NACI or NCRT followed by surgery between June 2018 and March 2021. The 2 groups were compared for treatment response, 3-year overall survival (OS), and disease-free survival (DFS). Survival curves were created using the Kaplan-Meier method, differences were compared using the log-rank test, and potential imbalances were corrected for using the inverse probability of treatment weighting (IPTW) method. RESULTS Among 202 patients with locally advanced ESCC, 81 received NACI and 121 received conventional NCRT. After IPTW adjustment, the R0 resection rate (85.2% vs 92.3%; P = .227) and the pathologic complete response (pCR) rate (27.5% vs 36.4%; P = .239) were comparable between the 2 groups. Nevertheless, patients who received NACI exhibited both a better 3-year OS rate (91.7% vs 79.8%; P = .032) and a better 3-year DFS rate (87.4% vs 72.8%; P = .039) compared with NCRT recipients. CONCLUSIONS NACI has R0 resection and pCR rates comparable to those of NCRT and seems to be correlated with better prognosis than NCRT. NACI followed by surgery may be an effective treatment strategy for locally advanced ESCC.
Collapse
Affiliation(s)
- Yong-Kui Yu
- Section of Esophageal and Mediastinal Oncology, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan Province, China
| | - Fan-Yu Meng
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiu-Feng Wei
- Section of Esophageal and Mediastinal Oncology, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xian-Kai Chen
- Section of Esophageal and Mediastinal Oncology, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao-Miao Li
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan Province, China
| | - Qi Liu
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan Province, China
| | - Can-Jun Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hou-Nai Xie
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lei Xu
- Section of Esophageal and Mediastinal Oncology, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rui-Xiang Zhang
- Section of Esophageal and Mediastinal Oncology, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenqun Xing
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan Province, China.
| | - Yin Li
- Section of Esophageal and Mediastinal Oncology, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Zemp LW, Rudzinski JK, Pettaway CA, Nicholson S, Spiess PE. Management of Bulky Inguinal and Pelvic Lymph Nodes. Urol Clin North Am 2024; 51:335-345. [PMID: 38925736 DOI: 10.1016/j.ucl.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Penile cancer with bulky inguinal metastasis has a high probability of harboring pathologically involved lymph nodes best managed in a multidisciplinary care setting. Appropriate staging with cross-sectional imaging and fine-needle aspirate cytology of suspicious nodes guide decision-making for the use of platinum-based neoadjuvant chemotherapy followed by inguinal lymph node dissection. Surgical resection plays an important diagnostic, therapeutic, and guiding role in disease management. Patients with adverse pathologic features, especially those with extranodal disease extension, may derive additional benefit from adjuvant radiotherapy.
Collapse
Affiliation(s)
- Logan W Zemp
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA.
| | - Jan K Rudzinski
- Catherine and Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Curtis A Pettaway
- Division of Surgery, Department of Urology, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1373, Houston, TX 77030, USA
| | - Steve Nicholson
- Division of Medical Oncology, Mid- & South Essex NHS Foundation Trust, Court Road, Broomfield, Chelmsford CM1 7ET, UK
| | - Philippe E Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive Office 12538, Tampa, FL 33612, USA
| |
Collapse
|
4
|
Kim J, Maharjan R, Park J. Current Trends and Innovative Approaches in Cancer Immunotherapy. AAPS PharmSciTech 2024; 25:168. [PMID: 39044047 DOI: 10.1208/s12249-024-02883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Immunotherapy is one of the most promising therapeutic approaches in the field of cancer treatment. As a tumor progresses, tumor cells employ an array of immune-regulatory mechanisms to suppress immune responses within the tumor microenvironment. Using our understanding of these mechanisms, cancer immunotherapy has been developed to enhance the immune system's effectiveness in treating cancer. Numerous cancer immunotherapies are currently in clinical use, yet many others are either in different stages of development or undergoing clinical studies. In this paper, we briefly discuss the features and current status of cancer immunotherapies. This includes the application of monoclonal antibodies, immune checkpoint inhibitors, adoptive cell therapy, cytokine therapy, cancer vaccines, and gene therapy, all of which have gained significant recognition in clinical practice. Additionally, we discuss limitations that may hinder successful clinical utilization and promising strategies, such as combining immunotherapy with nanotechnology.
Collapse
Affiliation(s)
- Jaechang Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA
| | - Ruby Maharjan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA
| | - Jonghyuck Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA.
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
5
|
Zheng C, Zhang W, Gong X, Xiong F, Jiang L, Zhou L, Zhang Y, Zhu HH, Wang H, Li Y, Zhang P. Chemical conjugation mitigates immunotoxicity of chemotherapy via reducing receptor-mediated drug leakage from lipid nanoparticles. SCIENCE ADVANCES 2024; 10:eadk9996. [PMID: 38838152 DOI: 10.1126/sciadv.adk9996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Immunotoxicity remains a major hindrance to chemotherapy in cancer therapy. Nanocarriers may alleviate the immunotoxicity, but the optimal design remains unclear. Here, we created two variants of maytansine (DM1)-loaded synthetic high-density lipoproteins (D-sHDL) with either physically entrapped (ED-sHDL) or chemically conjugated (CD-sHDL) DM1. We found that CD-sHDL showed less accumulation in the tumor draining lymph nodes (DLNs) and femur, resulting in a lower toxicity against myeloid cells than ED-sHDL via avoiding scavenger receptor class B type 1 (SR-B1)-mediated DM1 transportation into the granulocyte-monocyte progenitors and dendritic cells. Therefore, higher densities of lymphocytes in the tumors, DLNs, and blood were recorded in mice receiving CD-sHDL, leading to a better efficacy and immune memory of CD-sHDL against colon cancer. Furthermore, liposomes with conjugated DM1 (CD-Lipo) showed lower immunotoxicity than those with entrapped drug (ED-Lipo) through the same mechanism after apolipoprotein opsonization. Our findings highlight the critical role of drug loading patterns in dictating the biological fate and activity of nanomedicine.
Collapse
Affiliation(s)
- Chao Zheng
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Wen Zhang
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Xiang Gong
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Fengqin Xiong
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Linyang Jiang
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lingli Zhou
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuan Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hao Wang
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
6
|
Zhang GL, Zhu QK, Ma TY, Weng CG, Zhang DD, Zeng H, Wang T, Gao F, Mi LL, Wang R. Clinical study of camrelizumab combined with docetaxel and carboplatin as a neoadjuvant treatment for locally advanced oesophageal squamous cell carcinoma. Dis Esophagus 2024; 37:doad073. [PMID: 38189470 DOI: 10.1093/dote/doad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Herein, we aimed to evaluate the efficacy and safety of camrelizumab combined with docetaxel and carboplatin as a neoadjuvant treatment for locally advanced oesophageal squamous cell carcinoma (OSCC). Fifty-one patients with OSCC, treated from July 2020 to October 2022, were analyzed. Of them, 41 patients underwent surgery 4-8 weeks after undergoing two cycles of camrelizumab (200 mg IV Q3W) combined with docetaxel (75 mg/m2 IV Q3W) and carboplatin (area under the curve = 5-6 IV Q3W). The primary endpoint was the pathological complete response rate. All 51 patients (100%) experienced treatment-related grades 1-2 adverse events, and 2 patients (3.9%) experienced grade 4 events (including elevated alanine transaminase/aspartate transferase levels and Guillain-Barre syndrome). Fifty patients were evaluated for the treatment efficacy. Of them, 13 achieved complete response, and the objective response rate was 74%. Only 41 patients underwent surgical treatment. The pathological complete response rate was 17.1%, the major pathological response rate was 63.4%, and the R0 resection rate was 100%. Approximately 22% of the patients had tumor regression grades 0. Eight patients (19.5%) developed surgery-related complications. The median follow-up time was 18 months (range: 3-29 months). Four patients experienced disease progression, while four died. The median disease-free survival and overall survival were not reached. Camrelizumab combined with docetaxel and carboplatin is an effective and safe neoadjuvant treatment for locally advanced OSCC. This regimen may afford a potential strategy to treat patients with locally advanced OSCC.
Collapse
Affiliation(s)
- Guo-Liang Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qi-Kun Zhu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tian-You Ma
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chen-Gang Weng
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dan-Dan Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hui Zeng
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tao Wang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Feng Gao
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li-Li Mi
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Rui Wang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
7
|
Chen JY, Lin PY, Hong WZ, Yang PC, Chiang SF, Chang HY, Ke TW, Liang JA, Chen WTL, Chao KSC, Huang KCY. Activation of STING by the novel liposomal TLC388 enhances the therapeutic response to anti-PD-1 antibodies in combination with radiotherapy. Cancer Immunol Immunother 2024; 73:92. [PMID: 38564022 PMCID: PMC10987363 DOI: 10.1007/s00262-024-03692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Current immune checkpoint inhibiters (ICIs) have contrasting clinical results in poorly immunogenic cancers such as microsatellite-stable colorectal cancer (MSS-CRC). Therefore, understanding and developing the combinational therapeutics for ICI-unresponsive cancers is critical. Here, we demonstrated that the novel topoisomerase I inhibitor TLC388 can reshape the tumor immune landscape, corroborating their antitumor effects combined with radiotherapy as well as immunotherapy. We found that TLC388 significantly triggered cytosolic single-stranded DNA (ssDNA) accumulation for STING activation, leading to type I interferons (IFN-Is) production for increased cancer immunogenicity to enhance antitumor immunity. TLC388-treated tumors were infiltrated by a vast number of dendritic cells, immune cells, and costimulatory molecules, contributing to the favorable antitumor immune response within the tumor microenvironment. The infiltration of cytotoxic T and NK cells were more profoundly existed within tumors in combination with radiotherapy and ICIs, leading to superior therapeutic efficacy in poorly immunogenic MSS-CRC. Taken together, these results showed that the novel topoisomerase I inhibitor TLC388 increased cancer immunogenicity by ssDNA/STING-mediated IFN-I production, enhancing antitumor immunity for better therapeutic efficacy in combination with radiotherapy and ICIs for poorly immunogenic cancer.
Collapse
Affiliation(s)
- Jhen-Yu Chen
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402, Taiwan
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
| | - Po-Yu Lin
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan R.O.C
| | - Wei-Ze Hong
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan R.O.C
| | - Pei-Chen Yang
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan R.O.C
| | - Shu-Fen Chiang
- Lab of Precision Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, 42055, Taiwan
| | - Hsin-Yu Chang
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan R.O.C
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Ji-An Liang
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Radiation Oncology, School of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
- Department of Colorectal Surgery, China Medical University HsinChu Hospital, China Medical University, HsinChu, 302, Taiwan
- School of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - K S Clifford Chao
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan R.O.C..
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Department of Radiation Oncology, School of Medicine, China Medical University, Taichung, 40402, Taiwan.
| | - Kevin Chih-Yang Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402, Taiwan.
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
8
|
diZerega GS, Maulhardt HA, Verco SJ, Marin AM, Baltezor MJ, Mauro SA, Iacobucci MA. Intratumoral Injection of Large Surface Area Microparticle Taxanes in Carcinomas Increases Immune Effector Cell Concentrations, Checkpoint Expression, and Synergy with Checkpoint Inhibitors: A Review of Preclinical and Clinical Studies. Oncol Ther 2024; 12:31-55. [PMID: 38289576 PMCID: PMC10881942 DOI: 10.1007/s40487-024-00261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/04/2024] [Indexed: 02/23/2024] Open
Abstract
This review summarizes development of large surface area microparticle paclitaxel (LSAM-PTX) and docetaxel (LSAM-DTX) for local treatment of primary carcinomas with emphasis on immunomodulation. Intratumoral (IT) delivery of LSAM-PTX and LSAM-DTX provides continuous, therapeutic drug levels for several weeks. Preclinical studies and clinical trials reported a reduction in tumor volume (TV) and immunomodulation in primary tumor and peripheral blood with increases in innate and adaptive immune cells and decreases in suppressor cells. Increased levels of checkpoint expression of immune cells occurred in clinical trials of high-risk non-muscle-invasive bladder cancer (LSAM-DTX) and unresectable localized pancreatic cancer (LSAM-PTX). TV reduction and increases in immune effector cells occurred following IT LSAM-DTX and IT LSAM-PTX together with anti-mCTLA-4 and anti-mPD-1, respectively. Synergistic benefits from combinatorial therapy in a 4T1-Luc breast cancer model included reduction of metastasis with IT LSAM-DTX + anti-mCTLA-4. IT LSAM-PTX and LSAM-DTX are tumoricidal, immune enhancing, and may improve solid tumor response to immune checkpoint inhibitors without additional systemic toxicity.
Collapse
Affiliation(s)
- Gere S diZerega
- US Biotest, Inc., 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, 93401, USA.
- NanOlogy, LLC., 3909 Hulen Street, Fort Worth, TX, 76107, USA.
| | - Holly A Maulhardt
- US Biotest, Inc., 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, 93401, USA
| | - Shelagh J Verco
- US Biotest, Inc., 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, 93401, USA
| | - Alyson M Marin
- US Biotest, Inc., 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, 93401, USA
| | | | - Samantha A Mauro
- US Biotest, Inc., 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, 93401, USA
| | | |
Collapse
|
9
|
Maulhardt HA, Marin AM, diZerega GS. Intratumoral Treatment of Melanoma Tumors with Large Surface Area Microparticle Paclitaxel and Synergy with Immune Checkpoint Inhibition. Int J Nanomedicine 2024; 19:689-697. [PMID: 38283196 PMCID: PMC10812144 DOI: 10.2147/ijn.s449975] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/16/2024] [Indexed: 01/30/2024] Open
Abstract
The effects of intratumoral (IT) large surface area microparticle paclitaxel (LSAM-PTX) alone and in combination with systemic administration of the programmed cell death protein antibody (anti-mPD-1) were evaluated in a syngeneic murine model of melanoma. Groups of mice with subcutaneously implanted Clone M3 (Cloudman S91) tumors were treated with single and combination therapies. Tumor volume (TV) measurements, body weights, and clinical observations were followed in-life. At end of study, tumor-site tissues were collected, measured, and processed for flow cytometry along with blood and lymph nodes. The combination of LSAM-PTX + anti-mPD-1 resulted in an antitumoral response, which produced a significant decrease in TV compared to control animals. TV decreases also occurred in the LSAM-PTX and anti-mPD-1 groups. Flow cytometry analysis found increases in granulocytes and M2 macrophages and decreases in dendritic cells (DC) and monocytic myeloid-derived suppressor cells (M-MDSC) in tumor-site tissues. Increases in granulocytes and decreases in CD4+ T cells, macrophages, and M1 macrophages were found in the blood of animals administered the combination treatment. Increases in natural killer (NK) cells were found in lymph node tissue in the combination treatment group. These findings suggest that IT LSAM-PTX may provide benefit in the local treatment of melanomas and may synergize with systemic anti-PD-1 therapy, leading to additional tumoricidal outcomes without added systemic toxicity.
Collapse
Affiliation(s)
| | | | - Gere S diZerega
- US Biotest, Inc, San Luis Obispo, CA, USA
- Nanology, LLC, Fort Worth, TX, USA
| |
Collapse
|
10
|
Evmorfopoulos K, Marsitopoulos K, Karachalios R, Karathanasis A, Dimitropoulos K, Tzortzis V, Zachos I, Vlachostergios PJ. The Immune Landscape and Immunotherapeutic Strategies in Platinum-Refractory Testicular Germ Cell Tumors. Cancers (Basel) 2024; 16:428. [PMID: 38275869 PMCID: PMC10814346 DOI: 10.3390/cancers16020428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Testicular germ cell tumors (TGCTs) are cancers with very good prognosis, even in the metastatic setting, with high curative potential mainly attributed to the introduction of cisplatin-based chemotherapy. However, approximately 15% of the patients develop platinum-refractory disease and suffer multiple relapses. Therefore, there is an unmet need for novel therapeutic agents with improved efficacy and minimal long-term side effects. Recent advances in the development of immunotherapeutic agents, particularly immune checkpoint inhibitors (ICIs), have offered an opportunity to test their activity in various tumor types, including GCTs. This review aims to analyze the immune microenvironment of these tumors and present the most recently available data from studies that have tested immunotherapeutic agents against GCTs. The majority of the available knowledge derives from case reports or small cohort studies, particularly those involving ICIs of the PD-1/PD-L1 axis alone or in combination with anti-CTLA-4 monoclonal antibodies. Other immunotherapeutic targeted approaches, including antibody-drug conjugates, antibody prodrugs, vaccines, tyrosine kinase inhibitors, chimeric antigen receptor (CAR) T-cell therapy, have biological rationales and have shown preliminary activity or are currently being tested. Growing evidence on these and other approaches will assist in broadening the currently limited treatment armamentarium against platinum-refractory TGCTs.
Collapse
Affiliation(s)
- Konstantinos Evmorfopoulos
- Department of Urology, School of Health Sciences, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece (V.T.)
| | - Konstantinos Marsitopoulos
- Department of Urology, School of Health Sciences, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece (V.T.)
| | - Raphael Karachalios
- Department of Urology, School of Health Sciences, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece (V.T.)
| | - Athanasios Karathanasis
- Department of Urology, School of Health Sciences, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece (V.T.)
| | | | - Vassilios Tzortzis
- Department of Urology, School of Health Sciences, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece (V.T.)
| | - Ioannis Zachos
- Department of Urology, School of Health Sciences, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece (V.T.)
| | - Panagiotis J. Vlachostergios
- Department of Urology, School of Health Sciences, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece (V.T.)
- Department of Medical Oncology, IASO Thessalias Hospital, 41500 Larissa, Greece
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
11
|
Lin JX, Tang YH, Zheng HL, Ye K, Cai JC, Cai LS, Lin W, Xie JW, Wang JB, Lu J, Chen QY, Cao LL, Zheng CH, Li P, Huang CM. Neoadjuvant camrelizumab and apatinib combined with chemotherapy versus chemotherapy alone for locally advanced gastric cancer: a multicenter randomized phase 2 trial. Nat Commun 2024; 15:41. [PMID: 38167806 PMCID: PMC10762218 DOI: 10.1038/s41467-023-44309-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Prospective evidence regarding the combination of programmed cell death (PD)-1 and angiogenesis inhibitors in treating locally advanced gastric cancer (LAGC) is limited. In this multicenter, randomized, phase 2 trial (NCT04195828), patients with gastric adenocarcinoma (clinical T2-4N + M0) were randomly assigned (1:1) to receive neoadjuvant camrelizumab and apatinib combined with nab-paclitaxel plus S-1 (CA-SAP) or chemotherapy SAP alone (SAP) for 3 cycles. The primary endpoint was the major pathological response (MPR), defined as <10% residual tumor cells in resection specimens. Secondary endpoints included R0 resection rate, radiologic response, safety, overall survival, and progression-free survival. The modified intention-to-treat population was analyzed (CA-SAP [n = 51] versus SAP [n = 53]). The trial has met pre-specified endpoints. CA-SAP was associated with a significantly higher MPR rate (33.3%) than SAP (17.0%, P = 0.044). The CA-SAP group had a significantly higher objective response rate (66.0% versus 43.4%, P = 0.017) and R0 resection rate (94.1% versus 81.1%, P = 0.042) than the SAP group. Nonsurgical grade 3-4 adverse events were observed in 17 patients (33.3%) in the CA-SAP group and 14 (26.4%) in the SAP group. Survival results were not reported due to immature data. Camrelizumab and apatinib combined with chemotherapy as a neoadjuvant regimen was tolerable and associated with favorable responses for LAGC.
Collapse
Affiliation(s)
- Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yi-Hui Tang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hua-Long Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Kai Ye
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jian-Chun Cai
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Li-Sheng Cai
- Department of General Surgery, Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou, China
| | - Wei Lin
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Putian University, Putian, China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
12
|
Shimizu T, Oba T, Oshi M, Ito KI. Eribulin promotes proliferation of CD8 + T cells and potentiates T cell-mediated anti-tumor activity against triple-negative breast cancer cells. Breast Cancer Res Treat 2024; 203:57-71. [PMID: 37733186 DOI: 10.1007/s10549-023-07111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
PURPOSE Chemotherapeutic agents exert immunomodulatory effects on triple-negative breast cancer (TNBC) cells and immune cells. Eribulin favorably affects the immunological status of patients with breast cancer. However, the effects of eribulin on the immune cells remain unexplored. The aim of this study was to investigate the effects of eribulin on immune cells. METHODS Peripheral blood mononuclear cells (PBMCs) from healthy donors and mouse splenocytes were stimulated with anti-CD3 and anti-CD28 antibodies. The effects of eribulin and paclitaxel on cell proliferation and differentiation status were analyzed using flow cytometry. RNA sequencing was performed to assess alterations in gene expression in CD8+ T cells following eribulin and paclitaxel treatment. Using TNBC cell lines (MDA-MB-231, Hs578T, and MDA-MB-157), the anti-tumor activity of CD3/CD28-stimulated T cells combined with eribulin or paclitaxel was evaluated. RESULTS Eribulin did not affect CD3/CD28-stimulated PBMCs proliferation. However, eribulin significantly decreased the CD4/CD8 ratio in T cells, indicating that eribulin facilitates CD8+ T cell proliferation. Furthermore, eribulin significantly increased the frequency of less differentiated CD45RA+, CCR7+, and TCF1+ subsets of CD8+ T cells. RNA sequencing revealed that eribulin enhanced the expression of gene sets related to cell proliferation and immune responses. Moreover, eribulin augmented the anti-tumor effects of CD3/CD28-stimulated T cells against TNBC cells. These results were not observed in experiments using paclitaxel. CONCLUSIONS Eribulin promoted CD8+ T cell proliferation, repressed effector T cell differentiation, and harnessed T cell-mediated anti-tumor effects. These mechanisms may be one of the cues that eribulin can improve the immunological status of tumor-bearing hosts.
Collapse
Affiliation(s)
- Tadafumi Shimizu
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-861, Japan
| | - Takaaki Oba
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-861, Japan.
| | - Masanori Oshi
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ken-Ichi Ito
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-861, Japan
| |
Collapse
|
13
|
Xiong J, Fu Y, Huang J, Wang Y, Jin X, Wan X, Huang L, Huang Z. Metabolic and senescence characteristics associated with the immune microenvironment in ovarian cancer. Front Endocrinol (Lausanne) 2023; 14:1265525. [PMID: 38075052 PMCID: PMC10702973 DOI: 10.3389/fendo.2023.1265525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Ovarian cancer is a highly malignant gynecological cancer influenced by the immune microenvironment, metabolic reprogramming, and cellular senescence. This review provides a comprehensive overview of these characteristics. Metabolic reprogramming affects immune cell function and tumor growth signals. Cellular senescence in immune and tumor cells impacts anti-tumor responses and therapy resistance. Targeting immune cell metabolism and inducing tumor cell senescence offer potential therapeutic strategies. However, challenges remain in identifying specific targets and biomarkers. Understanding the interplay of these characteristics can lead to innovative therapeutic approaches. Further research is needed to elucidate mechanisms, validate strategies, and improve patient outcomes in ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liu Huang
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zheng Huang
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
Zhang SW, Wang H, Ding XH, Xiao YL, Shao ZM, You C, Gu YJ, Jiang YZ. Bidirectional crosstalk between therapeutic cancer vaccines and the tumor microenvironment: Beyond tumor antigens. FUNDAMENTAL RESEARCH 2023; 3:1005-1024. [PMID: 38933006 PMCID: PMC11197801 DOI: 10.1016/j.fmre.2022.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 11/20/2022] Open
Abstract
Immunotherapy has rejuvenated cancer therapy, especially after anti-PD-(L)1 came onto the scene. Among the many therapeutic options, therapeutic cancer vaccines are one of the most essential players. Although great progress has been made in research on tumor antigen vaccines, few phase III trials have shown clinical benefits. One of the reasons lies in obstruction from the tumor microenvironment (TME). Meanwhile, the therapeutic cancer vaccine reshapes the TME in an ambivalent way, leading to immune stimulation or immune escape. In this review, we summarize recent progress on the interaction between therapeutic cancer vaccines and the TME. With respect to vaccine resistance, innate immunosuppressive TME components and acquired resistance caused by vaccination are both involved. Understanding the underlying mechanism of this crosstalk provides insight into the treatment of cancer by directly targeting the TME or synergizing with other therapeutics.
Collapse
Affiliation(s)
- Si-Wei Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Han Wang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Xiao-Hong Ding
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu-Ling Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Chao You
- Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 200032, China
| | - Ya-Jia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 200032, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
15
|
Yang Y, Zhu Y, Wang K, Miao Y, Zhang Y, Gao J, Qin H, Zhang Y. Activation of autophagy by in situ Zn 2+ chelation reaction for enhanced tumor chemoimmunotherapy. Bioact Mater 2023; 29:116-131. [PMID: 37456582 PMCID: PMC10345225 DOI: 10.1016/j.bioactmat.2023.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Chemotherapy can induce a robust T cell antitumor immune response by triggering immunogenic cell death (ICD), a process in which tumor cells convert from nonimmunogenic to immunogenic forms. However, the antitumor immune response of ICD remains limited due to the low immunogenicity of tumor cells and the immunosuppressive tumor microenvironment. Although autophagy is involved in activating tumor immunity, the synergistic role of autophagy in ICD remains elusive and challenging. Herein, we report an autophagy amplification strategy using an ion-chelation reaction to augment chemoimmunotherapy in cancer treatments based on zinc ion (Zn2+)-doped, disulfiram (DSF)-loaded mesoporous silica nanoparticles (DSF@Zn-DMSNs). Upon pH-sensitive biodegradation of DSF@Zn-DMSNs, Zn2+ and DSF are coreleased in the mildly acidic tumor microenvironment, leading to the formation of toxic Zn2+ chelate through an in situ chelation reaction. Consequently, this chelate not only significantly stimulates cellular apoptosis and generates damage-associated molecular patterns (DAMPs) but also activates autophagy, which mediates the amplified release of DAMPs to enhance ICD. In vivo results demonstrated that DSF@Zn-DMSNs exhibit strong therapeutic efficacy via in situ ion chelation and possess the ability to activate autophagy, thus enhancing immunotherapy by promoting the infiltration of T cells. This study provides a smart in situ chelation strategy with tumor microenvironment-responsive autophagy amplification to achieve high tumor chemoimmunotherapy efficacy and biosafety.
Collapse
Affiliation(s)
- Yang Yang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
- School of Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Yefei Zhu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Kairuo Wang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Yunqiu Miao
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Yuanyuan Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, PR China
| | - Huanlong Qin
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Yang Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
- School of Medicine, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
16
|
Sicard G, Protzenko D, Giacometti S, Barlési F, Ciccolini J, Fanciullino R. Harnessing tumor immunity with cytotoxics: T cells monitoring in mice bearing lung tumors treated with anti-VEGF and pemetrexed-cisplatin doublet. Br J Cancer 2023; 129:1373-1382. [PMID: 37524968 PMCID: PMC10628115 DOI: 10.1038/s41416-023-02350-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/19/2023] [Accepted: 06/27/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Successful immunotherapy is restricted to some cancers only, and combinatorial strategies with other drugs could help to improve their efficacy. Here, we monitor T cells in NSCLC model after treatment with cytotoxics (CT) and anti-VEGF drugs, to understand when immune checkpoint inhibitors should be best associated next. METHODS In vivo study was performed on BALB/c mice grafted with KLN205 cells. Eight treatments were tested including control, cisplatin and pemetrexed as low (LD CT) and full (MTD CT) dose as single agents, flat dose anti-VEGF and the association anti-VEGF + CT. Full immunomonitoring was performed by flow cytometry on tumor, spleen and blood over 3 weeks. RESULTS Immunomodulatory effect was dependent upon both treatments and time. In tumors, combination groups shown numerical lower Treg cells on Day 21. In spleen, anti-VEGF and LD CT group shown higher CD8/Treg ratio on Day 7; on Day 14, higher T CD4 were observed in both combination groups. Finally, in blood, Tregs were lower and CD8/Treg ratio higher, on Day 14 in both combination groups. On Day 21, CD4 and CD8 T cells were higher in the anti-VEGF + MTD CT group. CONCLUSIONS Anti-VEGF associated to CT triggers notable increase in CD8/Tregs ratio. Regarding the scheduling, a two-week delay after using anti-VEGF and CT could be the best sequence to optimize antitumor efficacy.
Collapse
Affiliation(s)
- G Sicard
- SMARTc & COMPO Team, CRCM Inserm U1068, Aix Marseille University, 13007, Marseille, France
| | - D Protzenko
- SMARTc & COMPO Team, CRCM Inserm U1068, Aix Marseille University, 13007, Marseille, France
| | - S Giacometti
- SMARTc & COMPO Team, CRCM Inserm U1068, Aix Marseille University, 13007, Marseille, France
| | - F Barlési
- School of Medicine, Aix Marseille University, 13007, Marseille, France
- Gustave Roussy Institute, 94800, Villejuif, France
| | - J Ciccolini
- SMARTc & COMPO Team, CRCM Inserm U1068, Aix Marseille University, 13007, Marseille, France.
| | - R Fanciullino
- SMARTc & COMPO Team, CRCM Inserm U1068, Aix Marseille University, 13007, Marseille, France
| |
Collapse
|
17
|
Zhang H, Jin X, Bian L. TORCHLIGHT trial, brightening the life of more patients with advanced triple-negative breast cancer. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2023; 5:1. [PMID: 38751675 PMCID: PMC11094406 DOI: 10.21037/tbcr-23-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/25/2023] [Indexed: 05/18/2024]
Abstract
Toripalimab (JS001) is a monoclonal antibody against programmed cell death-1 (PD-1), independently developed by Shanghai Junshi Biosciences Co., LTD, which is the first domestic original PD-1 inhibitor approved in China. TORCHLIGHT is the first phase III trial of PD-1 inhibitor combined chemotherapy in advanced triple-negative breast cancer (TNBC) in China, evaluating the efficacy and safety of toripalimab plus nab-paclitaxel as first- or second-line therapy. Nab-paclitaxel has significant advantages over other chemotherapy drugs, as paclitaxel nanoparticles combine with natural albumin to increase drug delivery and bioavailability of paclitaxel. Firstly, nab-paclitaxel has a higher therapy response; Secondly, albumin carries paclitaxel out of the blood circulation faster, reducing the damage to normal tissues, ensuring the survival of more normal immune cells and exerting immune efficacy. Finally, nab-paclitaxel does not cause allergic reactions caused by organic solvents and does not require glucocorticoid pretreatment, avoiding immune suppression and ensuring the maximum efficacy of immune checkpoint inhibitors (ICIs). In TORCHLIGHT trial, 95% of subjects were on the first line treatment, with only 5% being on the second line, and 56% patients were programmed death-ligand 1 (PD-L1) positive in total population. It achieved the survival benefits of progression-free survival (PFS) and overall survival (OS) dual efficacy end points, which stood out among numerous ICIs in advanced TNBC. TORCHLIGHT trial, as the name of it, like a torch to more patients with advanced TNBC, lighting up their lives. We described the design background of TORCHLIGHT trial and reviewed primary trials of PD-1 or PD-L1 inhibitor in advanced TNBC both domestically and internationally.
Collapse
Affiliation(s)
- Huiqiang Zhang
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao Jin
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Bian
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
18
|
Wang L, Yang Z, Guo F, Chen Y, Wei J, Dai X, Zhang X. Research progress of biomarkers in the prediction of anti-PD-1/PD-L1 immunotherapeutic efficiency in lung cancer. Front Immunol 2023; 14:1227797. [PMID: 37465684 PMCID: PMC10351040 DOI: 10.3389/fimmu.2023.1227797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Currently, anti-PD-1/PD-L1 immunotherapy using immune checkpoint inhibitors is widely used in the treatment of multiple cancer types including lung cancer, which is a leading cause of cancer death in the world. However, only a limited proportion of lung cancer patients will benefit from anti-PD-1/PD-L1 therapy. Therefore, it is of importance to predict the response to immunotherapy for the precision treatment of patients. Although the expression of PD-L1 and tumor mutation burden (TMB) are commonly used to predict the clinical response of anti-PD-1/PD-L1 therapy, other factors such as tumor-specific genes, dMMR/MSI, and gut microbiome are also promising predictors for immunotherapy in lung cancer. Furthermore, invasive peripheral blood biomarkers including blood DNA-related biomarkers (e.g., ctDNA and bTMB), blood cell-related biomarkers (e.g., immune cells and TCR), and other blood-related biomarkers (e.g., soluble PD-L1 and cytokines) were utilized to predict the immunotherapeutic response. In this review, the current achievements of anti-PD-1/PD-L1 therapy and the potential biomarkers for the prediction of anti-PD-1/PD-L1 immunotherapy in lung cancer treatment were summarized and discussed.
Collapse
Affiliation(s)
- Luyao Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Zongxing Yang
- Department of Clinical Laboratory, First Hospital of Jilin University, Changchun, China
| | - Fucheng Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Jiarui Wei
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Loh J, Low JL, Sachdeva M, Low PQ, Wong RSJ, Huang Y, Chia PL, Soo RA. Management of Oncogene Driven Locally Advanced Unresectable Non-small Cell Lung Cancer. Expert Rev Anticancer Ther 2023; 23:913-926. [PMID: 37551698 DOI: 10.1080/14737140.2023.2245140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION The current standard of care of locally advanced non-small cell lung cancer (LA-NSCLC) is concurrent chemoradiation, followed by consolidation durvalumab. However, there is evidence that the efficacy of chemoradiation and also immunotherapy in many oncogene-positive LA-NSCLC are attenuated, and dependent on the subgroup. AREAS COVERED We will firstly review the outcomes of standard-of-care therapy in oncogene-driven LA-NSCLC. We looked at various oncogene driven subgroups and the tumor microenvironment that may explain differential response. Finally, we review the role of targeted therapy in the treatment of LA-NSCLC. EXPERT OPINION Each oncogene-positive subgroup should be treated as its own entity, and continued efforts should be undertaken to incorporate targeted therapy, which is likely to yield superior survival outcomes if trial design can be optimized and toxicities can be managed.
Collapse
Affiliation(s)
- Jerold Loh
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Jia Li Low
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Manavi Sachdeva
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Peter Qj Low
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Rachel Su Jen Wong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Yiqing Huang
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Puey Ling Chia
- Department of Medical Oncology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| |
Collapse
|
20
|
Vennin C, Cattaneo CM, Bosch L, Vegna S, Ma X, Damstra HGJ, Martinovic M, Tsouri E, Ilic M, Azarang L, van Weering JRT, Pulver E, Zeeman AL, Schelfhorst T, Lohuis JO, Rios AC, Dekkers JF, Akkari L, Menezes R, Medema R, Baglio SR, Akhmanova A, Linn SC, Lemeer S, Pegtel DM, Voest EE, van Rheenen J. Taxanes trigger cancer cell killing in vivo by inducing non-canonical T cell cytotoxicity. Cancer Cell 2023; 41:1170-1185.e12. [PMID: 37311414 DOI: 10.1016/j.ccell.2023.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 02/28/2023] [Accepted: 05/11/2023] [Indexed: 06/15/2023]
Abstract
Although treatment with taxanes does not always lead to clinical benefit, all patients are at risk of their detrimental side effects such as peripheral neuropathy. Understanding the in vivo mode of action of taxanes can help design improved treatment regimens. Here, we demonstrate that in vivo, taxanes directly trigger T cells to selectively kill cancer cells in a non-canonical, T cell receptor-independent manner. Mechanistically, taxanes induce T cells to release cytotoxic extracellular vesicles, which lead to apoptosis specifically in tumor cells while leaving healthy epithelial cells intact. We exploit these findings to develop an effective therapeutic approach, based on transfer of T cells pre-treated with taxanes ex vivo, thereby avoiding toxicity of systemic treatment. Our study reveals a different in vivo mode of action of one of the most commonly used chemotherapies, and opens avenues to harness T cell-dependent anti-tumor effects of taxanes while avoiding systemic toxicity.
Collapse
Affiliation(s)
- Claire Vennin
- Division of Molecular Pathology, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Chiara M Cattaneo
- Oncode Institute, Amsterdam, the Netherlands; Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066CX Amsterdam, the Netherlands
| | - Leontien Bosch
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081HV Amsterdam, the Netherlands
| | - Serena Vegna
- Oncode Institute, Amsterdam, the Netherlands; Division of Tumor Biology and Immunology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Xuhui Ma
- Oncode Institute, Amsterdam, the Netherlands; Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066CX Amsterdam, the Netherlands
| | - Hugo G J Damstra
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584CT Utrecht, the Netherlands
| | - Moreno Martinovic
- Division of Gene Regulation, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066CX Amsterdam, the Netherlands
| | - Efi Tsouri
- Oncode Institute, Amsterdam, the Netherlands; Division of Tumor Biology and Immunology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Mila Ilic
- Oncode Institute, Amsterdam, the Netherlands; Division of Cell Biology, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066CX Amsterdam, the Netherlands
| | - Leyla Azarang
- Biostatistics Centre & Department of Psychosocial Research and Epidemiology, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Jan R T van Weering
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam UMC, 1105AZ Amsterdam, the Netherlands
| | - Emilia Pulver
- Division of Molecular Pathology, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Amber L Zeeman
- Oncode Institute, Amsterdam, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC), 3584CT Utrecht, the Netherlands; Princess Maxima Center for Pediatric Oncology, 3584CT Utrecht, the Netherlands
| | - Tim Schelfhorst
- Division of Molecular Pathology, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Jeroen O Lohuis
- Division of Molecular Pathology, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Anne C Rios
- Oncode Institute, Amsterdam, the Netherlands; Princess Maxima Center for Pediatric Oncology, 3584CT Utrecht, the Netherlands
| | - Johanna F Dekkers
- Oncode Institute, Amsterdam, the Netherlands; Princess Maxima Center for Pediatric Oncology, 3584CT Utrecht, the Netherlands
| | - Leila Akkari
- Oncode Institute, Amsterdam, the Netherlands; Division of Tumor Biology and Immunology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Renee Menezes
- Biostatistics Centre & Department of Psychosocial Research and Epidemiology, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Rene Medema
- Oncode Institute, Amsterdam, the Netherlands; Division of Cell Biology, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066CX Amsterdam, the Netherlands
| | - Serena R Baglio
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584CT Utrecht, the Netherlands
| | - Sabine C Linn
- Divisions of Molecular Pathology and of Medical Oncology, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Department of Pathology, University Medical Center, 1081HV Utrecht, the Netherlands
| | - Simone Lemeer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584CT Utrecht, the Netherlands; Netherlands Proteomics Center, 3584CT Utrecht, the Netherlands
| | - Dirk M Pegtel
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081HV Amsterdam, the Netherlands
| | - Emile E Voest
- Oncode Institute, Amsterdam, the Netherlands; Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066CX Amsterdam, the Netherlands
| | - Jacco van Rheenen
- Division of Molecular Pathology, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands.
| |
Collapse
|
21
|
Tsutsumi H, Inoue H, Shiraishi Y, Hirayama A, Nakanishi T, Ando H, Nakajima M, Shinozaki S, Ogata H, Okamura K, Kimura S, Ogawa T, Ota K, Yoneshima Y, Tanaka K, Hamada N, Okamoto I, Iwama E. Impact of increased plasma levels of calreticulin on prognosis of patients with advanced lung cancer undergoing combination treatment of chemotherapy and immune checkpoint inhibitors. Lung Cancer 2023; 181:107264. [PMID: 37276707 DOI: 10.1016/j.lungcan.2023.107264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Damage-associated molecular pattern (DAMP)-related immunogenic cell death triggers secondary adaptive immune responses. The relationship between DAMP levels and prognosis in patients with non-small cell lung cancer (NSCLC) who undergo a combination therapy of immune checkpoint inhibitors (ICI) and chemotherapy remains unclear. METHODS Serial plasma samples were prospectively collected from 45 patients treated with ICI combination therapy for advanced NSCLC. Plasma concentrations of high-mobility group box 1 (HMGB1), calreticulin (CRT), annexin A1, and heat shock protein 70 were measured. Associations between increases in plasma DAMP levels and the efficacy of the ICI combination therapy were evaluated. RESULTS The maximum fold changes in plasma levels differed across individuals but demonstrated a marked increase, especially for CRT (mean ± SEM, 11.61 ± 46.15). Increased plasma DAMP levels were not clearly associated with clinical responses. There was a significant correlation between the maximum fold change in CRT levels and progression-free survival (PFS; r = 0.49, P < 0.001). Median PFS and overall survival (OS) rates were higher in patients with a ≥ 2-fold increase in plasma CRT levels than in those with a < 2-fold increase (PFS, 14.9 versus 6.0 months, hazard ratio (HR), 0.58; P = 0.17; OS, not reached versus 21.6 months, HR, 0.31, P = 0.02). CONCLUSIONS Plasma CRT level monitoring has the potential to predict the efficacy of ICI combination therapy and shed light on the mechanisms underlying DAMP-related immunogenic cell death.
Collapse
Affiliation(s)
- Hirono Tsutsumi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Inoue
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Respiratory Medicine, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Yoshimasa Shiraishi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Aiko Hirayama
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takayuki Nakanishi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Ando
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Maako Nakajima
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Shinozaki
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroaki Ogata
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Okamura
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinichi Kimura
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Ogawa
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiichi Ota
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuto Yoneshima
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kentaro Tanaka
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Hamada
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Respiratory Medicine, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Iwama
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
22
|
Dora D, Ligeti B, Kovacs T, Revisnyei P, Galffy G, Dulka E, Krizsán D, Kalcsevszki R, Megyesfalvi Z, Dome B, Weiss GJ, Lohinai Z. Non-small cell lung cancer patients treated with Anti-PD1 immunotherapy show distinct microbial signatures and metabolic pathways according to progression-free survival and PD-L1 status. Oncoimmunology 2023; 12:2204746. [PMID: 37197440 PMCID: PMC10184596 DOI: 10.1080/2162402x.2023.2204746] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/13/2023] [Accepted: 04/16/2023] [Indexed: 05/19/2023] Open
Abstract
Due to the high variance in response rates concerning anti-PD1 immunotherapy (IT), there is an unmet need to discover innovative biomarkers to predict immune checkpoint inhibitor (ICI)-efficacy. Our study included 62 Caucasian advanced-stage non-small cell lung cancer (NSCLC) patients treated with anti-PD1 ICI. Gut bacterial signatures were evaluated by metagenomic sequencing and correlated with progression-free survival (PFS), PD-L1 expression and other clinicopathological parameters. We confirmed the predictive role of PFS-related key bacteria with multivariate statistical models (Lasso- and Cox-regression) and validated on an additional patient cohort (n = 60). We find that alpha-diversity showed no significant difference in any comparison. However, there was a significant difference in beta-diversity between patients with long- (>6 months) vs. short (≤6 months) PFS and between chemotherapy (CHT)-treated vs. CHT-naive cases. Short PFS was associated with increased abundance of Firmicutes (F) and Actinobacteria phyla, whereas elevated abundance of Euryarchaeota was specific for low PD-L1 expression. F/Bacteroides (F/B) ratio was significantly increased in patients with short PFS. Multivariate analysis revealed an association between Alistipes shahii, Alistipes finegoldii, Barnesiella visceriola, and long PFS. In contrast, Streptococcus salivarius, Streptococcus vestibularis, and Bifidobacterium breve were associated with short PFS. Using Random Forest machine learning approach, we find that taxonomic profiles performed superiorly in predicting PFS (AUC = 0.74), while metabolic pathways including Amino Acid Synthesis and Fermentation were better predictors of PD-L1 expression (AUC = 0.87). We conclude that specific metagenomic features of the gut microbiome, including bacterial taxonomy and metabolic pathways might be suggestive of ICI efficacy and PD-L1 expression in NSCLC patients.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Balazs Ligeti
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Tamas Kovacs
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Peter Revisnyei
- Department of Telecommunications and Media Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | | | - Edit Dulka
- County Hospital of Torokbalint, Torokbalint, Hungary
| | - Dániel Krizsán
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Regina Kalcsevszki
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Zsolt Megyesfalvi
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology, Semmelweis University, Budapest, Hungary
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Balazs Dome
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology, Semmelweis University, Budapest, Hungary
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Translational Medicine, Lund University, Sweden
| | - Glen J. Weiss
- UMass Chan Medical School, Department of Medicine, Worcester, MA, USA
| | - Zoltan Lohinai
- County Hospital of Torokbalint, Torokbalint, Hungary
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| |
Collapse
|
23
|
Liu Z, Xu X, Liu K, Zhang J, Ding D, Fu R. Immunogenic Cell Death in Hematological Malignancy Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207475. [PMID: 36815385 PMCID: PMC10161053 DOI: 10.1002/advs.202207475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/09/2023] [Indexed: 05/06/2023]
Abstract
Although the curative effect of hematological malignancies has been improved in recent years, relapse or drug resistance of hematological malignancies will eventually recur. Furthermore, the microenvironment disorder is an important mechanism in the pathogenesis of hematological malignancies. Immunogenic cell death (ICD) is a unique mechanism of regulated cell death (RCD) that triggers an intact antigen-specific adaptive immune response by firing a set of danger signals or damage-associated molecular patterns (DAMPs), which is an immunotherapeutic modality with the potential for the treatment of hematological malignancies. This review summarizes the existing knowledge about the induction of ICD in hematological malignancies and the current research on combining ICD inducers with other treatment strategies for hematological malignancies.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of HematologyTianjin Medical University General HospitalTianjin300052P. R. China
| | - Xintong Xu
- Department of HematologyTianjin Medical University General HospitalTianjin300052P. R. China
| | - Kaining Liu
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive, Materials, Ministry of Education and College of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Jingtian Zhang
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive, Materials, Ministry of Education and College of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive, Materials, Ministry of Education and College of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Rong Fu
- Department of HematologyTianjin Medical University General HospitalTianjin300052P. R. China
| |
Collapse
|
24
|
Qian K, Liu Q. Narrative review on the role of immunotherapy in early triple negative breast cancer: unveiling opportunities and overcoming challenges. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2023; 4:16. [PMID: 38751461 PMCID: PMC11093071 DOI: 10.21037/tbcr-23-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/20/2023] [Indexed: 05/18/2024]
Abstract
Background and Objective Triple negative breast cancer (TNBC) represents a highly aggressive breast cancer subtype, historically managed with chemotherapy regimens predominantly involving anthracyclines and taxanes, yielding unfavorable prognoses. This review endeavors to offer a thorough examination of the present state of treatment strategies for early stage triple negative breast cancer (eTNBC), with a particular emphasis on immunotherapy modalities, combination therapies, predictive biomarkers, and ongoing clinical trials. The principal aim of this review is to meticulously assess the available literature, ascertain significant discoveries, and engage in discussions regarding their potential implications for future research endeavors, clinical applications, and policy formulation. Methods This review was conducted using PubMed and Google Scholar databases, with the latest update performed in March 2023. The search strategy was designed to ensure a comprehensive analysis of the literature, with a focus on recent advancements. Key Content and Findings We critically assess the current eTNBC treatment landscape, covering efficacy and limitations of monotherapy, combination therapies, and predictive biomarkers. We highlight promising results from recent trials, address controversies surrounding chemotherapy, and explore optimal approaches for adjuvant and neoadjuvant therapy (NAT). Insights into personalized treatment strategies, ongoing trials, and future perspectives are provided, advancing our understanding of therapeutic options for eTNBC. Conclusions Through a comprehensive analysis of the literature, this review highlights the potential of immunotherapy, particularly in combination with chemotherapy, as a promising approach for treating eTNBC. However, further research is warranted to optimize treatment strategies, refine patient selection criteria, and identify reliable biomarkers for predicting response to immune checkpoint inhibitors (ICIs). The findings of this review hold significant implications for future research, clinical practice, and policy-making, offering valuable insights into the current challenges and advancements in eTNBC treatment. Ultimately, this knowledge can contribute to improved patient outcomes, enhanced quality of life, and the development of more effective therapeutic approaches for eTNBC.
Collapse
Affiliation(s)
- Keyang Qian
- Department of Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Liu S, Sun Q, Ren X. Novel strategies for cancer immunotherapy: counter-immunoediting therapy. J Hematol Oncol 2023; 16:38. [PMID: 37055849 PMCID: PMC10099030 DOI: 10.1186/s13045-023-01430-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
The advent of immunotherapy has made an indelible mark on the field of cancer therapy, especially the application of immune checkpoint inhibitors in clinical practice. Although immunotherapy has proven its efficacy and safety in some tumors, many patients still have innate or acquired resistance to immunotherapy. The emergence of this phenomenon is closely related to the highly heterogeneous immune microenvironment formed by tumor cells after undergoing cancer immunoediting. The process of cancer immunoediting refers to the cooperative interaction between tumor cells and the immune system that involves three phases: elimination, equilibrium, and escape. During these phases, conflicting interactions between the immune system and tumor cells result in the formation of a complex immune microenvironment, which contributes to the acquisition of different levels of immunotherapy resistance in tumor cells. In this review, we summarize the characteristics of different phases of cancer immunoediting and the corresponding therapeutic tools, and we propose normalized therapeutic strategies based on immunophenotyping. The process of cancer immunoediting is retrograded through targeted interventions in different phases of cancer immunoediting, making immunotherapy in the context of precision therapy the most promising therapy to cure cancer.
Collapse
Affiliation(s)
- Shaochuan Liu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, 300060, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, 300060, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, 300060, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, 300060, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China.
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, 300060, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, 300060, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China.
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.
| |
Collapse
|
26
|
Kothari N, Postwala H, Pandya A, Shah A, Shah Y, Chorawala MR. Establishing the applicability of cancer vaccines in combination with chemotherapeutic entities: current aspect and achievable prospects. Med Oncol 2023; 40:135. [PMID: 37014489 DOI: 10.1007/s12032-023-02003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
Cancer immunotherapy is one of the recently developed cancer treatment modalities. When compared with conventional anticancer drug regimens, immunotherapy has shown significantly better outcomes in terms of quality of life and overall survival. It incorporates a wide range of immunomodulatory modalities that channel the effects of the immune system either by broadly modulating the host immune system or by accurately targeting distinct tumor antigens. One such treatment modality that has gained interest is cancer vaccine therapy which acts by developing antibodies against tumor cells. Cancer vaccines target individual peptides or groups of antigens that are released by tumor cells and presented by the APCs. This also initiates an effective process to activate the host immune responses. Studies on various types of cancer vaccines are conducted, out of which only few are approved by FDA for clinical uses. Despite of documented safety and efficacy of conventional chemotherapy and cancer vaccines, individually they did not produce substantial results in eradication of the cancer as a monotherapy. Hence, the combination approach holds the extensive potential to provide significant improvement in disease outcomes. Certain chemotherapy has immunomodulatory effects and is proven to synergize with cancer vaccines thereby enhancing their anti-tumor activities. Chemotherapeutic agents are known to have immunostimulatory mechanisms apart from its cytotoxic effect and intensify the anti-tumor activities of vaccines by various mechanisms. This review highlights various cancer vaccines, their mechanism, and how their activity gets affected by chemotherapeutic agents. It also aims at summarizing the evidence-based outcome of the combination approach of a cancer vaccine with chemotherapy and a brief on future aspects.
Collapse
Affiliation(s)
- Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Aanshi Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Aayushi Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India.
| |
Collapse
|
27
|
Dahan M, Cortet M, Lafon C, Padilla F. Combination of Focused Ultrasound, Immunotherapy, and Chemotherapy: New Perspectives in Breast Cancer Therapy. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:559-573. [PMID: 35869903 DOI: 10.1002/jum.16053] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Focused ultrasound is a treatment modality increasingly used for diverse therapeutic applications, and currently approved for several indications, including prostate cancers and uterine fibroids. But what about breast cancer? Breast cancer is the most common and deadliest cancer in women worldwide. While there are different treatment strategies available, there is a need for development of more effective and personalized modalities, with fewer side effects. Therapeutic ultrasound is such an option, and this review summarizes the state of the art in their use for the treatment of breast cancer and evaluate potentials of novel treatment approaches combining therapeutic ultrasound, immuno- and chemo-therapies.
Collapse
Affiliation(s)
- Myléva Dahan
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France
| | - Marion Cortet
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France
- Service de Gynécologie Obstétrique, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Cyril Lafon
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France
| | - Frédéric Padilla
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France
- Focused Ultrasound Foundation, Charlottesville, Virginia, USA
- Department of Radiology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
28
|
Chai N, Xie P, Chen H, Li Y, Zhao Y, He J, Zhang H. Elevated ADAM-like Decysin-1 (ADAMDEC1) expression is associated with increased chemo-sensitivity and improved prognosis in breast cancer patients. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:14. [PMID: 36760254 PMCID: PMC9906202 DOI: 10.21037/atm-22-6319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/29/2022] [Indexed: 01/16/2023]
Abstract
Background Chemoresistance is problematic and its mechanisms are unclear in breast cancer. More predictive markers are urgently required. Methods GSE32646, GSE34138, and GSE20271 were downloaded from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) between chemosensitive and chemoresistant tumors. LinkedOmics was used to analyze ADAM-like Decysin-1 (ADAMDEC1) expression among patients with different clinical characteristics and detect co-expression genes for functional analysis. Tumor Immune Estimation Resource (TIMER) and an integrated repository portal for tumor-immune system interactions (TISIDB) were used to investigate the association between the target gene and the immune response. Gene Set Cancer Analysis (GSCA) was utilized to explore the related pathways of ADAMDEC1 and evaluate the correlation between the expression of ADAMDEC1 and drug sensitivity. RNA22, miRWalk, and miRmap were used to predict the upstream micro ribonucleic acids (miRNAs) regulating ADAMDEC1 expression, while DIANA-LncBase v2 was applied to predict the upstream long non-coding ribonucleic acids (lncRNAs). Kaplan-Meier curve analysis was applied to determine the survival time. Results We identified that ADAMDEC1 was upregulated among chemosensitive triple-negative breast cancer (TNBC) tissues in GSE32646, GSE34138, and GSE20271. Higher expression of ADAMDEC1 indicated longer survival in breast cancer. Next, we found that ADAMDEC1 was significantly related to the immune response in breast cancer through functional enrichment analysis and further meta-data validation. Moreover, we recognized that hsa-miR-4534 was the potential upstream miRNA regulating ADAMDEC1 expression and Taurine Up-Regulated 1 (TUG1) was the most likely upstream lncRNA of ADAMDEC1 and hsa-miR-4534. Finally, the correlation between ADAMDEC1 and chemosensitivity was confirmed through drug database analysis. Conclusions Elevated ADAMDEC1 expression is associated with increased chemosensitivity and better prognosis in breast cancer patients.
Collapse
Affiliation(s)
- Na Chai
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peilin Xie
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Heyan Chen
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yijun Li
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuting Zhao
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianjun He
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huimin Zhang
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
29
|
Stravokefalou V, Stellas D, Karaliota S, Nagy BA, Valentin A, Bergamaschi C, Dimas K, Pavlakis GN. Heterodimeric IL-15 (hetIL-15) reduces circulating tumor cells and metastasis formation improving chemotherapy and surgery in 4T1 mouse model of TNBC. Front Immunol 2023; 13:1014802. [PMID: 36713398 PMCID: PMC9880212 DOI: 10.3389/fimmu.2022.1014802] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Immunotherapy has emerged as a viable approach in cancer therapy, with cytokines being of great interest. Interleukin IL-15 (IL-15), a cytokine that supports cytotoxic immune cells, has been successfully tested as an anti-cancer and anti-metastatic agent, but combinations with conventional chemotherapy and surgery protocols have not been extensively studied. We have produced heterodimeric IL-15 (hetIL-15), which has shown anti-tumor efficacy in several murine cancer models and is being evaluated in clinical trials for metastatic cancers. In this study, we examined the therapeutic effects of hetIL-15 in combination with chemotherapy and surgery in the 4T1 mouse model of metastatic triple negative breast cancer (TNBC). hetIL-15 monotherapy exhibited potent anti-metastatic effects by diminishing the number of circulating tumor cells (CTCs) and by controlling tumor cells colonization of the lungs. hetIL-15 treatment in combination with doxorubicin resulted in enhanced anti-metastatic activity and extended animal survival. Systemic immune phenotype analysis showed that the chemoimmunotherapeutic regimen shifted the tumor-induced imbalance of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in favor of cytotoxic effector cells, by simultaneously decreasing PMN-MDSCs and increasing the frequency and activation of effector (CD8+T and NK) cells. Tumor resection supported by neoadjuvant and adjuvant administration of hetIL-15, either alone or in combination with doxorubicin, resulted in the cure of approximately half of the treated animals and the development of anti-4T1 tumor immunity. Our findings demonstrate a significant anti-metastatic potential of hetIL-15 in combination with chemotherapy and surgery and suggest exploring the use of this regimen for the treatment of TNBC.
Collapse
Affiliation(s)
- Vasiliki Stravokefalou
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States,Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Dimitris Stellas
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States,Department of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Sevasti Karaliota
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States,Basic Science Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, United States
| | - Bethany A. Nagy
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, United States
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece,*Correspondence: Konstantinos Dimas, ; George N. Pavlakis,
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States,*Correspondence: Konstantinos Dimas, ; George N. Pavlakis,
| |
Collapse
|
30
|
Wang Q, Shen Z, Ge M, Xu J, Zhang X, Zhu W, Liu J, Hua W, Mao Y. Unexpected curative effect of PD-1 inhibitor in gastric cancer with brain metastasis: A case report. Front Oncol 2023; 13:1042417. [PMID: 36874117 PMCID: PMC9978328 DOI: 10.3389/fonc.2023.1042417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Background Gastric cancer (GC) is the third most common cause of cancer-related death in the world. Several clinical trials have proven that the use of PD-1/PD-L1 inhibitors can improve the survival of late-stage GC patients and is suggested in NCCN and CSCO guidelines. However, the correlation between PD-L1 expression and the response to PD-1/PD-L1 inhibitors is still controversial. GC rarely develops brain metastasis (BrM) and currently there is no therapeutic protocol for GC BrMs. Case presentation We report a case of a 46-year-old male suffering from GC with PD-L1 negative BrMs 12 years after GC resection and 5 cycles of chemotherapy. We treated the patient with the immune checkpoint inhibitor (ICI) pembrolizumab and all metastatic tumors achieved a complete response (CR). A durable remission of the tumors is confirmed after 4 years of follow-up. Conclusion We shared a rare case with PD-L1 negative GC BrM responsive to PD-1/PD-L1 inhibitors, the mechanism of which is still unclear. The protocol of therapeutic choice for late-stage GC with BrM is urgently needed. And we are expecting biomarkers other than PD-L1 expressions to predict the efficacy of ICI treatment.
Collapse
Affiliation(s)
- Qijun Wang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Zhewei Shen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Mengxi Ge
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Xu
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xin Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| |
Collapse
|
31
|
Activation of the TGF- β Pathway Enhances the Efficacy of Platinum-Based Chemotherapy in Small Cell Lung Cancer Patients. DISEASE MARKERS 2022; 2022:8766448. [PMID: 36590751 PMCID: PMC9798106 DOI: 10.1155/2022/8766448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Background Platinum-based chemotherapy is the first choice of treatment for patients diagnosed with small lung cell cancer (SCLC). However, many patients exhibit resistance to it. Therefore, it is imperative to further investigate a prognostic biomarker indicating sensitivity to this therapy. Methods We collected and performed RNA sequencing on 45 SCLC samples from the Zhujiang Hospital (Local-SCLC). In addition, we used a public cohort from George et al. as a validation cohort (George-SCLC). The transforming growth factor β signaling pathway (TGFB) activation status was determined according to the related ssGSEA score. We analyzed immune cell ratios, pathway activation scores, and immune-related genes in SCLC patients to further elucidate the potential mechanisms. Results A high activation status of the TGFB pathway was associated with improved prognosis in SCLC patients receiving platinum-based chemotherapy (Local-SCLC: HR = 0.0238, (95% CI, 0.13-0.84), p = 0.0238; George-SCLC: HR = 0.0315, (95% CI, 0.28-0.98), p = 0.0315). Immune infiltration analysis showed that the TGFB-HIGH group had more M1 macrophages and Th1 cells, whilst fewer M2 macrophages, Th2 cells, and Treg cells were found in the Local-SCLC cohort. Mechanistic analysis showed that the TGBF-HIGH group was upregulated in STING-mediated immunity, apoptosis, and cell cycle arrest, as well as being downregulated in the process of DNA damage repair. Conclusions SCLC patients exhibiting a high activation status of the TGFB pathway demonstrate an improved prognosis with platinum-based chemotherapy. The potential underlying mechanism may be related to antitumor immune enhancement and DNA damage repair inhibition.
Collapse
|
32
|
Lewicky JD, Martel AL, Fraleigh NL, Picard E, Mousavifar L, Nakamura A, Diaz-Mitoma F, Roy R, Le HT. Exploiting the DNA Damaging Activity of Liposomal Low Dose Cytarabine for Cancer Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14122710. [PMID: 36559204 PMCID: PMC9782803 DOI: 10.3390/pharmaceutics14122710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/09/2022] Open
Abstract
Perhaps the greatest limitation for the continually advancing developments in cancer immunotherapy remains the immunosuppressive tumor microenvironment (TME). The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) axis is an emerging immunotherapy target, with the resulting type I interferons and transcription factors acting at several levels in both tumor and immune cells for the generation of adaptive T cell responses. The cGAS-STING axis activation by therapeutic agents that induce DNA damage, such as certain chemotherapies, continues to be reported, highlighting the importance of the interplay of this signaling pathway and the DNA damage response in cancer immunity/immunotherapy. We have developed a multi-targeted mannosylated cationic liposomal immunomodulatory system (DS) which contains low doses of the chemotherapeutic cytarabine (Ara-C). In this work, we show that entrapment of non-cytotoxic doses of Ara-C within the DS improves its ability to induce DNA double strand breaks in human ovarian and colorectal cancer cell lines, as well as in various immune cells. Importantly, for the first time we demonstrate that the DNA damage induced by Ara-C/DS translates into cGAS-STING axis activation. We further demonstrate that Ara-C/DS-mediated DNA damage leads to upregulation of surface expression of immune ligands on cancer cells, coinciding with priming of cytotoxic lymphocytes as assessed using an ex vivo model of peripheral blood mononuclear cells from colorectal cancer patients, as well as an in vitro NK cell model. Overall, the results highlight a broad immunotherapeutic potential for Ara-C/DS by enhancing tumor-directed inflammatory responses.
Collapse
Affiliation(s)
- Jordan D. Lewicky
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada
| | - Alexandrine L. Martel
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada
| | - Nya L. Fraleigh
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada
| | - Emilie Picard
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada
- Cancer Research Center of Lyon, 28 rue Laennec, 69008 Lyon, France
| | - Leila Mousavifar
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Arnaldo Nakamura
- Armand-Frappier Santé Biotechnologie Research Centre, Institut National de la Recherche Scientifique, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Francisco Diaz-Mitoma
- Medicinal Sciences Division, NOSM University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - René Roy
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
- Correspondence: (R.R.); (H.-T.L.)
| | - Hoang-Thanh Le
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada
- Medicinal Sciences Division, NOSM University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
- Correspondence: (R.R.); (H.-T.L.)
| |
Collapse
|
33
|
Abedi Kiasari B, Abbasi A, Ghasemi Darestani N, Adabi N, Moradian A, Yazdani Y, Sadat Hosseini G, Gholami N, Janati S. Combination therapy with nivolumab (anti-PD-1 monoclonal antibody): A new era in tumor immunotherapy. Int Immunopharmacol 2022; 113:109365. [DOI: 10.1016/j.intimp.2022.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
34
|
The past, present, and future of chemotherapy with a focus on individualization of drug dosing. J Control Release 2022; 352:840-860. [PMID: 36334860 DOI: 10.1016/j.jconrel.2022.10.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022]
Abstract
While there have been rapid advances in developing new and more targeted drugs to treat cancer, much less progress has been made in individualizing dosing. Even though the introduction of immunotherapies such as CAR T-cells and checkpoint inhibitors, as well as personalized therapies that target specific mutations, have transformed clinical treatment of cancers, chemotherapy remains a mainstay in oncology. Chemotherapies are typically dosed on either a body surface area (BSA) or weight basis, which fails to account for pharmacokinetic differences between patients. Drug absorption, distribution, metabolism, and excretion rates can vary between patients, resulting in considerable differences in exposure to the active drugs. These differences result in suboptimal dosing, which can reduce efficacy and increase side-effects. Therapeutic drug monitoring (TDM), genotype guided dosing, and chronomodulation have been developed to address this challenge; however, despite improving clinical outcomes, they are rarely implemented in clinical practice for chemotherapies. Thus, there is a need to develop interventions that allow for individualized drug dosing of chemotherapies, which can help maximize the number of patients that reach the most efficacious level of drug in the blood while mitigating the risks of underdosing or overdosing. In this review, we discuss the history of the development of chemotherapies, their mechanisms of action and how they are dosed. We discuss substantial intraindividual and interindividual variability in chemotherapy pharmacokinetics. We then propose potential engineering solutions that could enable individualized dosing of chemotherapies, such as closed-loop drug delivery systems and bioresponsive biomaterials.
Collapse
|
35
|
Liu S, Li J, Gu L, Wu K, Xing H. Nanoparticles for Chemoimmunotherapy Against Triple-Negative Breast Cancer. Int J Nanomedicine 2022; 17:5209-5227. [PMID: 36388877 PMCID: PMC9651025 DOI: 10.2147/ijn.s388075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) exhibits high recurrence and mortality rates because of the lack of effective treatment targets. Surgery and traditional chemotherapy are the primary treatment options. Immunotherapy shows high potential for treating various cancers but exhibits limited efficacy against TNBC as a monotherapy. Chemoimmunotherapy has broad prospects for applications for cancer treatment conferred through the synergistic immunomodulatory and anti-tumor effects of chemotherapy and immunotherapeutic strategies. However, improving the efficacy of synergistic therapy and reducing the side effects of multiple drugs remain to be the main challenges in chemoimmunotherapy against TNBC. Nanocarriers can target both cancer and immune cells, promote drug accumulation, and show minimal toxicity, making them ideal delivery systems for chemotherapeutic and immunotherapeutic agents. In this review, we introduce the immunomodulatory effects of chemotherapy and combined mechanisms of chemoimmunotherapy, followed by a summary of nanoparticle-mediated chemoimmunotherapeutic strategies used for treating TNBC. This up-to-date synthesis of relevant findings in the field merits contemplation, while considering avenues of investigation to enable advances in the field.
Collapse
Affiliation(s)
- Siyan Liu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jing Li
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Lin Gu
- Breast Surgery, Jilin Province Tumor Hospital, Changchun, People’s Republic of China
| | - Kunzhe Wu
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Hua Xing
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
36
|
Recent Advances in Combination of Immunotherapy and Chemoradiotherapy for Locally Advanced Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14205168. [PMID: 36291954 PMCID: PMC9599968 DOI: 10.3390/cancers14205168] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Neoadjuvant chemoradiotherapy (CRT), followed by surgery or definitive CRT, is the standard treatment for locally advanced esophageal squamous cell carcinoma (ESCC); however, the clinical outcomes remain unsatisfactory. Immunotherapy combined with CRT is currently being investigated as a novel treatment option for locally advanced ESCC. In this review, we discuss the theoretical background and status of immunotherapy for locally advanced ESCC and potential biomarkers for predicting tumor response and prognosis. Abstract Esophageal cancer has a high mortality rate and a poor prognosis, with more than one-third of patients receiving a diagnosis of locally advanced cancer. Esophageal squamous cell carcinoma (ESCC) is the dominant histological subtype of esophageal cancer in Asia and Eastern Europe. Although neoadjuvant or definitive chemoradiotherapy (CRT) has been the standard treatment for locally advanced ESCC, patient outcomes remain unsatisfactory, with recurrence rates as high as 30–50%. The combination of immune checkpoint inhibitors (ICIs) and CRT has emerged as a novel strategy to treat esophageal cancer, and it may have a synergistic action and provide greater efficacy. In the phase III CheckMate-577 trial, one year of adjuvant nivolumab after neoadjuvant CRT improved disease-free survival in patients with residual disease on pathology. Moreover, several phase I and II studies have shown that ICIs combined with concurrent CRT may increase the rate of pathologic complete response for resectable ESCC, but they lack long-term follow-up results. In unresectable cases, the combination of camrelizumab and definitive CRT showed promising results against ESCC in a phase Ib trial. Phase III randomized trials are currently ongoing to investigate the survival benefits of ICIs combined with neoadjuvant or definitive CRT, and they will clarify the role of immunotherapy in locally advanced ESCC. Additionally, valid biomarkers to predict tumor response and survival outcomes need to be further explored.
Collapse
|
37
|
Dai H, Liu M, Li X, Li T, Huang W, Liao J, Li Y, Fang S. A case study of combined neoadjuvant chemotherapy and neoadjuvant immunotherapy in resectable locally advanced esophageal cancer. World J Surg Oncol 2022; 20:267. [PMID: 36008813 PMCID: PMC9414113 DOI: 10.1186/s12957-022-02732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The prognosis of patients under existing neoadjuvant chemotherapy or neoadjuvant chemoradiotherapy requires improvement. Whereas programmed cell death 1 (PD-1) inhibitors have shown promising response in advanced esophageal cancer, they have not been used in the perioperative treatment of resectable locally advanced esophageal cancer. Whether immunotherapy can be incorporated into neoadjuvant therapy has became a challenging question for researchers. CASE PRESENTATION We present a case of a 65-year-old male who had a history of progressive dysphagia for approximately 1 month. He underwent pertinent studies including computed tomography (CT),gastroscopy,and pathological biopsy resulting in a diagnosis of medium-low differentiated squamous carcinoma of the thoracic segment of the esophagus (cT2N2M0 stage III). After 4 cycles of neoadjuvant chemotherapy combined with immunotherapy, gastroscopy showed the lesion in the esophagus was no longer present. Subsequently, the patient received thoracoscopic radical resection of esophageal cancer and achieved a pathological complete response (pCR) in postoperative pathological evaluation. During the whole treatment, no adverse effect was recorded and to date no evidence of recurrence has been recorded. CONCLUSION Our report suggest that neoadjuvant chemotherapy combined with immunotherapy not only improve the R0 resection and pCR rate in patients with resectable locally advanced esophageal cancer, but also the adverse effects are within the control range. However, the selection of therapeutic strategy, predictors of response to treatment, and interval time between neoadjuvant treatment and surgery still await more reliable evidence-based studies with large prospective samples.
Collapse
Affiliation(s)
- Huiru Dai
- The Department of Clinical Oncology, Guangdong Provincial Key Laboratory of Digestive Cancer Research, Big data Centre, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Minling Liu
- The Department of Clinical Oncology, Guangdong Provincial Key Laboratory of Digestive Cancer Research, Big data Centre, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Xueying Li
- The Department of Clinical Oncology, Guangdong Provincial Key Laboratory of Digestive Cancer Research, Big data Centre, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Tingwei Li
- The Department of Clinical Oncology, Guangdong Provincial Key Laboratory of Digestive Cancer Research, Big data Centre, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Wensheng Huang
- The Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Jiehao Liao
- The Department of Clinical Oncology, Guangdong Provincial Key Laboratory of Digestive Cancer Research, Big data Centre, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Yun Li
- The Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China.
| | - Shuo Fang
- The Department of Clinical Oncology, Guangdong Provincial Key Laboratory of Digestive Cancer Research, Big data Centre, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China.
| |
Collapse
|
38
|
Zhao Z, Fang L, Xiao P, Sun X, Zhou L, Liu X, Wang J, Wang G, Cao H, Zhang P, Jiang Y, Wang D, Li Y. Walking Dead Tumor Cells for Targeted Drug Delivery Against Lung Metastasis of Triple-Negative Breast Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205462. [PMID: 35759925 DOI: 10.1002/adma.202205462] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Lung metastasis is challenging in patients with triple-negative breast cancer (TNBC). Surgery is always not available due to the dissemination of metastatic foci and most drugs are powerless because of poor retention at metastatic sites. TNBC cells generate an inflamed microenvironment and overexpress adhesive molecules to promote invasion and colonization. Herein, "walking dead" TNBC cells are developed through conjugating anti-PD-1 (programmed death protein 1 inhibitor) and doxorubicin (DOX)-loaded liposomes onto cell corpses for temporal chemo-immunotherapy against lung metastasis. The walking dead TNBC cells maintain plenary tumor antigens to conduct vaccination effects. Anti-PD-1 antibodies are conjugated to cell corpses via reduction-activated linker, and DOX-loaded liposomes are attached by maleimide-thiol coupling. This anchor strategy enables rapid release of anti-PD-1 upon reduction conditions while long-lasting release of DOX at inflamed metastatic sites. The walking dead TNBC cells improve pulmonary accumulation and local retention of drugs, reprogram the lung microenvironment through damage-associated molecular patterns (DAMPs) and PD-1 blockade, and prolong overall survival of lung metastatic 4T1 and EMT6-bearing mice. Taking advantage of the walking dead TNBC cells for pulmonary preferred delivery of chemotherapeutics and checkpoint inhibitors, this study suggests an alternative treatment option of chemo-immunotherapy to augment the efficacy against lung metastasis.
Collapse
Affiliation(s)
- Zitong Zhao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Lei Fang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ping Xiao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiangshi Sun
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lei Zhou
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiaochen Liu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jue Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Guanru Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haiqiang Cao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China
| | - Yanyan Jiang
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Dangge Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shangdong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Shandong, 264000, China
| |
Collapse
|
39
|
|
40
|
Uchimiak K, Badowska-Kozakiewicz AM, Sobiborowicz-Sadowska A, Deptała A. Current State of Knowledge on the Immune Checkpoint Inhibitors in Triple-Negative Breast Cancer Treatment: Approaches, Efficacy, and Challenges. Clin Med Insights Oncol 2022; 16:11795549221099869. [PMID: 35721387 PMCID: PMC9201309 DOI: 10.1177/11795549221099869] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with limited treatment options. Recently, there has been a growing interest in immunotherapy with immune checkpoint inhibitors (ICIs) in TNBC, leading to extensive preclinical and clinical research. This review summarizes the current state of knowledge on ICIs efficacy and their predictive markers in TNBC and highlights the areas where the data are still limited. Currently, the only approved ICI-based regimen for TNBC is pembrolizumab with chemotherapy. Its advantage over chemotherapy alone was confirmed for non-metastatic TNBC regardless of programmed death-ligand 1 (PD-L1) expression (KEYNOTE-522) and for metastatic, PD-L1-positive TNBC (KEYNOTE-355). Pembrolizumab's efficacy was also evaluated in monotherapy, or in combination with niraparib and radiation therapy, showing potential efficacy and acceptable safety profile in phase 2 clinical trials. Atezolizumab + nab-paclitaxel increased the overall survival (OS) over placebo + nab-paclitaxel in early TNBC, regardless of PD-L1 status (IMpassion031). In IMpassion130 (untreated, advanced TNBC), the OS improvement was not statistically significant in the intention-to-treat population but clinically meaningful in the PD-L1 positive cohort. The durvalumab-anthracycline combination showed an increased response durability over placebo anthracycline in early TNBC (GeparNuevo). Several phase 1 clinical trials also showed a potential efficacy of atezolizumab and avelumab monotherapy in metastatic TNBC. ICIs appear to be applicable in both neoadjuvant and adjuvant settings, and are both pretreated and previously untreated patients. Further research is necessary to determine the most beneficial drug combinations and optimize patient selection. It is essential to identify the predictive markers for ICIs and factors affecting their expression.
Collapse
Affiliation(s)
- Katarzyna Uchimiak
- Students’ Scientific Organization of
Cancer Cell Biology, Department of Cancer Prevention, Medical University of Warsaw,
Warsaw, Poland
| | | | - Aleksandra Sobiborowicz-Sadowska
- Students’ Scientific Organization of
Cancer Cell Biology, Department of Cancer Prevention, Medical University of Warsaw,
Warsaw, Poland
| | - Andrzej Deptała
- Department of Cancer Prevention,
Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
41
|
Zhou Z, Zhao Y, Chen S, Cui G, Fu W, Li S, Lin X, Hu H. Cisplatin Promotes the Efficacy of Immune Checkpoint Inhibitor Therapy by Inducing Ferroptosis and Activating Neutrophils. Front Pharmacol 2022; 13:870178. [PMID: 35784745 PMCID: PMC9240830 DOI: 10.3389/fphar.2022.870178] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/13/2022] [Indexed: 01/04/2023] Open
Abstract
The combination of immunotherapy with platinum-based chemotherapy has become the first-line treatment for patients with advanced non–small cell lung cancer (NSCLC) with negative driver gene mutations. However, finding an ideal chemotherapeutic regimen for immunotherapy and exploring the underlying mechanism have noticeably attracted clinicians’ attention. In this study, we found that cisplatin induced ferroptosis of tumor cells, followed by N1 neutrophil polarization in the tumor microenvironment, which in turn remodeled the “cold” tumor to a “hot” one through enhancing T-cell infiltration and Th1 differentiation. Based on the important role of tumor ferroptosis in the immune-promoting effect of cisplatin, we noticed that the combination of a ferroptosis activator showed a synergistic effect with chemoimmunotherapy of epidermal growth factor receptor (EGFR)-mutant NSCLC, which would be an effective strategy to overcome immunotherapy resistance in NSCLC patients harboring driver mutations.
Collapse
Affiliation(s)
- Ziwei Zhou
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiming Zhao
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Phase I Clinical Trial Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Si Chen
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guohui Cui
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenkui Fu
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shouying Li
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaorong Lin
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Shantou, China
- *Correspondence: Xiaorong Lin, ; Hai Hu,
| | - Hai Hu
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiaorong Lin, ; Hai Hu,
| |
Collapse
|
42
|
Bilger G, Toffart AC, Darrason M, Duruisseaux M, Ulmer L, Wang P, Leprieur EG, Girard N, Massiani MA, Bore P, Descourt R, Pinsolle J, Valery S, Monnet I, Swalduz A, Tissot C, Fournel P, Baranzelli A, Cortot AB, Decroisette C. Paclitaxel–bevacizumab combination in advanced non-squamous non-small-cell lung cancer (NSCLC): AVATAX, a retrospective multicentric study. Ther Adv Med Oncol 2022; 14:17588359221099399. [PMID: 35694190 PMCID: PMC9174558 DOI: 10.1177/17588359221099399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction: Compared with docetaxel, the phase-III trial, ULTIMATE, showed a significant
improvement of progression-free survival (PFS) with paclitaxel–bevacizumab
combination (PB) as second- or third-line treatment in advanced non-small
cell lung cancer (NSCLC). With the increase of immunotherapy treatment in
first-line settings, the optimal treatment after first-line failure must be
redefined. Methods: This multicentric retrospective study identified all advanced NSCLC patients
treated with PB as second-line therapy and beyond. The main efficacy
outcomes assessed were objective response rate (ORR), disease control rate
(DCR), PFS, and overall survival (OS). The adverse events were reported
according to Common Terminology Criteria for Adverse Events (CTCAE). Results: From January 2010 to February 2020, 314 patients in 16 centers received the
PB combination. Most patients were male (55%), with a median age of 60 years
(19–82), 95% had adenocarcinoma, 27% had a performance status ⩾2, 45% had
brain metastases at the time of inclusion. They mostly received the PB
combination either in second (20%) or in third-line (39%), and 28% were
treated just after ICI failure. ORR and DCR were 40% and 77%, respectively;
median PFS and OS were 5.7 [interquartile range (IQR): 3.2–9.6] and 10.8
[IQR: 5.3–19.6] months, respectively. All grade adverse events concerned 82%
of patients, including 53% asthenia and 39% neurotoxicity, and 25% of
patients continued monotherapy (mostly with bevacizumab) alone due to
toxicity. Median PFS for patients treated after ICI failure (ICI+) was
significantly superior compared with those not previously treated with ICI
(ICI−): 7.0 [IQR: 4.2–11.0] versus 5.2 [IQR: 2.9–8.8]
months, p = 0.01, without statistically significant
difference for OS between these two groups. In multivariate analysis,
factors associated with superior PFS were previous ICI treatment and
performance status of 0–1. Only a performance status of 0–1 was associated
with superior OS. Conclusion: PB combination as second-line treatment or beyond for advanced non-squamous
NSCLC had acceptable toxicity and a clinically relevant efficacy and is an
option as salvage treatment for these patients, more particularly after ICI
progression.
Collapse
Affiliation(s)
- Geoffroy Bilger
- Centre Hospitalier Universitaire de Grenoble, 38700 Grenoble, France. Oncology, Grenoble University Hospital, Grenoble, France
| | - Anne-Claire Toffart
- Centre Hospitalier Universitaire de Grenoble, Grenoble, FranceOncology, Grenoble University Hospital, Grenoble, France
| | - Marie Darrason
- Service de Pneumologie Aigue Spécialisée et Cancérologie Thoracique, Hôpital Lyon-Sud, CHU Lyon, Pierre-Bénite, France
- Department of Pneumology and Thoracic Oncology, University Hospital of Lyon, Pierre-Bénite, France
- Institut de Recherches Philosophiques de Lyon, Université Lyon 3, Lyon, France
- Lyon Institute of Philosophical Research, Lyon 3 University, Lyon, France
| | | | - Lucie Ulmer
- Thoracic Oncology Department, Hospital Albert Calmette, Lille, France
| | | | | | | | | | - Paul Bore
- Thoracic Oncology Department, Hospital Morvan, Brest, France
| | - Renaud Descourt
- Thoracic Oncology Department, Hospital Morvan, Brest, France
| | - Julian Pinsolle
- Unité de pneumologie, Centre Hospitalier Métropole Savoie, Chambéry, France
| | | | | | - Aurélie Swalduz
- Department of Thoracic Oncology, Centre Léon Bérard, Lyon, France
| | - Claire Tissot
- Pneumology Department, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest-en-Jarez, France
| | - Pierre Fournel
- Service d’Oncologie Médicale, Institut de Cancérologie, CHU de Saint-Etienne, Saint-Etienne Cedex 2, France
| | - Anne Baranzelli
- Unité de pneumologie, Centre Hospitalier Métropole Savoie, Chambéry, France
| | - Alexis B. Cortot
- Thoracic Oncology Department, Hospital Albert Calmette, Lille, France
| | | |
Collapse
|
43
|
Joshi VB, Chadha J, Chahoud J. Penile cancer: Updates in systemic therapy. Asian J Urol 2022; 9:374-388. [DOI: 10.1016/j.ajur.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
|
44
|
Calabretta E, Guidetti A, Ricci F, Di Trani M, Monfrini C, Magagnoli M, Bramanti S, Maspero D, Morello L, Merli M, Di Rocco A, Graudenzi A, Derenzini E, Antoniotti M, Rossi D, Corradini P, Santoro A, Carlo-Stella C. Chemotherapy after PD-1 inhibitors in relapsed/refractory Hodgkin lymphoma: Outcomes and clonal evolution dynamics. Br J Haematol 2022; 198:82-92. [PMID: 35468225 PMCID: PMC9321573 DOI: 10.1111/bjh.18183] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 11/27/2022]
Abstract
Checkpoint inhibitors (CPIs) are routinely employed in relapsed/refractory classical Hodgkin lymphoma. Nonetheless, persistent long-term responses are uncommon, and one-third of patients are refractory. Several reports have suggested that treatment with CPIs may re-sensitize patients to chemotherapy, however there is no consensus on the optimal chemotherapy regimen and subsequent consolidation strategy. In this retrospective study we analysed the response to rechallenge with chemotherapy after CPI failure. Furthermore, we exploratively characterized the clonal evolution profile of a small sample of patients (n = 5) by employing the CALDER approach. Among the 28 patients included in the study, 17 (71%) were primary refractory and 26 (92%) were refractory to the last chemotherapy prior to CPIs. Following rechallenge with chemotherapy, response was recorded in 23 (82%) patients experiencing complete remission and 3 (11%) patients experiencing partial remission. The tumour evolution of the patients inferred by CALDER seemingly occurred prior to the first cycle of therapy and was characterized either by linear or branching evolution patterns. Twenty-five patients proceeded to allogeneic stem cell transplantation. At a median follow-up of 21 months, median PFS and OS were not reached. In conclusion, patients who fail CPIs can be effectively rescued by salvage chemotherapy and bridged to allo-SCT/auto-SCT.
Collapse
Affiliation(s)
- Eleonora Calabretta
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Department of Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Anna Guidetti
- Division of Hematology and Bone Marrow Transplantation, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,University of Milano, Milan, Italy
| | - Francesca Ricci
- Department of Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Martina Di Trani
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Chiara Monfrini
- Division of Hematology and Bone Marrow Transplantation, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Massimo Magagnoli
- Department of Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Stefania Bramanti
- Department of Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Davide Maspero
- Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca, Milan, Italy.,Institute of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche (IBFM-CNR), Segrate, Milan, Italy
| | - Lucia Morello
- Department of Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Michele Merli
- Department of Hematology, University Hospital "Ospedale di Circolo e Fondazione Macchi - ASST Sette Laghi", University of Insubria, Varese, Italy
| | - Alice Di Rocco
- Department of Translational and Precision Medicine, La Sapienza University, Rome, Italy
| | - Alex Graudenzi
- Institute of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche (IBFM-CNR), Segrate, Milan, Italy.,Bicocca Bioinformatics, Biostatistics and Bioimaging Centre (B4), Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Enrico Derenzini
- IEO European Institute of Oncology IRCCS, Milan, Italy.,Department of Health Sciences, University of Milan, Italy
| | - Marco Antoniotti
- Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca, Milan, Italy.,Bicocca Bioinformatics, Biostatistics and Bioimaging Centre (B4), Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Davide Rossi
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.,Institute of Oncology Research, Bellinzona, Switzerland.,Faculty of Biomedical Sciences, USI, Lugano, Switzerland
| | - Paolo Corradini
- Division of Hematology and Bone Marrow Transplantation, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,University of Milano, Milan, Italy
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Department of Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Carmelo Carlo-Stella
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Department of Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
45
|
Zhang F, Zhang J, Zhao L, Zhai M, Zhang T, Yu D. A PD-L1 Negative Advanced Gastric Cancer Patient With a Long Response to PD-1 Blockade After Failure of Systematic Treatment: A Case Report. Front Immunol 2021; 12:759250. [PMID: 34950137 PMCID: PMC8688253 DOI: 10.3389/fimmu.2021.759250] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022] Open
Abstract
Background It was widely accepted that programmed death-ligand 1 (PD-L1) positive, tumor mutational burden-high (TMB-H) or microsatellite instability-high (MSI-H) tumor are prone to have better treatment response to immune checkpoint blockade. The value of immune checkpoint blockade in PD-L1 negative gastric cancer patients has been questioned due to lower objective response rate (ORR). Case Presentation We report an unusual case of a PD-L1 negative, proficient mismatch repair (pMMR)/microsatellite stability (MSS), tumor mutational burden-low (TMB-L) gastric cancer patient who achieved good response to immune checkpoint blockade after failure of systematic treatment. Multiple lymph nodes and bone metastases are the main characteristics of this patient. The patient survived for more than 30 months after diagnosis. Conclusions This case suggested that PD-L1 negative gastric cancer patient may also benefit from immune checkpoint blockade. In gastric cancer, patients with lymph node metastasis may be potential beneficiaries.
Collapse
Affiliation(s)
- Fangyuan Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jieying Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Menglan Zhai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Li Z, Sun G, Sun G, Cheng Y, Wu L, Wang Q, Lv C, Zhou Y, Xia Y, Tang W. Various Uses of PD1/PD-L1 Inhibitor in Oncology: Opportunities and Challenges. Front Oncol 2021; 11:771335. [PMID: 34869005 PMCID: PMC8635629 DOI: 10.3389/fonc.2021.771335] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022] Open
Abstract
The occurrence and development of cancer are closely related to the immune escape of tumor cells and immune tolerance. Unlike previous surgical, chemotherapy, radiotherapy and targeted therapy, tumor immunotherapy is a therapeutic strategy that uses various means to stimulate and enhance the immune function of the body, and ultimately achieves the goal of controlling tumor cells.With the in-depth understanding of tumor immune escape mechanism and tumor microenvironment, and the in-depth study of tumor immunotherapy, immune checkpoint inhibitors represented by Programmed Death 1/Programmed cell Death-Ligand 1(PD-1/PD-L1) inhibitors are becoming increasingly significant in cancer medication treatment. employ a variety of ways to avoid detection by the immune system, a single strategy is not more effective in overcoming tumor immune evasion and metastasis. Combining different immune agents or other drugs can effectively address situations where immunotherapy is not efficacious, thereby increasing the chances of success and alternative access to alternative immunotherapy. Immune combination therapies for cancer have become a hot topic in cancer treatment today. In this paper, several combination therapeutic modalities of PD1/PD-L1 inhibitors are systematically reviewed. Finally, an analysis and outlook are provided in the context of the recent advances in combination therapy with PD1/PD-L1 inhibitors and the pressing issues in this field.
Collapse
Affiliation(s)
- Zhitao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liangliang Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Chengyu Lv
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yichan Zhou
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongxiang Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| |
Collapse
|
47
|
Yang P, Zhou X, Yang X, Wang Y, Sun T, Feng S, Ma X. Neoadjuvant camrelizumab plus chemotherapy in treating locally advanced esophageal squamous cell carcinoma patients: a pilot study. World J Surg Oncol 2021; 19:333. [PMID: 34809658 PMCID: PMC8609728 DOI: 10.1186/s12957-021-02446-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023] Open
Abstract
Background Camrelizumab (a PD-1 inhibitor) has been used as a potential therapy in unresectable advanced esophageal squamous cell carcinoma (ESCC) along with adjuvant treatment in locally advanced ESCC, exhibiting an acceptable efficacy and safety profile. This pilot study was designed to further investigate the clinical value and tolerance of neoadjuvant camrelizumab plus chemotherapy in locally advanced ESCC. Methods A total of 16 patients with locally advanced ESCC were recruited. Patients received 2 cycles of neoadjuvant therapy including 2 doses of camrelizumab concurrent with 2 cycles of paclitaxel plus carboplatin followed by surgery 4 weeks afterward. Then, the treatment response after neoadjuvant therapy, R0 resection rate, tumor regression grade (TRG), and pathological complete remission (pCR) rate were measured. Besides, adverse events were documented. At last, progression-free survival (PFS) and overall survival (OS) were assessed. Results Generally, objective remission rate (ORR) was 81.3% whereas disease control rate (DCR) was 100% after neoadjuvant therapy. Concerning TRG grade, 31.3, 37.5, 18.8, and 12.5% patients reached TRG0, TRG1, TRG2, and TRG3, respectively. Then, pCR rate and R0 resection rate were 31.3 and 93.8%, respectively. Besides, mean PFS and OS were 18.3 months (95%CI: (16.2–20.5) months) and 19.2 months (95%CI: (17.7–20.7) months), respectively, with a 1-year PFS of 83% and OS of 90.9%. Adverse events included white blood cell decrease (37.5%), neutrophil decrease (31.3%), reactive cutaneous capillary endothelial proliferation (37.5%), and nausea or vomiting (25.0%), which were relatively mild and manageable. Conclusion Neoadjuvant camrelizumab plus chemotherapy exhibits good efficacy and acceptable tolerance in patients with locally advanced ESCC.
Collapse
Affiliation(s)
- Peng Yang
- Department of Cardiothoracic Surgery, Daqing Oilfield General Hospital, Daqing, 163000, Heilongjiang, China
| | - Xiao Zhou
- Department of Oncology, Daqing Oilfield General Hospital, No. 9 Zhongkang Street, Saertu District, Daqing, 163000, Heilongjiang, China.
| | - Xuefeng Yang
- Department of Cardiothoracic Surgery, Daqing Oilfield General Hospital, Daqing, 163000, Heilongjiang, China
| | - Yuefeng Wang
- Department of Cardiothoracic Surgery, Daqing Oilfield General Hospital, Daqing, 163000, Heilongjiang, China
| | - Tao Sun
- Department of Cardiothoracic Surgery, Daqing Oilfield General Hospital, Daqing, 163000, Heilongjiang, China
| | - Shiying Feng
- Department of Cardiothoracic Surgery, Daqing Oilfield General Hospital, Daqing, 163000, Heilongjiang, China
| | - Xianyou Ma
- Department of Cardiothoracic Surgery, Daqing Oilfield General Hospital, Daqing, 163000, Heilongjiang, China
| |
Collapse
|
48
|
Takahashi M, Watanabe S, Suzuki R, Arita M, Sato K, Sato M, Sekiya Y, Abe Y, Fujisaki T, Ohtsubo A, Shoji S, Nozaki K, Ichikawa K, Kondo R, Saida Y, Hokari S, Aoki N, Hayashi M, Ohshima Y, Koya T, Kikuchi T. PD-1 blockade therapy augments the antitumor effects of lymphodepletion and adoptive T cell transfer. Cancer Immunol Immunother 2021; 71:1357-1369. [PMID: 34657194 DOI: 10.1007/s00262-021-03078-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022]
Abstract
Lymphodepleting cytotoxic regimens enhance the antitumor effects of adoptively transferred effector and naïve T cells. Although the mechanisms of antitumor immunity augmentation by lymphodepletion have been intensively investigated, the effects of lymphodepletion followed by T cell transfer on immune checkpoints in the tumor microenvironment remain unclear. The current study demonstrated that the expression of immune checkpoint molecules on transferred donor CD4+ and CD8+ T cells was significantly decreased in lymphodepleted tumor-bearing mice. In contrast, lymphodepletion did not reduce immune checkpoint molecule levels on recipient CD4+ and CD8+ T cells. Administration of anti-PD-1 antibodies after lymphodepletion and adoptive transfer of T cells significantly inhibited tumor progression. Further analysis revealed that transfer of both donor CD4+ and CD8+ T cells was responsible for the antitumor effects of a combination therapy consisting of lymphodepletion, T cell transfer and anti-PD-1 treatment. Our findings indicate that a possible mechanism underlying the antitumor effects of lymphodepletion followed by T cell transfer is the prevention of donor T cell exhaustion and dysfunction. PD-1 blockade may reinvigorate exhausted recipient T cells and augment the antitumor effects of lymphodepletion and adoptive T cell transfer.
Collapse
Affiliation(s)
- Miho Takahashi
- Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan.
| | - Ryo Suzuki
- Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan
| | - Masashi Arita
- Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan
| | - Ko Sato
- Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan
| | - Miyuki Sato
- Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan
| | - Yuki Sekiya
- Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan
| | - Yuko Abe
- Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan
| | - Toshiya Fujisaki
- Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan
| | - Aya Ohtsubo
- Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan
| | - Satoshi Shoji
- Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan
| | - Koichiro Nozaki
- Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan
| | - Kosuke Ichikawa
- Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan
| | - Rie Kondo
- Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan
| | - Yu Saida
- Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan
| | - Satoshi Hokari
- Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan
| | - Nobumasa Aoki
- Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan
| | - Masachika Hayashi
- Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan
| | - Yasuyoshi Ohshima
- Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan
| | - Toshiyuki Koya
- Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Niigata, Japan
| |
Collapse
|
49
|
Liu Z, Liu C, Yao W, Gao S, Wang J, Zhang P, Ge H. Efficacy and safety of toripalimab combined with doxorubicin as first-line treatment for metastatic soft tissue sarcomas: an observational study. Anticancer Drugs 2021; 32:962-968. [PMID: 34001702 PMCID: PMC8448405 DOI: 10.1097/cad.0000000000001088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/20/2021] [Indexed: 11/25/2022]
Abstract
Programmed cell death protein 1 (PD-1) inhibitors have demonstrated promising activity among patients with advanced soft tissue sarcomas (STS) in phase II trials. The purpose of this study was to assess the efficacy and safety of toripalimab (a novel PD-1 inhibitor) combined with doxorubicin as first-line treatment in patients with metastatic STS between December 2018 and September 2019. A total of 30 patients with metastatic STS were included and followed up retrospectively. One patient had complete response (CR), 10 patients obtained partial response, and 13 patients achieved stable disease. The objective response rate was 36.7% and the disease control rate was 80%. The median progression-free survival (PFS) was 8 months (95% CI: 6.30-10.64). The most frequent any grade adverse events were nausea (66.7%), fatigue (60%), and vomiting (40%). Neutropenia (20%) was the most common grade 3/4 adverse events, followed by leucopenia (13.3%) and febrile neutropenia (6.7%). No death related to treatment was observed during the drugs administration. Toripalimab combined with doxorubicin is effective in patients with metastatic STS as first-line treatment with manageable adverse events.
Collapse
Affiliation(s)
- Zhiyong Liu
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital
| | | | - Weitao Yao
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital
| | - Songtao Gao
- Department of Orthopedics, Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University
| | - Jiaqiang Wang
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital
| | - Peng Zhang
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan Province, China
| |
Collapse
|
50
|
Lu CS, Lin CW, Chang YH, Chen HY, Chung WC, Lai WY, Ho CC, Wang TH, Chen CY, Yeh CL, Wu S, Wang SP, Yang PC. Antimetabolite pemetrexed primes a favorable tumor microenvironment for immune checkpoint blockade therapy. J Immunother Cancer 2021; 8:jitc-2020-001392. [PMID: 33243934 PMCID: PMC7692992 DOI: 10.1136/jitc-2020-001392] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
Background The immune checkpoint blockade (ICB) targeting programmed cell death-1 (PD-1) and its ligand (PD-L1) has been proved beneficial for numerous types of cancers, including non-small-cell lung cancer (NSCLC). However, a significant number of patients with NSCLC still fail to respond to ICB due to unfavorable tumor microenvironment. To improve the efficacy, the immune-chemotherapy combination with pemetrexed, cis/carboplatin and pembrolizumab (anti-PD-1) has been recently approved as first-line treatment in advanced NSCLCs. While chemotherapeutic agents exert beneficial effects, the underlying antitumor mechanism(s) remains unclear. Methods Pemetrexed, cisplatin and other chemotherapeutic agents were tested for the potential to induce PD-L1 expression in NSCLC cells by immunoblotting and flow cytometry. The ability to prime the tumor immune microenvironment was then determined by NSCLC/T cell coculture systems and syngeneic mouse models. Subpopulations of NSCLC cells responding differently to pemetrexed were selected and subjected to RNA-sequencing analysis. The key signaling pathways were identified and validated in vitro and in vivo. Results Pemetrexed induced the transcriptional activation of PD-L1 (encoded by CD274) by inactivating thymidylate synthase (TS) in NSCLC cells and, in turn, activating T-lymphocytes when combined with the anti-PD-1/PD-L1 therapy. Nuclear factor κB (NF-κB) signaling was activated by intracellular reactive oxygen species (ROSs) that were elevated by pemetrexed-mediated TS inactivation. The TS−ROS−NF-κB regulatory axis actively involves in pemetrexed-induced PD-L1 upregulation, whereas when pemetrexed fails to induce PD-L1 expression in NSCLC cells, NF-κB signaling is unregulated. In syngeneic mouse models, the combinatory treatment of pemetrexed with anti-PD-L1 antibody created a more favorable tumor microenvironment for the inhibition of tumor growth. Conclusions Our findings reveal novel mechanisms showing that pemetrexed upregulates PD-L1 expression and primes a favorable microenvironment for ICB, which provides a mechanistic basis for the combinatory chemoimmunotherapy in NSCLC treatment.
Collapse
Affiliation(s)
- Chia-Sing Lu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Wen Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Wei-Chia Chung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Yun Lai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital; Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chi-Yuan Chen
- Tissue Bank, Chang Gung Memorial Hospital; Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chen-Lin Yeh
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sean Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shu-Ping Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences and Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|